sched_4bsd.c revision 1.7 1 1.7 rmind /* $NetBSD: sched_4bsd.c,v 1.7 2007/10/10 21:24:53 rmind Exp $ */
2 1.2 yamt
3 1.2 yamt /*-
4 1.2 yamt * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 yamt * All rights reserved.
6 1.2 yamt *
7 1.2 yamt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 yamt * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.2 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.2 yamt * Daniel Sieger.
11 1.2 yamt *
12 1.2 yamt * Redistribution and use in source and binary forms, with or without
13 1.2 yamt * modification, are permitted provided that the following conditions
14 1.2 yamt * are met:
15 1.2 yamt * 1. Redistributions of source code must retain the above copyright
16 1.2 yamt * notice, this list of conditions and the following disclaimer.
17 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
18 1.2 yamt * notice, this list of conditions and the following disclaimer in the
19 1.2 yamt * documentation and/or other materials provided with the distribution.
20 1.2 yamt * 3. All advertising materials mentioning features or use of this software
21 1.2 yamt * must display the following acknowledgement:
22 1.2 yamt * This product includes software developed by the NetBSD
23 1.2 yamt * Foundation, Inc. and its contributors.
24 1.2 yamt * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.2 yamt * contributors may be used to endorse or promote products derived
26 1.2 yamt * from this software without specific prior written permission.
27 1.2 yamt *
28 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.2 yamt * POSSIBILITY OF SUCH DAMAGE.
39 1.2 yamt */
40 1.2 yamt
41 1.2 yamt /*-
42 1.2 yamt * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.2 yamt * The Regents of the University of California. All rights reserved.
44 1.2 yamt * (c) UNIX System Laboratories, Inc.
45 1.2 yamt * All or some portions of this file are derived from material licensed
46 1.2 yamt * to the University of California by American Telephone and Telegraph
47 1.2 yamt * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.2 yamt * the permission of UNIX System Laboratories, Inc.
49 1.2 yamt *
50 1.2 yamt * Redistribution and use in source and binary forms, with or without
51 1.2 yamt * modification, are permitted provided that the following conditions
52 1.2 yamt * are met:
53 1.2 yamt * 1. Redistributions of source code must retain the above copyright
54 1.2 yamt * notice, this list of conditions and the following disclaimer.
55 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
56 1.2 yamt * notice, this list of conditions and the following disclaimer in the
57 1.2 yamt * documentation and/or other materials provided with the distribution.
58 1.2 yamt * 3. Neither the name of the University nor the names of its contributors
59 1.2 yamt * may be used to endorse or promote products derived from this software
60 1.2 yamt * without specific prior written permission.
61 1.2 yamt *
62 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.2 yamt * SUCH DAMAGE.
73 1.2 yamt *
74 1.2 yamt * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.2 yamt */
76 1.2 yamt
77 1.2 yamt #include <sys/cdefs.h>
78 1.7 rmind __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.7 2007/10/10 21:24:53 rmind Exp $");
79 1.2 yamt
80 1.2 yamt #include "opt_ddb.h"
81 1.2 yamt #include "opt_lockdebug.h"
82 1.2 yamt #include "opt_perfctrs.h"
83 1.2 yamt
84 1.2 yamt #define __MUTEX_PRIVATE
85 1.2 yamt
86 1.2 yamt #include <sys/param.h>
87 1.2 yamt #include <sys/systm.h>
88 1.2 yamt #include <sys/callout.h>
89 1.2 yamt #include <sys/cpu.h>
90 1.2 yamt #include <sys/proc.h>
91 1.2 yamt #include <sys/kernel.h>
92 1.2 yamt #include <sys/signalvar.h>
93 1.2 yamt #include <sys/resourcevar.h>
94 1.2 yamt #include <sys/sched.h>
95 1.2 yamt #include <sys/sysctl.h>
96 1.2 yamt #include <sys/kauth.h>
97 1.2 yamt #include <sys/lockdebug.h>
98 1.2 yamt #include <sys/kmem.h>
99 1.5 ad #include <sys/intr.h>
100 1.2 yamt
101 1.2 yamt #include <uvm/uvm_extern.h>
102 1.2 yamt
103 1.2 yamt /*
104 1.2 yamt * Run queues.
105 1.2 yamt *
106 1.2 yamt * We have 32 run queues in descending priority of 0..31. We maintain
107 1.2 yamt * a bitmask of non-empty queues in order speed up finding the first
108 1.2 yamt * runnable process. The bitmask is maintained only by machine-dependent
109 1.2 yamt * code, allowing the most efficient instructions to be used to find the
110 1.2 yamt * first non-empty queue.
111 1.2 yamt */
112 1.2 yamt
113 1.2 yamt #define RUNQUE_NQS 32 /* number of runqueues */
114 1.2 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
115 1.2 yamt
116 1.2 yamt typedef struct subqueue {
117 1.2 yamt TAILQ_HEAD(, lwp) sq_queue;
118 1.2 yamt } subqueue_t;
119 1.2 yamt typedef struct runqueue {
120 1.2 yamt subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
121 1.2 yamt uint32_t rq_bitmap; /* bitmap of non-empty queues */
122 1.2 yamt } runqueue_t;
123 1.2 yamt static runqueue_t global_queue;
124 1.2 yamt
125 1.2 yamt static void updatepri(struct lwp *);
126 1.2 yamt static void resetpriority(struct lwp *);
127 1.2 yamt static void resetprocpriority(struct proc *);
128 1.2 yamt
129 1.6 rmind fixpt_t decay_cpu(fixpt_t, fixpt_t);
130 1.6 rmind
131 1.2 yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
132 1.2 yamt
133 1.2 yamt /* The global scheduler state */
134 1.2 yamt kmutex_t sched_mutex;
135 1.2 yamt
136 1.2 yamt /* Number of hardclock ticks per sched_tick() */
137 1.2 yamt int rrticks;
138 1.2 yamt
139 1.2 yamt /*
140 1.2 yamt * Force switch among equal priority processes every 100ms.
141 1.2 yamt * Called from hardclock every hz/10 == rrticks hardclock ticks.
142 1.5 ad *
143 1.5 ad * There's no need to lock anywhere in this routine, as it's
144 1.5 ad * CPU-local and runs at IPL_SCHED (called from clock interrupt).
145 1.2 yamt */
146 1.2 yamt /* ARGSUSED */
147 1.2 yamt void
148 1.2 yamt sched_tick(struct cpu_info *ci)
149 1.2 yamt {
150 1.2 yamt struct schedstate_percpu *spc = &ci->ci_schedstate;
151 1.2 yamt
152 1.2 yamt spc->spc_ticks = rrticks;
153 1.2 yamt
154 1.7 rmind if (CURCPU_IDLE_P())
155 1.7 rmind return;
156 1.7 rmind
157 1.7 rmind if (spc->spc_flags & SPCF_SEENRR) {
158 1.7 rmind /*
159 1.7 rmind * The process has already been through a roundrobin
160 1.7 rmind * without switching and may be hogging the CPU.
161 1.7 rmind * Indicate that the process should yield.
162 1.7 rmind */
163 1.7 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
164 1.7 rmind } else
165 1.7 rmind spc->spc_flags |= SPCF_SEENRR;
166 1.7 rmind
167 1.7 rmind cpu_need_resched(ci, 0);
168 1.2 yamt }
169 1.2 yamt
170 1.2 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
171 1.2 yamt
172 1.2 yamt #define ESTCPU_SHIFT 11
173 1.2 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
174 1.2 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
175 1.2 yamt
176 1.2 yamt /*
177 1.2 yamt * Constants for digital decay and forget:
178 1.2 yamt * 90% of (p_estcpu) usage in 5 * loadav time
179 1.2 yamt * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
180 1.2 yamt * Note that, as ps(1) mentions, this can let percentages
181 1.2 yamt * total over 100% (I've seen 137.9% for 3 processes).
182 1.2 yamt *
183 1.2 yamt * Note that hardclock updates p_estcpu and p_cpticks independently.
184 1.2 yamt *
185 1.2 yamt * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
186 1.2 yamt * That is, the system wants to compute a value of decay such
187 1.2 yamt * that the following for loop:
188 1.2 yamt * for (i = 0; i < (5 * loadavg); i++)
189 1.2 yamt * p_estcpu *= decay;
190 1.2 yamt * will compute
191 1.2 yamt * p_estcpu *= 0.1;
192 1.2 yamt * for all values of loadavg:
193 1.2 yamt *
194 1.2 yamt * Mathematically this loop can be expressed by saying:
195 1.2 yamt * decay ** (5 * loadavg) ~= .1
196 1.2 yamt *
197 1.2 yamt * The system computes decay as:
198 1.2 yamt * decay = (2 * loadavg) / (2 * loadavg + 1)
199 1.2 yamt *
200 1.2 yamt * We wish to prove that the system's computation of decay
201 1.2 yamt * will always fulfill the equation:
202 1.2 yamt * decay ** (5 * loadavg) ~= .1
203 1.2 yamt *
204 1.2 yamt * If we compute b as:
205 1.2 yamt * b = 2 * loadavg
206 1.2 yamt * then
207 1.2 yamt * decay = b / (b + 1)
208 1.2 yamt *
209 1.2 yamt * We now need to prove two things:
210 1.2 yamt * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
211 1.2 yamt * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
212 1.2 yamt *
213 1.2 yamt * Facts:
214 1.2 yamt * For x close to zero, exp(x) =~ 1 + x, since
215 1.2 yamt * exp(x) = 0! + x**1/1! + x**2/2! + ... .
216 1.2 yamt * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
217 1.2 yamt * For x close to zero, ln(1+x) =~ x, since
218 1.2 yamt * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
219 1.2 yamt * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
220 1.2 yamt * ln(.1) =~ -2.30
221 1.2 yamt *
222 1.2 yamt * Proof of (1):
223 1.2 yamt * Solve (factor)**(power) =~ .1 given power (5*loadav):
224 1.2 yamt * solving for factor,
225 1.2 yamt * ln(factor) =~ (-2.30/5*loadav), or
226 1.2 yamt * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
227 1.2 yamt * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
228 1.2 yamt *
229 1.2 yamt * Proof of (2):
230 1.2 yamt * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
231 1.2 yamt * solving for power,
232 1.2 yamt * power*ln(b/(b+1)) =~ -2.30, or
233 1.2 yamt * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
234 1.2 yamt *
235 1.2 yamt * Actual power values for the implemented algorithm are as follows:
236 1.2 yamt * loadav: 1 2 3 4
237 1.2 yamt * power: 5.68 10.32 14.94 19.55
238 1.2 yamt */
239 1.2 yamt
240 1.2 yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
241 1.2 yamt #define loadfactor(loadav) (2 * (loadav))
242 1.2 yamt
243 1.6 rmind fixpt_t
244 1.2 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
245 1.2 yamt {
246 1.2 yamt
247 1.2 yamt if (estcpu == 0) {
248 1.2 yamt return 0;
249 1.2 yamt }
250 1.2 yamt
251 1.2 yamt #if !defined(_LP64)
252 1.2 yamt /* avoid 64bit arithmetics. */
253 1.2 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
254 1.2 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
255 1.2 yamt return estcpu * loadfac / (loadfac + FSCALE);
256 1.2 yamt }
257 1.2 yamt #endif /* !defined(_LP64) */
258 1.2 yamt
259 1.2 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
260 1.2 yamt }
261 1.2 yamt
262 1.2 yamt /*
263 1.2 yamt * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
264 1.2 yamt * sleeping for at least seven times the loadfactor will decay p_estcpu to
265 1.2 yamt * less than (1 << ESTCPU_SHIFT).
266 1.2 yamt *
267 1.2 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
268 1.2 yamt */
269 1.2 yamt static fixpt_t
270 1.2 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
271 1.2 yamt {
272 1.2 yamt
273 1.2 yamt if ((n << FSHIFT) >= 7 * loadfac) {
274 1.2 yamt return 0;
275 1.2 yamt }
276 1.2 yamt
277 1.2 yamt while (estcpu != 0 && n > 1) {
278 1.2 yamt estcpu = decay_cpu(loadfac, estcpu);
279 1.2 yamt n--;
280 1.2 yamt }
281 1.2 yamt
282 1.2 yamt return estcpu;
283 1.2 yamt }
284 1.2 yamt
285 1.2 yamt /*
286 1.2 yamt * sched_pstats_hook:
287 1.2 yamt *
288 1.2 yamt * Periodically called from sched_pstats(); used to recalculate priorities.
289 1.2 yamt */
290 1.2 yamt void
291 1.6 rmind sched_pstats_hook(struct lwp *l)
292 1.2 yamt {
293 1.2 yamt
294 1.6 rmind if (l->l_slptime <= 1 && l->l_priority >= PUSER)
295 1.6 rmind resetpriority(l);
296 1.2 yamt }
297 1.2 yamt
298 1.2 yamt /*
299 1.2 yamt * Recalculate the priority of a process after it has slept for a while.
300 1.2 yamt */
301 1.2 yamt static void
302 1.2 yamt updatepri(struct lwp *l)
303 1.2 yamt {
304 1.2 yamt struct proc *p = l->l_proc;
305 1.2 yamt fixpt_t loadfac;
306 1.2 yamt
307 1.3 ad KASSERT(lwp_locked(l, NULL));
308 1.2 yamt KASSERT(l->l_slptime > 1);
309 1.2 yamt
310 1.2 yamt loadfac = loadfactor(averunnable.ldavg[0]);
311 1.2 yamt
312 1.2 yamt l->l_slptime--; /* the first time was done in sched_pstats */
313 1.2 yamt /* XXX NJWLWP */
314 1.2 yamt /* XXXSMP occasionally unlocked, should be per-LWP */
315 1.2 yamt p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
316 1.2 yamt resetpriority(l);
317 1.2 yamt }
318 1.2 yamt
319 1.2 yamt /*
320 1.2 yamt * On some architectures, it's faster to use a MSB ordering for the priorites
321 1.2 yamt * than the traditional LSB ordering.
322 1.2 yamt */
323 1.2 yamt #define RQMASK(n) (0x00000001 << (n))
324 1.2 yamt
325 1.2 yamt /*
326 1.2 yamt * The primitives that manipulate the run queues. whichqs tells which
327 1.2 yamt * of the 32 queues qs have processes in them. sched_enqueue() puts processes
328 1.2 yamt * into queues, sched_dequeue removes them from queues. The running process is
329 1.2 yamt * on no queue, other processes are on a queue related to p->p_priority,
330 1.2 yamt * divided by 4 actually to shrink the 0-127 range of priorities into the 32
331 1.2 yamt * available queues.
332 1.2 yamt */
333 1.2 yamt #ifdef RQDEBUG
334 1.2 yamt static void
335 1.2 yamt runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
336 1.2 yamt {
337 1.2 yamt const subqueue_t * const sq = &rq->rq_subqueues[whichq];
338 1.2 yamt const uint32_t bitmap = rq->rq_bitmap;
339 1.2 yamt struct lwp *l2;
340 1.2 yamt int found = 0;
341 1.2 yamt int die = 0;
342 1.2 yamt int empty = 1;
343 1.2 yamt
344 1.2 yamt TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
345 1.2 yamt if (l2->l_stat != LSRUN) {
346 1.2 yamt printf("runqueue_check[%d]: lwp %p state (%d) "
347 1.2 yamt " != LSRUN\n", whichq, l2, l2->l_stat);
348 1.2 yamt }
349 1.2 yamt if (l2 == l)
350 1.2 yamt found = 1;
351 1.2 yamt empty = 0;
352 1.2 yamt }
353 1.2 yamt if (empty && (bitmap & RQMASK(whichq)) != 0) {
354 1.2 yamt printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
355 1.2 yamt whichq, rq);
356 1.2 yamt die = 1;
357 1.2 yamt } else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
358 1.2 yamt printf("runqueue_check[%d]: bit clear for non-empty "
359 1.2 yamt "run-queue %p\n", whichq, rq);
360 1.2 yamt die = 1;
361 1.2 yamt }
362 1.2 yamt if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
363 1.2 yamt printf("runqueue_check[%d]: bit clear for active lwp %p\n",
364 1.2 yamt whichq, l);
365 1.2 yamt die = 1;
366 1.2 yamt }
367 1.2 yamt if (l != NULL && empty) {
368 1.2 yamt printf("runqueue_check[%d]: empty run-queue %p with "
369 1.2 yamt "active lwp %p\n", whichq, rq, l);
370 1.2 yamt die = 1;
371 1.2 yamt }
372 1.2 yamt if (l != NULL && !found) {
373 1.2 yamt printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
374 1.2 yamt whichq, l, rq);
375 1.2 yamt die = 1;
376 1.2 yamt }
377 1.2 yamt if (die)
378 1.2 yamt panic("runqueue_check: inconsistency found");
379 1.2 yamt }
380 1.2 yamt #else /* RQDEBUG */
381 1.2 yamt #define runqueue_check(a, b, c) /* nothing */
382 1.2 yamt #endif /* RQDEBUG */
383 1.2 yamt
384 1.2 yamt static void
385 1.2 yamt runqueue_init(runqueue_t *rq)
386 1.2 yamt {
387 1.2 yamt int i;
388 1.2 yamt
389 1.2 yamt for (i = 0; i < RUNQUE_NQS; i++)
390 1.2 yamt TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
391 1.2 yamt }
392 1.2 yamt
393 1.2 yamt static void
394 1.2 yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
395 1.2 yamt {
396 1.2 yamt subqueue_t *sq;
397 1.2 yamt const int whichq = lwp_eprio(l) / PPQ;
398 1.2 yamt
399 1.2 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
400 1.2 yamt
401 1.2 yamt runqueue_check(rq, whichq, NULL);
402 1.2 yamt rq->rq_bitmap |= RQMASK(whichq);
403 1.2 yamt sq = &rq->rq_subqueues[whichq];
404 1.2 yamt TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
405 1.2 yamt runqueue_check(rq, whichq, l);
406 1.2 yamt }
407 1.2 yamt
408 1.2 yamt static void
409 1.2 yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
410 1.2 yamt {
411 1.2 yamt subqueue_t *sq;
412 1.2 yamt const int whichq = lwp_eprio(l) / PPQ;
413 1.2 yamt
414 1.2 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
415 1.2 yamt
416 1.2 yamt runqueue_check(rq, whichq, l);
417 1.2 yamt KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
418 1.2 yamt sq = &rq->rq_subqueues[whichq];
419 1.2 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
420 1.2 yamt if (TAILQ_EMPTY(&sq->sq_queue))
421 1.2 yamt rq->rq_bitmap &= ~RQMASK(whichq);
422 1.2 yamt runqueue_check(rq, whichq, NULL);
423 1.2 yamt }
424 1.2 yamt
425 1.2 yamt static struct lwp *
426 1.2 yamt runqueue_nextlwp(runqueue_t *rq)
427 1.2 yamt {
428 1.2 yamt const uint32_t bitmap = rq->rq_bitmap;
429 1.2 yamt int whichq;
430 1.2 yamt
431 1.2 yamt if (bitmap == 0) {
432 1.2 yamt return NULL;
433 1.2 yamt }
434 1.2 yamt whichq = ffs(bitmap) - 1;
435 1.2 yamt return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
436 1.2 yamt }
437 1.2 yamt
438 1.2 yamt #if defined(DDB)
439 1.2 yamt static void
440 1.2 yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
441 1.2 yamt {
442 1.2 yamt const uint32_t bitmap = rq->rq_bitmap;
443 1.2 yamt struct lwp *l;
444 1.2 yamt int i, first;
445 1.2 yamt
446 1.2 yamt for (i = 0; i < RUNQUE_NQS; i++) {
447 1.2 yamt const subqueue_t *sq;
448 1.2 yamt first = 1;
449 1.2 yamt sq = &rq->rq_subqueues[i];
450 1.2 yamt TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
451 1.2 yamt if (first) {
452 1.2 yamt (*pr)("%c%d",
453 1.2 yamt (bitmap & RQMASK(i)) ? ' ' : '!', i);
454 1.2 yamt first = 0;
455 1.2 yamt }
456 1.2 yamt (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
457 1.2 yamt l->l_proc->p_pid,
458 1.2 yamt l->l_lid, l->l_proc->p_comm,
459 1.2 yamt (int)l->l_priority, (int)l->l_usrpri);
460 1.2 yamt }
461 1.2 yamt }
462 1.2 yamt }
463 1.2 yamt #endif /* defined(DDB) */
464 1.2 yamt #undef RQMASK
465 1.2 yamt
466 1.2 yamt /*
467 1.2 yamt * Initialize the (doubly-linked) run queues
468 1.2 yamt * to be empty.
469 1.2 yamt */
470 1.2 yamt void
471 1.2 yamt sched_rqinit()
472 1.2 yamt {
473 1.2 yamt
474 1.2 yamt runqueue_init(&global_queue);
475 1.2 yamt mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
476 1.2 yamt /* Initialize the lock pointer for lwp0 */
477 1.2 yamt lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
478 1.2 yamt }
479 1.2 yamt
480 1.2 yamt void
481 1.2 yamt sched_cpuattach(struct cpu_info *ci)
482 1.2 yamt {
483 1.2 yamt runqueue_t *rq;
484 1.2 yamt
485 1.2 yamt ci->ci_schedstate.spc_mutex = &sched_mutex;
486 1.2 yamt rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
487 1.2 yamt runqueue_init(rq);
488 1.2 yamt ci->ci_schedstate.spc_sched_info = rq;
489 1.2 yamt }
490 1.2 yamt
491 1.2 yamt void
492 1.2 yamt sched_setup()
493 1.2 yamt {
494 1.2 yamt
495 1.2 yamt rrticks = hz / 10;
496 1.2 yamt }
497 1.2 yamt
498 1.2 yamt void
499 1.2 yamt sched_setrunnable(struct lwp *l)
500 1.2 yamt {
501 1.2 yamt
502 1.2 yamt if (l->l_slptime > 1)
503 1.2 yamt updatepri(l);
504 1.2 yamt }
505 1.2 yamt
506 1.2 yamt bool
507 1.2 yamt sched_curcpu_runnable_p(void)
508 1.2 yamt {
509 1.4 ad struct schedstate_percpu *spc;
510 1.4 ad runqueue_t *rq;
511 1.4 ad
512 1.4 ad spc = &curcpu()->ci_schedstate;
513 1.4 ad rq = spc->spc_sched_info;
514 1.2 yamt
515 1.4 ad if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
516 1.4 ad return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
517 1.4 ad return rq->rq_bitmap != 0;
518 1.2 yamt }
519 1.2 yamt
520 1.2 yamt void
521 1.2 yamt sched_nice(struct proc *chgp, int n)
522 1.2 yamt {
523 1.2 yamt
524 1.2 yamt chgp->p_nice = n;
525 1.2 yamt (void)resetprocpriority(chgp);
526 1.2 yamt }
527 1.2 yamt
528 1.2 yamt /*
529 1.2 yamt * Compute the priority of a process when running in user mode.
530 1.2 yamt * Arrange to reschedule if the resulting priority is better
531 1.2 yamt * than that of the current process.
532 1.2 yamt */
533 1.2 yamt static void
534 1.2 yamt resetpriority(struct lwp *l)
535 1.2 yamt {
536 1.2 yamt unsigned int newpriority;
537 1.2 yamt struct proc *p = l->l_proc;
538 1.2 yamt
539 1.2 yamt /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
540 1.2 yamt LOCK_ASSERT(lwp_locked(l, NULL));
541 1.2 yamt
542 1.2 yamt if ((l->l_flag & LW_SYSTEM) != 0)
543 1.2 yamt return;
544 1.2 yamt
545 1.2 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
546 1.2 yamt NICE_WEIGHT * (p->p_nice - NZERO);
547 1.2 yamt newpriority = min(newpriority, MAXPRI);
548 1.2 yamt lwp_changepri(l, newpriority);
549 1.2 yamt }
550 1.2 yamt
551 1.2 yamt /*
552 1.2 yamt * Recompute priority for all LWPs in a process.
553 1.2 yamt */
554 1.2 yamt static void
555 1.2 yamt resetprocpriority(struct proc *p)
556 1.2 yamt {
557 1.2 yamt struct lwp *l;
558 1.2 yamt
559 1.3 ad KASSERT(mutex_owned(&p->p_stmutex));
560 1.2 yamt
561 1.2 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
562 1.2 yamt lwp_lock(l);
563 1.2 yamt resetpriority(l);
564 1.2 yamt lwp_unlock(l);
565 1.2 yamt }
566 1.2 yamt }
567 1.2 yamt
568 1.2 yamt /*
569 1.2 yamt * We adjust the priority of the current process. The priority of a process
570 1.2 yamt * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
571 1.2 yamt * is increased here. The formula for computing priorities (in kern_synch.c)
572 1.2 yamt * will compute a different value each time p_estcpu increases. This can
573 1.2 yamt * cause a switch, but unless the priority crosses a PPQ boundary the actual
574 1.2 yamt * queue will not change. The CPU usage estimator ramps up quite quickly
575 1.2 yamt * when the process is running (linearly), and decays away exponentially, at
576 1.2 yamt * a rate which is proportionally slower when the system is busy. The basic
577 1.2 yamt * principle is that the system will 90% forget that the process used a lot
578 1.2 yamt * of CPU time in 5 * loadav seconds. This causes the system to favor
579 1.2 yamt * processes which haven't run much recently, and to round-robin among other
580 1.2 yamt * processes.
581 1.2 yamt */
582 1.2 yamt
583 1.2 yamt void
584 1.2 yamt sched_schedclock(struct lwp *l)
585 1.2 yamt {
586 1.2 yamt struct proc *p = l->l_proc;
587 1.2 yamt
588 1.2 yamt KASSERT(!CURCPU_IDLE_P());
589 1.2 yamt mutex_spin_enter(&p->p_stmutex);
590 1.2 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
591 1.2 yamt lwp_lock(l);
592 1.2 yamt resetpriority(l);
593 1.2 yamt mutex_spin_exit(&p->p_stmutex);
594 1.2 yamt if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
595 1.2 yamt l->l_priority = l->l_usrpri;
596 1.2 yamt lwp_unlock(l);
597 1.2 yamt }
598 1.2 yamt
599 1.2 yamt /*
600 1.2 yamt * sched_proc_fork:
601 1.2 yamt *
602 1.2 yamt * Inherit the parent's scheduler history.
603 1.2 yamt */
604 1.2 yamt void
605 1.2 yamt sched_proc_fork(struct proc *parent, struct proc *child)
606 1.2 yamt {
607 1.2 yamt
608 1.3 ad KASSERT(mutex_owned(&parent->p_smutex));
609 1.2 yamt
610 1.2 yamt child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
611 1.2 yamt child->p_forktime = sched_pstats_ticks;
612 1.2 yamt }
613 1.2 yamt
614 1.2 yamt /*
615 1.2 yamt * sched_proc_exit:
616 1.2 yamt *
617 1.2 yamt * Chargeback parents for the sins of their children.
618 1.2 yamt */
619 1.2 yamt void
620 1.2 yamt sched_proc_exit(struct proc *parent, struct proc *child)
621 1.2 yamt {
622 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
623 1.2 yamt fixpt_t estcpu;
624 1.2 yamt
625 1.2 yamt /* XXX Only if parent != init?? */
626 1.2 yamt
627 1.2 yamt mutex_spin_enter(&parent->p_stmutex);
628 1.2 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
629 1.2 yamt sched_pstats_ticks - child->p_forktime);
630 1.2 yamt if (child->p_estcpu > estcpu)
631 1.2 yamt parent->p_estcpu =
632 1.2 yamt ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
633 1.2 yamt mutex_spin_exit(&parent->p_stmutex);
634 1.2 yamt }
635 1.2 yamt
636 1.2 yamt void
637 1.2 yamt sched_enqueue(struct lwp *l, bool ctxswitch)
638 1.2 yamt {
639 1.2 yamt
640 1.2 yamt if ((l->l_flag & LW_BOUND) != 0)
641 1.2 yamt runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
642 1.2 yamt else
643 1.2 yamt runqueue_enqueue(&global_queue, l);
644 1.2 yamt }
645 1.2 yamt
646 1.2 yamt /*
647 1.2 yamt * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
648 1.2 yamt * drop of the effective priority level from kernel to user needs to be
649 1.2 yamt * moved here from userret(). The assignment in userret() is currently
650 1.2 yamt * done unlocked.
651 1.2 yamt */
652 1.2 yamt void
653 1.2 yamt sched_dequeue(struct lwp *l)
654 1.2 yamt {
655 1.2 yamt
656 1.2 yamt if ((l->l_flag & LW_BOUND) != 0)
657 1.2 yamt runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
658 1.2 yamt else
659 1.2 yamt runqueue_dequeue(&global_queue, l);
660 1.2 yamt }
661 1.2 yamt
662 1.2 yamt struct lwp *
663 1.2 yamt sched_nextlwp(void)
664 1.2 yamt {
665 1.4 ad struct schedstate_percpu *spc;
666 1.2 yamt lwp_t *l1, *l2;
667 1.2 yamt
668 1.4 ad spc = &curcpu()->ci_schedstate;
669 1.4 ad
670 1.2 yamt /* For now, just pick the highest priority LWP. */
671 1.4 ad l1 = runqueue_nextlwp(spc->spc_sched_info);
672 1.4 ad if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0))
673 1.4 ad return l1;
674 1.2 yamt l2 = runqueue_nextlwp(&global_queue);
675 1.2 yamt
676 1.2 yamt if (l1 == NULL)
677 1.2 yamt return l2;
678 1.2 yamt if (l2 == NULL)
679 1.2 yamt return l1;
680 1.2 yamt if (lwp_eprio(l2) < lwp_eprio(l1))
681 1.2 yamt return l2;
682 1.2 yamt else
683 1.2 yamt return l1;
684 1.2 yamt }
685 1.2 yamt
686 1.6 rmind /*
687 1.6 rmind * Dummy.
688 1.6 rmind */
689 1.6 rmind
690 1.6 rmind struct cpu_info *
691 1.6 rmind sched_takecpu(struct lwp *l)
692 1.6 rmind {
693 1.6 rmind
694 1.6 rmind return l->l_cpu;
695 1.6 rmind }
696 1.6 rmind
697 1.6 rmind void
698 1.6 rmind sched_wakeup(struct lwp *l)
699 1.6 rmind {
700 1.6 rmind
701 1.6 rmind }
702 1.6 rmind
703 1.6 rmind void
704 1.6 rmind sched_slept(struct lwp *l)
705 1.6 rmind {
706 1.6 rmind
707 1.6 rmind }
708 1.6 rmind
709 1.2 yamt void
710 1.2 yamt sched_lwp_fork(struct lwp *l)
711 1.2 yamt {
712 1.2 yamt
713 1.2 yamt }
714 1.2 yamt
715 1.2 yamt void
716 1.2 yamt sched_lwp_exit(struct lwp *l)
717 1.2 yamt {
718 1.2 yamt
719 1.2 yamt }
720 1.2 yamt
721 1.5 ad /*
722 1.5 ad * sysctl setup. XXX This should be split with kern_synch.c.
723 1.5 ad */
724 1.2 yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
725 1.2 yamt {
726 1.2 yamt const struct sysctlnode *node = NULL;
727 1.2 yamt
728 1.2 yamt sysctl_createv(clog, 0, NULL, NULL,
729 1.2 yamt CTLFLAG_PERMANENT,
730 1.2 yamt CTLTYPE_NODE, "kern", NULL,
731 1.2 yamt NULL, 0, NULL, 0,
732 1.2 yamt CTL_KERN, CTL_EOL);
733 1.2 yamt sysctl_createv(clog, 0, NULL, &node,
734 1.2 yamt CTLFLAG_PERMANENT,
735 1.2 yamt CTLTYPE_NODE, "sched",
736 1.2 yamt SYSCTL_DESCR("Scheduler options"),
737 1.2 yamt NULL, 0, NULL, 0,
738 1.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
739 1.2 yamt
740 1.5 ad KASSERT(node != NULL);
741 1.5 ad
742 1.5 ad sysctl_createv(clog, 0, &node, NULL,
743 1.5 ad CTLFLAG_PERMANENT,
744 1.5 ad CTLTYPE_STRING, "name", NULL,
745 1.5 ad NULL, 0, __UNCONST("4.4BSD"), 0,
746 1.5 ad CTL_CREATE, CTL_EOL);
747 1.5 ad sysctl_createv(clog, 0, &node, NULL,
748 1.5 ad CTLFLAG_READWRITE,
749 1.5 ad CTLTYPE_INT, "timesoftints",
750 1.5 ad SYSCTL_DESCR("Track CPU time for soft interrupts"),
751 1.5 ad NULL, 0, &softint_timing, 0,
752 1.5 ad CTL_CREATE, CTL_EOL);
753 1.2 yamt }
754 1.2 yamt
755 1.2 yamt #if defined(DDB)
756 1.2 yamt void
757 1.2 yamt sched_print_runqueue(void (*pr)(const char *, ...))
758 1.2 yamt {
759 1.2 yamt
760 1.2 yamt runqueue_print(&global_queue, pr);
761 1.2 yamt }
762 1.2 yamt #endif /* defined(DDB) */
763