sched_4bsd.c revision 1.41 1 1.41 ad /* $NetBSD: sched_4bsd.c,v 1.41 2019/12/06 18:33:19 ad Exp $ */
2 1.2 yamt
3 1.31 maxv /*
4 1.36 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2019
5 1.36 ad * The NetBSD Foundation, Inc.
6 1.2 yamt * All rights reserved.
7 1.2 yamt *
8 1.2 yamt * This code is derived from software contributed to The NetBSD Foundation
9 1.2 yamt * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.2 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
11 1.2 yamt * Daniel Sieger.
12 1.2 yamt *
13 1.2 yamt * Redistribution and use in source and binary forms, with or without
14 1.2 yamt * modification, are permitted provided that the following conditions
15 1.2 yamt * are met:
16 1.2 yamt * 1. Redistributions of source code must retain the above copyright
17 1.2 yamt * notice, this list of conditions and the following disclaimer.
18 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
19 1.2 yamt * notice, this list of conditions and the following disclaimer in the
20 1.2 yamt * documentation and/or other materials provided with the distribution.
21 1.2 yamt *
22 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.2 yamt * POSSIBILITY OF SUCH DAMAGE.
33 1.2 yamt */
34 1.2 yamt
35 1.31 maxv /*
36 1.2 yamt * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.2 yamt * The Regents of the University of California. All rights reserved.
38 1.2 yamt * (c) UNIX System Laboratories, Inc.
39 1.2 yamt * All or some portions of this file are derived from material licensed
40 1.2 yamt * to the University of California by American Telephone and Telegraph
41 1.2 yamt * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.2 yamt * the permission of UNIX System Laboratories, Inc.
43 1.2 yamt *
44 1.2 yamt * Redistribution and use in source and binary forms, with or without
45 1.2 yamt * modification, are permitted provided that the following conditions
46 1.2 yamt * are met:
47 1.2 yamt * 1. Redistributions of source code must retain the above copyright
48 1.2 yamt * notice, this list of conditions and the following disclaimer.
49 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
50 1.2 yamt * notice, this list of conditions and the following disclaimer in the
51 1.2 yamt * documentation and/or other materials provided with the distribution.
52 1.2 yamt * 3. Neither the name of the University nor the names of its contributors
53 1.2 yamt * may be used to endorse or promote products derived from this software
54 1.2 yamt * without specific prior written permission.
55 1.2 yamt *
56 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.2 yamt * SUCH DAMAGE.
67 1.2 yamt *
68 1.2 yamt * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.2 yamt */
70 1.2 yamt
71 1.2 yamt #include <sys/cdefs.h>
72 1.41 ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.41 2019/12/06 18:33:19 ad Exp $");
73 1.2 yamt
74 1.2 yamt #include "opt_ddb.h"
75 1.2 yamt #include "opt_lockdebug.h"
76 1.2 yamt
77 1.2 yamt #include <sys/param.h>
78 1.2 yamt #include <sys/systm.h>
79 1.2 yamt #include <sys/callout.h>
80 1.2 yamt #include <sys/cpu.h>
81 1.2 yamt #include <sys/proc.h>
82 1.2 yamt #include <sys/kernel.h>
83 1.2 yamt #include <sys/resourcevar.h>
84 1.2 yamt #include <sys/sched.h>
85 1.2 yamt #include <sys/sysctl.h>
86 1.2 yamt #include <sys/lockdebug.h>
87 1.5 ad #include <sys/intr.h>
88 1.37 ad #include <sys/atomic.h>
89 1.2 yamt
90 1.2 yamt static void updatepri(struct lwp *);
91 1.2 yamt static void resetpriority(struct lwp *);
92 1.2 yamt
93 1.2 yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
94 1.2 yamt
95 1.2 yamt /* Number of hardclock ticks per sched_tick() */
96 1.31 maxv static int rrticks __read_mostly;
97 1.2 yamt
98 1.2 yamt /*
99 1.2 yamt * Force switch among equal priority processes every 100ms.
100 1.2 yamt * Called from hardclock every hz/10 == rrticks hardclock ticks.
101 1.2 yamt */
102 1.2 yamt /* ARGSUSED */
103 1.2 yamt void
104 1.2 yamt sched_tick(struct cpu_info *ci)
105 1.2 yamt {
106 1.2 yamt struct schedstate_percpu *spc = &ci->ci_schedstate;
107 1.41 ad pri_t pri = PRI_NONE;
108 1.23 ad lwp_t *l;
109 1.2 yamt
110 1.2 yamt spc->spc_ticks = rrticks;
111 1.2 yamt
112 1.15 ad if (CURCPU_IDLE_P()) {
113 1.41 ad spc_lock(ci);
114 1.41 ad sched_resched_cpu(ci, MAXPRI_KTHREAD, true);
115 1.41 ad /* spc now unlocked */
116 1.7 rmind return;
117 1.15 ad }
118 1.40 ad l = ci->ci_onproc;
119 1.23 ad if (l == NULL) {
120 1.19 yamt return;
121 1.19 yamt }
122 1.36 ad /*
123 1.36 ad * Can only be spc_lwplock or a turnstile lock at this point
124 1.36 ad * (if we interrupted priority inheritance trylock dance).
125 1.36 ad */
126 1.36 ad KASSERT(l->l_mutex != spc->spc_mutex);
127 1.23 ad switch (l->l_class) {
128 1.23 ad case SCHED_FIFO:
129 1.23 ad /* No timeslicing for FIFO jobs. */
130 1.23 ad break;
131 1.23 ad case SCHED_RR:
132 1.23 ad /* Force it into mi_switch() to look for other jobs to run. */
133 1.41 ad pri = MAXPRI_KERNEL_RT;
134 1.23 ad break;
135 1.23 ad default:
136 1.23 ad if (spc->spc_flags & SPCF_SHOULDYIELD) {
137 1.23 ad /*
138 1.23 ad * Process is stuck in kernel somewhere, probably
139 1.31 maxv * due to buggy or inefficient code. Force a
140 1.23 ad * kernel preemption.
141 1.23 ad */
142 1.41 ad pri = MAXPRI_KERNEL_RT;
143 1.23 ad } else if (spc->spc_flags & SPCF_SEENRR) {
144 1.23 ad /*
145 1.23 ad * The process has already been through a roundrobin
146 1.23 ad * without switching and may be hogging the CPU.
147 1.23 ad * Indicate that the process should yield.
148 1.23 ad */
149 1.41 ad pri = MAXPRI_KTHREAD;
150 1.23 ad } else {
151 1.23 ad spc->spc_flags |= SPCF_SEENRR;
152 1.23 ad }
153 1.23 ad break;
154 1.23 ad }
155 1.41 ad
156 1.41 ad if (pri != PRI_NONE) {
157 1.41 ad spc_lock(ci);
158 1.41 ad sched_resched_cpu(ci, pri, true);
159 1.41 ad /* spc now unlocked */
160 1.41 ad }
161 1.2 yamt }
162 1.2 yamt
163 1.8 ad /*
164 1.8 ad * Why PRIO_MAX - 2? From setpriority(2):
165 1.8 ad *
166 1.8 ad * prio is a value in the range -20 to 20. The default priority is
167 1.8 ad * 0; lower priorities cause more favorable scheduling. A value of
168 1.8 ad * 19 or 20 will schedule a process only when nothing at priority <=
169 1.8 ad * 0 is runnable.
170 1.8 ad *
171 1.8 ad * This gives estcpu influence over 18 priority levels, and leaves nice
172 1.8 ad * with 40 levels. One way to think about it is that nice has 20 levels
173 1.8 ad * either side of estcpu's 18.
174 1.8 ad */
175 1.2 yamt #define ESTCPU_SHIFT 11
176 1.8 ad #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
177 1.8 ad #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
178 1.35 riastrad #define ESTCPULIM(e) uimin((e), ESTCPU_MAX)
179 1.2 yamt
180 1.2 yamt /*
181 1.31 maxv * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
182 1.31 maxv * of the recent CPU utilization of the thread.
183 1.31 maxv *
184 1.31 maxv * l_estcpu is:
185 1.31 maxv * - increased each time the hardclock ticks and the thread is found to
186 1.31 maxv * be executing, in sched_schedclock() called from hardclock()
187 1.31 maxv * - decreased (filtered) on each sched tick, in sched_pstats_hook()
188 1.31 maxv * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
189 1.31 maxv * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
190 1.31 maxv * (ie, we decrease it n times).
191 1.2 yamt *
192 1.8 ad * Note that hardclock updates l_estcpu and l_cpticks independently.
193 1.2 yamt *
194 1.31 maxv * -----------------------------------------------------------------------------
195 1.31 maxv *
196 1.31 maxv * Here we describe how l_estcpu is decreased.
197 1.31 maxv *
198 1.31 maxv * Constants for digital decay (filter):
199 1.31 maxv * 90% of l_estcpu usage in (5 * loadavg) seconds
200 1.31 maxv *
201 1.31 maxv * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
202 1.31 maxv * want to compute a value of decay such that the following loop:
203 1.31 maxv * for (i = 0; i < (5 * loadavg); i++)
204 1.31 maxv * l_estcpu *= decay;
205 1.31 maxv * will result in
206 1.31 maxv * l_estcpu *= 0.1;
207 1.31 maxv * for all values of loadavg.
208 1.2 yamt *
209 1.2 yamt * Mathematically this loop can be expressed by saying:
210 1.31 maxv * decay ** (5 * loadavg) ~= .1
211 1.31 maxv *
212 1.31 maxv * And finally, the corresponding value of decay we're using is:
213 1.31 maxv * decay = (2 * loadavg) / (2 * loadavg + 1)
214 1.2 yamt *
215 1.31 maxv * -----------------------------------------------------------------------------
216 1.2 yamt *
217 1.31 maxv * Now, let's prove that the value of decay stated above will always fulfill
218 1.31 maxv * the equation:
219 1.31 maxv * decay ** (5 * loadavg) ~= .1
220 1.2 yamt *
221 1.2 yamt * If we compute b as:
222 1.31 maxv * b = 2 * loadavg
223 1.2 yamt * then
224 1.31 maxv * decay = b / (b + 1)
225 1.2 yamt *
226 1.2 yamt * We now need to prove two things:
227 1.31 maxv * 1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
228 1.31 maxv * 2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
229 1.2 yamt *
230 1.2 yamt * Facts:
231 1.31 maxv * * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
232 1.31 maxv * Therefore, for x close to zero, exp(x) =~ 1 + x.
233 1.31 maxv * In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
234 1.31 maxv *
235 1.31 maxv * * For b large enough, (b-1)/b =~ b/(b+1).
236 1.31 maxv *
237 1.31 maxv * * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
238 1.31 maxv * Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
239 1.31 maxv *
240 1.31 maxv * * ln(0.1) =~ -2.30
241 1.2 yamt *
242 1.2 yamt * Proof of (1):
243 1.31 maxv * factor ** (5 * loadavg) =~ 0.1
244 1.31 maxv * => ln(factor) =~ -2.30 / (5 * loadavg)
245 1.31 maxv * => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
246 1.31 maxv * =~ exp(-1 / (2 * loadavg))
247 1.31 maxv * =~ exp(-1 / b)
248 1.31 maxv * =~ (b - 1) / b
249 1.31 maxv * =~ b / (b + 1)
250 1.31 maxv * =~ (2 * loadavg) / ((2 * loadavg) + 1)
251 1.2 yamt *
252 1.2 yamt * Proof of (2):
253 1.31 maxv * (b / (b + 1)) ** power =~ .1
254 1.31 maxv * => power * ln(b / (b + 1)) =~ -2.30
255 1.31 maxv * => power * (-1 / (b + 1)) =~ -2.30
256 1.31 maxv * => power =~ 2.30 * (b + 1)
257 1.31 maxv * => power =~ 4.60 * loadavg + 2.30
258 1.31 maxv * => power =~ 5 * loadavg
259 1.31 maxv *
260 1.31 maxv * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
261 1.2 yamt */
262 1.2 yamt
263 1.31 maxv /* See calculations above */
264 1.32 maxv #define loadfactor(loadavg) (2 * (loadavg))
265 1.2 yamt
266 1.17 yamt static fixpt_t
267 1.2 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
268 1.2 yamt {
269 1.2 yamt
270 1.2 yamt if (estcpu == 0) {
271 1.2 yamt return 0;
272 1.2 yamt }
273 1.2 yamt
274 1.2 yamt #if !defined(_LP64)
275 1.2 yamt /* avoid 64bit arithmetics. */
276 1.2 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
277 1.2 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
278 1.2 yamt return estcpu * loadfac / (loadfac + FSCALE);
279 1.2 yamt }
280 1.31 maxv #endif
281 1.2 yamt
282 1.2 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
283 1.2 yamt }
284 1.2 yamt
285 1.2 yamt static fixpt_t
286 1.2 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
287 1.2 yamt {
288 1.2 yamt
289 1.31 maxv /*
290 1.31 maxv * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
291 1.31 maxv * if we slept for at least seven times the loadfactor, we will decay
292 1.31 maxv * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
293 1.31 maxv * return zero directly.
294 1.31 maxv *
295 1.31 maxv * Note that our ESTCPU_MAX is actually much smaller than
296 1.31 maxv * (255 << ESTCPU_SHIFT).
297 1.31 maxv */
298 1.2 yamt if ((n << FSHIFT) >= 7 * loadfac) {
299 1.2 yamt return 0;
300 1.2 yamt }
301 1.2 yamt
302 1.2 yamt while (estcpu != 0 && n > 1) {
303 1.2 yamt estcpu = decay_cpu(loadfac, estcpu);
304 1.2 yamt n--;
305 1.2 yamt }
306 1.2 yamt
307 1.2 yamt return estcpu;
308 1.2 yamt }
309 1.2 yamt
310 1.2 yamt /*
311 1.2 yamt * sched_pstats_hook:
312 1.2 yamt *
313 1.2 yamt * Periodically called from sched_pstats(); used to recalculate priorities.
314 1.2 yamt */
315 1.2 yamt void
316 1.22 rmind sched_pstats_hook(struct lwp *l, int batch)
317 1.2 yamt {
318 1.25 yamt fixpt_t loadfac;
319 1.2 yamt
320 1.8 ad /*
321 1.8 ad * If the LWP has slept an entire second, stop recalculating
322 1.8 ad * its priority until it wakes up.
323 1.8 ad */
324 1.24 rmind KASSERT(lwp_locked(l, NULL));
325 1.25 yamt if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
326 1.25 yamt l->l_stat == LSSUSPENDED) {
327 1.25 yamt if (l->l_slptime > 1) {
328 1.25 yamt return;
329 1.25 yamt }
330 1.8 ad }
331 1.33 maxv
332 1.33 maxv loadfac = loadfactor(averunnable.ldavg[0]);
333 1.25 yamt l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
334 1.25 yamt resetpriority(l);
335 1.2 yamt }
336 1.2 yamt
337 1.2 yamt /*
338 1.31 maxv * Recalculate the priority of an LWP after it has slept for a while.
339 1.2 yamt */
340 1.2 yamt static void
341 1.2 yamt updatepri(struct lwp *l)
342 1.2 yamt {
343 1.2 yamt fixpt_t loadfac;
344 1.2 yamt
345 1.3 ad KASSERT(lwp_locked(l, NULL));
346 1.2 yamt KASSERT(l->l_slptime > 1);
347 1.2 yamt
348 1.2 yamt loadfac = loadfactor(averunnable.ldavg[0]);
349 1.2 yamt
350 1.2 yamt l->l_slptime--; /* the first time was done in sched_pstats */
351 1.8 ad l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
352 1.2 yamt resetpriority(l);
353 1.2 yamt }
354 1.2 yamt
355 1.2 yamt void
356 1.14 matt sched_rqinit(void)
357 1.2 yamt {
358 1.2 yamt
359 1.2 yamt }
360 1.2 yamt
361 1.2 yamt void
362 1.2 yamt sched_setrunnable(struct lwp *l)
363 1.2 yamt {
364 1.2 yamt
365 1.2 yamt if (l->l_slptime > 1)
366 1.2 yamt updatepri(l);
367 1.2 yamt }
368 1.2 yamt
369 1.2 yamt void
370 1.8 ad sched_nice(struct proc *p, int n)
371 1.2 yamt {
372 1.8 ad struct lwp *l;
373 1.8 ad
374 1.20 ad KASSERT(mutex_owned(p->p_lock));
375 1.2 yamt
376 1.8 ad p->p_nice = n;
377 1.8 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
378 1.8 ad lwp_lock(l);
379 1.8 ad resetpriority(l);
380 1.8 ad lwp_unlock(l);
381 1.8 ad }
382 1.2 yamt }
383 1.2 yamt
384 1.2 yamt /*
385 1.8 ad * Recompute the priority of an LWP. Arrange to reschedule if
386 1.8 ad * the resulting priority is better than that of the current LWP.
387 1.2 yamt */
388 1.2 yamt static void
389 1.2 yamt resetpriority(struct lwp *l)
390 1.2 yamt {
391 1.8 ad pri_t pri;
392 1.2 yamt struct proc *p = l->l_proc;
393 1.2 yamt
394 1.8 ad KASSERT(lwp_locked(l, NULL));
395 1.2 yamt
396 1.8 ad if (l->l_class != SCHED_OTHER)
397 1.2 yamt return;
398 1.2 yamt
399 1.8 ad /* See comments above ESTCPU_SHIFT definition. */
400 1.8 ad pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
401 1.8 ad pri = imax(pri, 0);
402 1.8 ad if (pri != l->l_priority)
403 1.8 ad lwp_changepri(l, pri);
404 1.2 yamt }
405 1.2 yamt
406 1.2 yamt /*
407 1.28 yamt * We adjust the priority of the current LWP. The priority of a LWP
408 1.8 ad * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
409 1.28 yamt * is increased here. The formula for computing priorities will compute a
410 1.28 yamt * different value each time l_estcpu increases. This can cause a switch,
411 1.28 yamt * but unless the priority crosses a PPQ boundary the actual queue will not
412 1.28 yamt * change. The CPU usage estimator ramps up quite quickly when the process
413 1.28 yamt * is running (linearly), and decays away exponentially, at a rate which is
414 1.28 yamt * proportionally slower when the system is busy. The basic principle is
415 1.28 yamt * that the system will 90% forget that the process used a lot of CPU time
416 1.31 maxv * in (5 * loadavg) seconds. This causes the system to favor processes which
417 1.28 yamt * haven't run much recently, and to round-robin among other processes.
418 1.2 yamt */
419 1.2 yamt void
420 1.2 yamt sched_schedclock(struct lwp *l)
421 1.2 yamt {
422 1.8 ad
423 1.8 ad if (l->l_class != SCHED_OTHER)
424 1.8 ad return;
425 1.2 yamt
426 1.2 yamt KASSERT(!CURCPU_IDLE_P());
427 1.8 ad l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
428 1.2 yamt lwp_lock(l);
429 1.2 yamt resetpriority(l);
430 1.2 yamt lwp_unlock(l);
431 1.2 yamt }
432 1.2 yamt
433 1.2 yamt /*
434 1.2 yamt * sched_proc_fork:
435 1.2 yamt *
436 1.2 yamt * Inherit the parent's scheduler history.
437 1.2 yamt */
438 1.2 yamt void
439 1.2 yamt sched_proc_fork(struct proc *parent, struct proc *child)
440 1.2 yamt {
441 1.8 ad lwp_t *pl;
442 1.2 yamt
443 1.20 ad KASSERT(mutex_owned(parent->p_lock));
444 1.2 yamt
445 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
446 1.8 ad child->p_estcpu_inherited = pl->l_estcpu;
447 1.2 yamt child->p_forktime = sched_pstats_ticks;
448 1.2 yamt }
449 1.2 yamt
450 1.2 yamt /*
451 1.2 yamt * sched_proc_exit:
452 1.2 yamt *
453 1.2 yamt * Chargeback parents for the sins of their children.
454 1.2 yamt */
455 1.2 yamt void
456 1.2 yamt sched_proc_exit(struct proc *parent, struct proc *child)
457 1.2 yamt {
458 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
459 1.2 yamt fixpt_t estcpu;
460 1.8 ad lwp_t *pl, *cl;
461 1.2 yamt
462 1.2 yamt /* XXX Only if parent != init?? */
463 1.2 yamt
464 1.20 ad mutex_enter(parent->p_lock);
465 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
466 1.8 ad cl = LIST_FIRST(&child->p_lwps);
467 1.2 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
468 1.2 yamt sched_pstats_ticks - child->p_forktime);
469 1.8 ad if (cl->l_estcpu > estcpu) {
470 1.8 ad lwp_lock(pl);
471 1.8 ad pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
472 1.8 ad lwp_unlock(pl);
473 1.8 ad }
474 1.20 ad mutex_exit(parent->p_lock);
475 1.2 yamt }
476 1.2 yamt
477 1.2 yamt void
478 1.6 rmind sched_wakeup(struct lwp *l)
479 1.6 rmind {
480 1.6 rmind
481 1.6 rmind }
482 1.6 rmind
483 1.6 rmind void
484 1.6 rmind sched_slept(struct lwp *l)
485 1.6 rmind {
486 1.6 rmind
487 1.6 rmind }
488 1.6 rmind
489 1.2 yamt void
490 1.8 ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
491 1.2 yamt {
492 1.2 yamt
493 1.8 ad l2->l_estcpu = l1->l_estcpu;
494 1.2 yamt }
495 1.2 yamt
496 1.2 yamt void
497 1.8 ad sched_lwp_collect(struct lwp *t)
498 1.8 ad {
499 1.8 ad lwp_t *l;
500 1.8 ad
501 1.8 ad /* Absorb estcpu value of collected LWP. */
502 1.8 ad l = curlwp;
503 1.8 ad lwp_lock(l);
504 1.8 ad l->l_estcpu += t->l_estcpu;
505 1.8 ad lwp_unlock(l);
506 1.8 ad }
507 1.8 ad
508 1.16 ad void
509 1.16 ad sched_oncpu(lwp_t *l)
510 1.16 ad {
511 1.16 ad
512 1.16 ad }
513 1.16 ad
514 1.16 ad void
515 1.16 ad sched_newts(lwp_t *l)
516 1.16 ad {
517 1.16 ad
518 1.16 ad }
519 1.16 ad
520 1.5 ad /*
521 1.12 rmind * Sysctl nodes and initialization.
522 1.5 ad */
523 1.12 rmind
524 1.12 rmind static int
525 1.12 rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
526 1.12 rmind {
527 1.12 rmind struct sysctlnode node;
528 1.12 rmind int rttsms = hztoms(rrticks);
529 1.12 rmind
530 1.12 rmind node = *rnode;
531 1.12 rmind node.sysctl_data = &rttsms;
532 1.12 rmind return sysctl_lookup(SYSCTLFN_CALL(&node));
533 1.12 rmind }
534 1.12 rmind
535 1.16 ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
536 1.2 yamt {
537 1.2 yamt const struct sysctlnode *node = NULL;
538 1.2 yamt
539 1.2 yamt sysctl_createv(clog, 0, NULL, &node,
540 1.2 yamt CTLFLAG_PERMANENT,
541 1.2 yamt CTLTYPE_NODE, "sched",
542 1.2 yamt SYSCTL_DESCR("Scheduler options"),
543 1.2 yamt NULL, 0, NULL, 0,
544 1.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
545 1.2 yamt
546 1.16 ad if (node == NULL)
547 1.16 ad return;
548 1.5 ad
549 1.16 ad rrticks = hz / 10;
550 1.16 ad
551 1.16 ad sysctl_createv(NULL, 0, &node, NULL,
552 1.5 ad CTLFLAG_PERMANENT,
553 1.5 ad CTLTYPE_STRING, "name", NULL,
554 1.5 ad NULL, 0, __UNCONST("4.4BSD"), 0,
555 1.5 ad CTL_CREATE, CTL_EOL);
556 1.16 ad sysctl_createv(NULL, 0, &node, NULL,
557 1.12 rmind CTLFLAG_PERMANENT,
558 1.12 rmind CTLTYPE_INT, "rtts",
559 1.30 maxv SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
560 1.12 rmind sysctl_sched_rtts, 0, NULL, 0,
561 1.12 rmind CTL_CREATE, CTL_EOL);
562 1.2 yamt }
563