sched_4bsd.c revision 1.5 1 1.5 ad /* $NetBSD: sched_4bsd.c,v 1.5 2007/10/08 20:06:19 ad Exp $ */
2 1.2 yamt
3 1.2 yamt /*-
4 1.2 yamt * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 yamt * All rights reserved.
6 1.2 yamt *
7 1.2 yamt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 yamt * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.2 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.2 yamt * Daniel Sieger.
11 1.2 yamt *
12 1.2 yamt * Redistribution and use in source and binary forms, with or without
13 1.2 yamt * modification, are permitted provided that the following conditions
14 1.2 yamt * are met:
15 1.2 yamt * 1. Redistributions of source code must retain the above copyright
16 1.2 yamt * notice, this list of conditions and the following disclaimer.
17 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
18 1.2 yamt * notice, this list of conditions and the following disclaimer in the
19 1.2 yamt * documentation and/or other materials provided with the distribution.
20 1.2 yamt * 3. All advertising materials mentioning features or use of this software
21 1.2 yamt * must display the following acknowledgement:
22 1.2 yamt * This product includes software developed by the NetBSD
23 1.2 yamt * Foundation, Inc. and its contributors.
24 1.2 yamt * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.2 yamt * contributors may be used to endorse or promote products derived
26 1.2 yamt * from this software without specific prior written permission.
27 1.2 yamt *
28 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.2 yamt * POSSIBILITY OF SUCH DAMAGE.
39 1.2 yamt */
40 1.2 yamt
41 1.2 yamt /*-
42 1.2 yamt * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.2 yamt * The Regents of the University of California. All rights reserved.
44 1.2 yamt * (c) UNIX System Laboratories, Inc.
45 1.2 yamt * All or some portions of this file are derived from material licensed
46 1.2 yamt * to the University of California by American Telephone and Telegraph
47 1.2 yamt * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.2 yamt * the permission of UNIX System Laboratories, Inc.
49 1.2 yamt *
50 1.2 yamt * Redistribution and use in source and binary forms, with or without
51 1.2 yamt * modification, are permitted provided that the following conditions
52 1.2 yamt * are met:
53 1.2 yamt * 1. Redistributions of source code must retain the above copyright
54 1.2 yamt * notice, this list of conditions and the following disclaimer.
55 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
56 1.2 yamt * notice, this list of conditions and the following disclaimer in the
57 1.2 yamt * documentation and/or other materials provided with the distribution.
58 1.2 yamt * 3. Neither the name of the University nor the names of its contributors
59 1.2 yamt * may be used to endorse or promote products derived from this software
60 1.2 yamt * without specific prior written permission.
61 1.2 yamt *
62 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.2 yamt * SUCH DAMAGE.
73 1.2 yamt *
74 1.2 yamt * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.2 yamt */
76 1.2 yamt
77 1.2 yamt #include <sys/cdefs.h>
78 1.5 ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.5 2007/10/08 20:06:19 ad Exp $");
79 1.2 yamt
80 1.2 yamt #include "opt_ddb.h"
81 1.2 yamt #include "opt_lockdebug.h"
82 1.2 yamt #include "opt_perfctrs.h"
83 1.2 yamt
84 1.2 yamt #define __MUTEX_PRIVATE
85 1.2 yamt
86 1.2 yamt #include <sys/param.h>
87 1.2 yamt #include <sys/systm.h>
88 1.2 yamt #include <sys/callout.h>
89 1.2 yamt #include <sys/cpu.h>
90 1.2 yamt #include <sys/proc.h>
91 1.2 yamt #include <sys/kernel.h>
92 1.2 yamt #include <sys/signalvar.h>
93 1.2 yamt #include <sys/resourcevar.h>
94 1.2 yamt #include <sys/sched.h>
95 1.2 yamt #include <sys/sysctl.h>
96 1.2 yamt #include <sys/kauth.h>
97 1.2 yamt #include <sys/lockdebug.h>
98 1.2 yamt #include <sys/kmem.h>
99 1.5 ad #include <sys/intr.h>
100 1.2 yamt
101 1.2 yamt #include <uvm/uvm_extern.h>
102 1.2 yamt
103 1.2 yamt /*
104 1.2 yamt * Run queues.
105 1.2 yamt *
106 1.2 yamt * We have 32 run queues in descending priority of 0..31. We maintain
107 1.2 yamt * a bitmask of non-empty queues in order speed up finding the first
108 1.2 yamt * runnable process. The bitmask is maintained only by machine-dependent
109 1.2 yamt * code, allowing the most efficient instructions to be used to find the
110 1.2 yamt * first non-empty queue.
111 1.2 yamt */
112 1.2 yamt
113 1.2 yamt #define RUNQUE_NQS 32 /* number of runqueues */
114 1.2 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
115 1.2 yamt
116 1.2 yamt typedef struct subqueue {
117 1.2 yamt TAILQ_HEAD(, lwp) sq_queue;
118 1.2 yamt } subqueue_t;
119 1.2 yamt typedef struct runqueue {
120 1.2 yamt subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
121 1.2 yamt uint32_t rq_bitmap; /* bitmap of non-empty queues */
122 1.2 yamt } runqueue_t;
123 1.2 yamt static runqueue_t global_queue;
124 1.2 yamt
125 1.2 yamt static void updatepri(struct lwp *);
126 1.2 yamt static void resetpriority(struct lwp *);
127 1.2 yamt static void resetprocpriority(struct proc *);
128 1.2 yamt
129 1.2 yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
130 1.2 yamt
131 1.2 yamt /* The global scheduler state */
132 1.2 yamt kmutex_t sched_mutex;
133 1.2 yamt
134 1.2 yamt /* Number of hardclock ticks per sched_tick() */
135 1.2 yamt int rrticks;
136 1.2 yamt
137 1.2 yamt /*
138 1.2 yamt * Force switch among equal priority processes every 100ms.
139 1.2 yamt * Called from hardclock every hz/10 == rrticks hardclock ticks.
140 1.5 ad *
141 1.5 ad * There's no need to lock anywhere in this routine, as it's
142 1.5 ad * CPU-local and runs at IPL_SCHED (called from clock interrupt).
143 1.2 yamt */
144 1.2 yamt /* ARGSUSED */
145 1.2 yamt void
146 1.2 yamt sched_tick(struct cpu_info *ci)
147 1.2 yamt {
148 1.2 yamt struct schedstate_percpu *spc = &ci->ci_schedstate;
149 1.2 yamt
150 1.2 yamt spc->spc_ticks = rrticks;
151 1.2 yamt
152 1.2 yamt if (!CURCPU_IDLE_P()) {
153 1.2 yamt if (spc->spc_flags & SPCF_SEENRR) {
154 1.2 yamt /*
155 1.2 yamt * The process has already been through a roundrobin
156 1.2 yamt * without switching and may be hogging the CPU.
157 1.2 yamt * Indicate that the process should yield.
158 1.2 yamt */
159 1.2 yamt spc->spc_flags |= SPCF_SHOULDYIELD;
160 1.2 yamt } else
161 1.2 yamt spc->spc_flags |= SPCF_SEENRR;
162 1.2 yamt }
163 1.2 yamt cpu_need_resched(curcpu(), 0);
164 1.2 yamt }
165 1.2 yamt
166 1.2 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
167 1.2 yamt
168 1.2 yamt #define ESTCPU_SHIFT 11
169 1.2 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
170 1.2 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
171 1.2 yamt
172 1.2 yamt /*
173 1.2 yamt * Constants for digital decay and forget:
174 1.2 yamt * 90% of (p_estcpu) usage in 5 * loadav time
175 1.2 yamt * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
176 1.2 yamt * Note that, as ps(1) mentions, this can let percentages
177 1.2 yamt * total over 100% (I've seen 137.9% for 3 processes).
178 1.2 yamt *
179 1.2 yamt * Note that hardclock updates p_estcpu and p_cpticks independently.
180 1.2 yamt *
181 1.2 yamt * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
182 1.2 yamt * That is, the system wants to compute a value of decay such
183 1.2 yamt * that the following for loop:
184 1.2 yamt * for (i = 0; i < (5 * loadavg); i++)
185 1.2 yamt * p_estcpu *= decay;
186 1.2 yamt * will compute
187 1.2 yamt * p_estcpu *= 0.1;
188 1.2 yamt * for all values of loadavg:
189 1.2 yamt *
190 1.2 yamt * Mathematically this loop can be expressed by saying:
191 1.2 yamt * decay ** (5 * loadavg) ~= .1
192 1.2 yamt *
193 1.2 yamt * The system computes decay as:
194 1.2 yamt * decay = (2 * loadavg) / (2 * loadavg + 1)
195 1.2 yamt *
196 1.2 yamt * We wish to prove that the system's computation of decay
197 1.2 yamt * will always fulfill the equation:
198 1.2 yamt * decay ** (5 * loadavg) ~= .1
199 1.2 yamt *
200 1.2 yamt * If we compute b as:
201 1.2 yamt * b = 2 * loadavg
202 1.2 yamt * then
203 1.2 yamt * decay = b / (b + 1)
204 1.2 yamt *
205 1.2 yamt * We now need to prove two things:
206 1.2 yamt * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
207 1.2 yamt * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
208 1.2 yamt *
209 1.2 yamt * Facts:
210 1.2 yamt * For x close to zero, exp(x) =~ 1 + x, since
211 1.2 yamt * exp(x) = 0! + x**1/1! + x**2/2! + ... .
212 1.2 yamt * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
213 1.2 yamt * For x close to zero, ln(1+x) =~ x, since
214 1.2 yamt * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
215 1.2 yamt * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
216 1.2 yamt * ln(.1) =~ -2.30
217 1.2 yamt *
218 1.2 yamt * Proof of (1):
219 1.2 yamt * Solve (factor)**(power) =~ .1 given power (5*loadav):
220 1.2 yamt * solving for factor,
221 1.2 yamt * ln(factor) =~ (-2.30/5*loadav), or
222 1.2 yamt * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
223 1.2 yamt * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
224 1.2 yamt *
225 1.2 yamt * Proof of (2):
226 1.2 yamt * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
227 1.2 yamt * solving for power,
228 1.2 yamt * power*ln(b/(b+1)) =~ -2.30, or
229 1.2 yamt * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
230 1.2 yamt *
231 1.2 yamt * Actual power values for the implemented algorithm are as follows:
232 1.2 yamt * loadav: 1 2 3 4
233 1.2 yamt * power: 5.68 10.32 14.94 19.55
234 1.2 yamt */
235 1.2 yamt
236 1.2 yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
237 1.2 yamt #define loadfactor(loadav) (2 * (loadav))
238 1.2 yamt
239 1.2 yamt static fixpt_t
240 1.2 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
241 1.2 yamt {
242 1.2 yamt
243 1.2 yamt if (estcpu == 0) {
244 1.2 yamt return 0;
245 1.2 yamt }
246 1.2 yamt
247 1.2 yamt #if !defined(_LP64)
248 1.2 yamt /* avoid 64bit arithmetics. */
249 1.2 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
250 1.2 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
251 1.2 yamt return estcpu * loadfac / (loadfac + FSCALE);
252 1.2 yamt }
253 1.2 yamt #endif /* !defined(_LP64) */
254 1.2 yamt
255 1.2 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
256 1.2 yamt }
257 1.2 yamt
258 1.2 yamt /*
259 1.2 yamt * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
260 1.2 yamt * sleeping for at least seven times the loadfactor will decay p_estcpu to
261 1.2 yamt * less than (1 << ESTCPU_SHIFT).
262 1.2 yamt *
263 1.2 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
264 1.2 yamt */
265 1.2 yamt static fixpt_t
266 1.2 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
267 1.2 yamt {
268 1.2 yamt
269 1.2 yamt if ((n << FSHIFT) >= 7 * loadfac) {
270 1.2 yamt return 0;
271 1.2 yamt }
272 1.2 yamt
273 1.2 yamt while (estcpu != 0 && n > 1) {
274 1.2 yamt estcpu = decay_cpu(loadfac, estcpu);
275 1.2 yamt n--;
276 1.2 yamt }
277 1.2 yamt
278 1.2 yamt return estcpu;
279 1.2 yamt }
280 1.2 yamt
281 1.2 yamt /*
282 1.2 yamt * sched_pstats_hook:
283 1.2 yamt *
284 1.2 yamt * Periodically called from sched_pstats(); used to recalculate priorities.
285 1.2 yamt */
286 1.2 yamt void
287 1.2 yamt sched_pstats_hook(struct proc *p, int minslp)
288 1.2 yamt {
289 1.2 yamt struct lwp *l;
290 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
291 1.2 yamt
292 1.2 yamt /*
293 1.2 yamt * If the process has slept the entire second,
294 1.2 yamt * stop recalculating its priority until it wakes up.
295 1.2 yamt */
296 1.2 yamt if (minslp <= 1) {
297 1.2 yamt p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
298 1.2 yamt
299 1.2 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
300 1.2 yamt if ((l->l_flag & LW_IDLE) != 0)
301 1.2 yamt continue;
302 1.2 yamt lwp_lock(l);
303 1.2 yamt if (l->l_slptime <= 1 && l->l_priority >= PUSER)
304 1.2 yamt resetpriority(l);
305 1.2 yamt lwp_unlock(l);
306 1.2 yamt }
307 1.2 yamt }
308 1.2 yamt }
309 1.2 yamt
310 1.2 yamt /*
311 1.2 yamt * Recalculate the priority of a process after it has slept for a while.
312 1.2 yamt */
313 1.2 yamt static void
314 1.2 yamt updatepri(struct lwp *l)
315 1.2 yamt {
316 1.2 yamt struct proc *p = l->l_proc;
317 1.2 yamt fixpt_t loadfac;
318 1.2 yamt
319 1.3 ad KASSERT(lwp_locked(l, NULL));
320 1.2 yamt KASSERT(l->l_slptime > 1);
321 1.2 yamt
322 1.2 yamt loadfac = loadfactor(averunnable.ldavg[0]);
323 1.2 yamt
324 1.2 yamt l->l_slptime--; /* the first time was done in sched_pstats */
325 1.2 yamt /* XXX NJWLWP */
326 1.2 yamt /* XXXSMP occasionally unlocked, should be per-LWP */
327 1.2 yamt p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
328 1.2 yamt resetpriority(l);
329 1.2 yamt }
330 1.2 yamt
331 1.2 yamt /*
332 1.2 yamt * On some architectures, it's faster to use a MSB ordering for the priorites
333 1.2 yamt * than the traditional LSB ordering.
334 1.2 yamt */
335 1.2 yamt #define RQMASK(n) (0x00000001 << (n))
336 1.2 yamt
337 1.2 yamt /*
338 1.2 yamt * The primitives that manipulate the run queues. whichqs tells which
339 1.2 yamt * of the 32 queues qs have processes in them. sched_enqueue() puts processes
340 1.2 yamt * into queues, sched_dequeue removes them from queues. The running process is
341 1.2 yamt * on no queue, other processes are on a queue related to p->p_priority,
342 1.2 yamt * divided by 4 actually to shrink the 0-127 range of priorities into the 32
343 1.2 yamt * available queues.
344 1.2 yamt */
345 1.2 yamt #ifdef RQDEBUG
346 1.2 yamt static void
347 1.2 yamt runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
348 1.2 yamt {
349 1.2 yamt const subqueue_t * const sq = &rq->rq_subqueues[whichq];
350 1.2 yamt const uint32_t bitmap = rq->rq_bitmap;
351 1.2 yamt struct lwp *l2;
352 1.2 yamt int found = 0;
353 1.2 yamt int die = 0;
354 1.2 yamt int empty = 1;
355 1.2 yamt
356 1.2 yamt TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
357 1.2 yamt if (l2->l_stat != LSRUN) {
358 1.2 yamt printf("runqueue_check[%d]: lwp %p state (%d) "
359 1.2 yamt " != LSRUN\n", whichq, l2, l2->l_stat);
360 1.2 yamt }
361 1.2 yamt if (l2 == l)
362 1.2 yamt found = 1;
363 1.2 yamt empty = 0;
364 1.2 yamt }
365 1.2 yamt if (empty && (bitmap & RQMASK(whichq)) != 0) {
366 1.2 yamt printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
367 1.2 yamt whichq, rq);
368 1.2 yamt die = 1;
369 1.2 yamt } else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
370 1.2 yamt printf("runqueue_check[%d]: bit clear for non-empty "
371 1.2 yamt "run-queue %p\n", whichq, rq);
372 1.2 yamt die = 1;
373 1.2 yamt }
374 1.2 yamt if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
375 1.2 yamt printf("runqueue_check[%d]: bit clear for active lwp %p\n",
376 1.2 yamt whichq, l);
377 1.2 yamt die = 1;
378 1.2 yamt }
379 1.2 yamt if (l != NULL && empty) {
380 1.2 yamt printf("runqueue_check[%d]: empty run-queue %p with "
381 1.2 yamt "active lwp %p\n", whichq, rq, l);
382 1.2 yamt die = 1;
383 1.2 yamt }
384 1.2 yamt if (l != NULL && !found) {
385 1.2 yamt printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
386 1.2 yamt whichq, l, rq);
387 1.2 yamt die = 1;
388 1.2 yamt }
389 1.2 yamt if (die)
390 1.2 yamt panic("runqueue_check: inconsistency found");
391 1.2 yamt }
392 1.2 yamt #else /* RQDEBUG */
393 1.2 yamt #define runqueue_check(a, b, c) /* nothing */
394 1.2 yamt #endif /* RQDEBUG */
395 1.2 yamt
396 1.2 yamt static void
397 1.2 yamt runqueue_init(runqueue_t *rq)
398 1.2 yamt {
399 1.2 yamt int i;
400 1.2 yamt
401 1.2 yamt for (i = 0; i < RUNQUE_NQS; i++)
402 1.2 yamt TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
403 1.2 yamt }
404 1.2 yamt
405 1.2 yamt static void
406 1.2 yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
407 1.2 yamt {
408 1.2 yamt subqueue_t *sq;
409 1.2 yamt const int whichq = lwp_eprio(l) / PPQ;
410 1.2 yamt
411 1.2 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
412 1.2 yamt
413 1.2 yamt runqueue_check(rq, whichq, NULL);
414 1.2 yamt rq->rq_bitmap |= RQMASK(whichq);
415 1.2 yamt sq = &rq->rq_subqueues[whichq];
416 1.2 yamt TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
417 1.2 yamt runqueue_check(rq, whichq, l);
418 1.2 yamt }
419 1.2 yamt
420 1.2 yamt static void
421 1.2 yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
422 1.2 yamt {
423 1.2 yamt subqueue_t *sq;
424 1.2 yamt const int whichq = lwp_eprio(l) / PPQ;
425 1.2 yamt
426 1.2 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
427 1.2 yamt
428 1.2 yamt runqueue_check(rq, whichq, l);
429 1.2 yamt KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
430 1.2 yamt sq = &rq->rq_subqueues[whichq];
431 1.2 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
432 1.2 yamt if (TAILQ_EMPTY(&sq->sq_queue))
433 1.2 yamt rq->rq_bitmap &= ~RQMASK(whichq);
434 1.2 yamt runqueue_check(rq, whichq, NULL);
435 1.2 yamt }
436 1.2 yamt
437 1.2 yamt static struct lwp *
438 1.2 yamt runqueue_nextlwp(runqueue_t *rq)
439 1.2 yamt {
440 1.2 yamt const uint32_t bitmap = rq->rq_bitmap;
441 1.2 yamt int whichq;
442 1.2 yamt
443 1.2 yamt if (bitmap == 0) {
444 1.2 yamt return NULL;
445 1.2 yamt }
446 1.2 yamt whichq = ffs(bitmap) - 1;
447 1.2 yamt return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
448 1.2 yamt }
449 1.2 yamt
450 1.2 yamt #if defined(DDB)
451 1.2 yamt static void
452 1.2 yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
453 1.2 yamt {
454 1.2 yamt const uint32_t bitmap = rq->rq_bitmap;
455 1.2 yamt struct lwp *l;
456 1.2 yamt int i, first;
457 1.2 yamt
458 1.2 yamt for (i = 0; i < RUNQUE_NQS; i++) {
459 1.2 yamt const subqueue_t *sq;
460 1.2 yamt first = 1;
461 1.2 yamt sq = &rq->rq_subqueues[i];
462 1.2 yamt TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
463 1.2 yamt if (first) {
464 1.2 yamt (*pr)("%c%d",
465 1.2 yamt (bitmap & RQMASK(i)) ? ' ' : '!', i);
466 1.2 yamt first = 0;
467 1.2 yamt }
468 1.2 yamt (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
469 1.2 yamt l->l_proc->p_pid,
470 1.2 yamt l->l_lid, l->l_proc->p_comm,
471 1.2 yamt (int)l->l_priority, (int)l->l_usrpri);
472 1.2 yamt }
473 1.2 yamt }
474 1.2 yamt }
475 1.2 yamt #endif /* defined(DDB) */
476 1.2 yamt #undef RQMASK
477 1.2 yamt
478 1.2 yamt /*
479 1.2 yamt * Initialize the (doubly-linked) run queues
480 1.2 yamt * to be empty.
481 1.2 yamt */
482 1.2 yamt void
483 1.2 yamt sched_rqinit()
484 1.2 yamt {
485 1.2 yamt
486 1.2 yamt runqueue_init(&global_queue);
487 1.2 yamt mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
488 1.2 yamt /* Initialize the lock pointer for lwp0 */
489 1.2 yamt lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
490 1.2 yamt }
491 1.2 yamt
492 1.2 yamt void
493 1.2 yamt sched_cpuattach(struct cpu_info *ci)
494 1.2 yamt {
495 1.2 yamt runqueue_t *rq;
496 1.2 yamt
497 1.2 yamt ci->ci_schedstate.spc_mutex = &sched_mutex;
498 1.2 yamt rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
499 1.2 yamt runqueue_init(rq);
500 1.2 yamt ci->ci_schedstate.spc_sched_info = rq;
501 1.2 yamt }
502 1.2 yamt
503 1.2 yamt void
504 1.2 yamt sched_setup()
505 1.2 yamt {
506 1.2 yamt
507 1.2 yamt rrticks = hz / 10;
508 1.2 yamt }
509 1.2 yamt
510 1.2 yamt void
511 1.2 yamt sched_setrunnable(struct lwp *l)
512 1.2 yamt {
513 1.2 yamt
514 1.2 yamt if (l->l_slptime > 1)
515 1.2 yamt updatepri(l);
516 1.2 yamt }
517 1.2 yamt
518 1.2 yamt bool
519 1.2 yamt sched_curcpu_runnable_p(void)
520 1.2 yamt {
521 1.4 ad struct schedstate_percpu *spc;
522 1.4 ad runqueue_t *rq;
523 1.4 ad
524 1.4 ad spc = &curcpu()->ci_schedstate;
525 1.4 ad rq = spc->spc_sched_info;
526 1.2 yamt
527 1.4 ad if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
528 1.4 ad return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
529 1.4 ad return rq->rq_bitmap != 0;
530 1.2 yamt }
531 1.2 yamt
532 1.2 yamt void
533 1.2 yamt sched_nice(struct proc *chgp, int n)
534 1.2 yamt {
535 1.2 yamt
536 1.2 yamt chgp->p_nice = n;
537 1.2 yamt (void)resetprocpriority(chgp);
538 1.2 yamt }
539 1.2 yamt
540 1.2 yamt /*
541 1.2 yamt * Compute the priority of a process when running in user mode.
542 1.2 yamt * Arrange to reschedule if the resulting priority is better
543 1.2 yamt * than that of the current process.
544 1.2 yamt */
545 1.2 yamt static void
546 1.2 yamt resetpriority(struct lwp *l)
547 1.2 yamt {
548 1.2 yamt unsigned int newpriority;
549 1.2 yamt struct proc *p = l->l_proc;
550 1.2 yamt
551 1.2 yamt /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
552 1.2 yamt LOCK_ASSERT(lwp_locked(l, NULL));
553 1.2 yamt
554 1.2 yamt if ((l->l_flag & LW_SYSTEM) != 0)
555 1.2 yamt return;
556 1.2 yamt
557 1.2 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
558 1.2 yamt NICE_WEIGHT * (p->p_nice - NZERO);
559 1.2 yamt newpriority = min(newpriority, MAXPRI);
560 1.2 yamt lwp_changepri(l, newpriority);
561 1.2 yamt }
562 1.2 yamt
563 1.2 yamt /*
564 1.2 yamt * Recompute priority for all LWPs in a process.
565 1.2 yamt */
566 1.2 yamt static void
567 1.2 yamt resetprocpriority(struct proc *p)
568 1.2 yamt {
569 1.2 yamt struct lwp *l;
570 1.2 yamt
571 1.3 ad KASSERT(mutex_owned(&p->p_stmutex));
572 1.2 yamt
573 1.2 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
574 1.2 yamt lwp_lock(l);
575 1.2 yamt resetpriority(l);
576 1.2 yamt lwp_unlock(l);
577 1.2 yamt }
578 1.2 yamt }
579 1.2 yamt
580 1.2 yamt /*
581 1.2 yamt * We adjust the priority of the current process. The priority of a process
582 1.2 yamt * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
583 1.2 yamt * is increased here. The formula for computing priorities (in kern_synch.c)
584 1.2 yamt * will compute a different value each time p_estcpu increases. This can
585 1.2 yamt * cause a switch, but unless the priority crosses a PPQ boundary the actual
586 1.2 yamt * queue will not change. The CPU usage estimator ramps up quite quickly
587 1.2 yamt * when the process is running (linearly), and decays away exponentially, at
588 1.2 yamt * a rate which is proportionally slower when the system is busy. The basic
589 1.2 yamt * principle is that the system will 90% forget that the process used a lot
590 1.2 yamt * of CPU time in 5 * loadav seconds. This causes the system to favor
591 1.2 yamt * processes which haven't run much recently, and to round-robin among other
592 1.2 yamt * processes.
593 1.2 yamt */
594 1.2 yamt
595 1.2 yamt void
596 1.2 yamt sched_schedclock(struct lwp *l)
597 1.2 yamt {
598 1.2 yamt struct proc *p = l->l_proc;
599 1.2 yamt
600 1.2 yamt KASSERT(!CURCPU_IDLE_P());
601 1.2 yamt mutex_spin_enter(&p->p_stmutex);
602 1.2 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
603 1.2 yamt lwp_lock(l);
604 1.2 yamt resetpriority(l);
605 1.2 yamt mutex_spin_exit(&p->p_stmutex);
606 1.2 yamt if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
607 1.2 yamt l->l_priority = l->l_usrpri;
608 1.2 yamt lwp_unlock(l);
609 1.2 yamt }
610 1.2 yamt
611 1.2 yamt /*
612 1.2 yamt * sched_proc_fork:
613 1.2 yamt *
614 1.2 yamt * Inherit the parent's scheduler history.
615 1.2 yamt */
616 1.2 yamt void
617 1.2 yamt sched_proc_fork(struct proc *parent, struct proc *child)
618 1.2 yamt {
619 1.2 yamt
620 1.3 ad KASSERT(mutex_owned(&parent->p_smutex));
621 1.2 yamt
622 1.2 yamt child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
623 1.2 yamt child->p_forktime = sched_pstats_ticks;
624 1.2 yamt }
625 1.2 yamt
626 1.2 yamt /*
627 1.2 yamt * sched_proc_exit:
628 1.2 yamt *
629 1.2 yamt * Chargeback parents for the sins of their children.
630 1.2 yamt */
631 1.2 yamt void
632 1.2 yamt sched_proc_exit(struct proc *parent, struct proc *child)
633 1.2 yamt {
634 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
635 1.2 yamt fixpt_t estcpu;
636 1.2 yamt
637 1.2 yamt /* XXX Only if parent != init?? */
638 1.2 yamt
639 1.2 yamt mutex_spin_enter(&parent->p_stmutex);
640 1.2 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
641 1.2 yamt sched_pstats_ticks - child->p_forktime);
642 1.2 yamt if (child->p_estcpu > estcpu)
643 1.2 yamt parent->p_estcpu =
644 1.2 yamt ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
645 1.2 yamt mutex_spin_exit(&parent->p_stmutex);
646 1.2 yamt }
647 1.2 yamt
648 1.2 yamt void
649 1.2 yamt sched_enqueue(struct lwp *l, bool ctxswitch)
650 1.2 yamt {
651 1.2 yamt
652 1.2 yamt if ((l->l_flag & LW_BOUND) != 0)
653 1.2 yamt runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
654 1.2 yamt else
655 1.2 yamt runqueue_enqueue(&global_queue, l);
656 1.2 yamt }
657 1.2 yamt
658 1.2 yamt /*
659 1.2 yamt * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
660 1.2 yamt * drop of the effective priority level from kernel to user needs to be
661 1.2 yamt * moved here from userret(). The assignment in userret() is currently
662 1.2 yamt * done unlocked.
663 1.2 yamt */
664 1.2 yamt void
665 1.2 yamt sched_dequeue(struct lwp *l)
666 1.2 yamt {
667 1.2 yamt
668 1.2 yamt if ((l->l_flag & LW_BOUND) != 0)
669 1.2 yamt runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
670 1.2 yamt else
671 1.2 yamt runqueue_dequeue(&global_queue, l);
672 1.2 yamt }
673 1.2 yamt
674 1.2 yamt struct lwp *
675 1.2 yamt sched_nextlwp(void)
676 1.2 yamt {
677 1.4 ad struct schedstate_percpu *spc;
678 1.2 yamt lwp_t *l1, *l2;
679 1.2 yamt
680 1.4 ad spc = &curcpu()->ci_schedstate;
681 1.4 ad
682 1.2 yamt /* For now, just pick the highest priority LWP. */
683 1.4 ad l1 = runqueue_nextlwp(spc->spc_sched_info);
684 1.4 ad if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0))
685 1.4 ad return l1;
686 1.2 yamt l2 = runqueue_nextlwp(&global_queue);
687 1.2 yamt
688 1.2 yamt if (l1 == NULL)
689 1.2 yamt return l2;
690 1.2 yamt if (l2 == NULL)
691 1.2 yamt return l1;
692 1.2 yamt if (lwp_eprio(l2) < lwp_eprio(l1))
693 1.2 yamt return l2;
694 1.2 yamt else
695 1.2 yamt return l1;
696 1.2 yamt }
697 1.2 yamt
698 1.2 yamt /* Dummy */
699 1.2 yamt void
700 1.2 yamt sched_lwp_fork(struct lwp *l)
701 1.2 yamt {
702 1.2 yamt
703 1.2 yamt }
704 1.2 yamt
705 1.2 yamt void
706 1.2 yamt sched_lwp_exit(struct lwp *l)
707 1.2 yamt {
708 1.2 yamt
709 1.2 yamt }
710 1.2 yamt
711 1.5 ad /*
712 1.5 ad * sysctl setup. XXX This should be split with kern_synch.c.
713 1.5 ad */
714 1.2 yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
715 1.2 yamt {
716 1.2 yamt const struct sysctlnode *node = NULL;
717 1.2 yamt
718 1.2 yamt sysctl_createv(clog, 0, NULL, NULL,
719 1.2 yamt CTLFLAG_PERMANENT,
720 1.2 yamt CTLTYPE_NODE, "kern", NULL,
721 1.2 yamt NULL, 0, NULL, 0,
722 1.2 yamt CTL_KERN, CTL_EOL);
723 1.2 yamt sysctl_createv(clog, 0, NULL, &node,
724 1.2 yamt CTLFLAG_PERMANENT,
725 1.2 yamt CTLTYPE_NODE, "sched",
726 1.2 yamt SYSCTL_DESCR("Scheduler options"),
727 1.2 yamt NULL, 0, NULL, 0,
728 1.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
729 1.2 yamt
730 1.5 ad KASSERT(node != NULL);
731 1.5 ad
732 1.5 ad sysctl_createv(clog, 0, &node, NULL,
733 1.5 ad CTLFLAG_PERMANENT,
734 1.5 ad CTLTYPE_STRING, "name", NULL,
735 1.5 ad NULL, 0, __UNCONST("4.4BSD"), 0,
736 1.5 ad CTL_CREATE, CTL_EOL);
737 1.5 ad sysctl_createv(clog, 0, &node, NULL,
738 1.5 ad CTLFLAG_READWRITE,
739 1.5 ad CTLTYPE_INT, "timesoftints",
740 1.5 ad SYSCTL_DESCR("Track CPU time for soft interrupts"),
741 1.5 ad NULL, 0, &softint_timing, 0,
742 1.5 ad CTL_CREATE, CTL_EOL);
743 1.2 yamt }
744 1.2 yamt
745 1.2 yamt #if defined(DDB)
746 1.2 yamt void
747 1.2 yamt sched_print_runqueue(void (*pr)(const char *, ...))
748 1.2 yamt {
749 1.2 yamt
750 1.2 yamt runqueue_print(&global_queue, pr);
751 1.2 yamt }
752 1.2 yamt #endif /* defined(DDB) */
753