sched_4bsd.c revision 1.1.2.8 1 /* $NetBSD: sched_4bsd.c,v 1.1.2.8 2007/02/27 16:54:26 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.2.8 2007/02/27 16:54:26 yamt Exp $");
79
80 #include "opt_ddb.h"
81 #include "opt_lockdebug.h"
82 #include "opt_perfctrs.h"
83
84 #define __MUTEX_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/cpu.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/kauth.h>
96 #include <sys/lockdebug.h>
97
98 #include <uvm/uvm_extern.h>
99
100 /*
101 * Run queues.
102 *
103 * We have 32 run queues in descending priority of 0..31. We maintain
104 * a bitmask of non-empty queues in order speed up finding the first
105 * runnable process. The bitmask is maintained only by machine-dependent
106 * code, allowing the most efficient instructions to be used to find the
107 * first non-empty queue.
108 */
109
110
111 #define RUNQUE_NQS 32 /* number of runqueues */
112 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
113
114 struct prochd {
115 struct lwp *ph_link;
116 struct lwp *ph_rlink;
117 };
118
119 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
120 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
121
122 void schedcpu(void *);
123 void updatepri(struct lwp *);
124 void resetpriority(struct lwp *);
125 void resetprocpriority(struct proc *);
126
127 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
128 static unsigned int schedcpu_ticks;
129
130 int rrticks; /* number of hardclock ticks per sched_tick() */
131
132 /*
133 * Force switch among equal priority processes every 100ms.
134 * Called from hardclock every hz/10 == rrticks hardclock ticks.
135 */
136 /* ARGSUSED */
137 void
138 sched_tick(struct cpu_info *ci)
139 {
140 struct schedstate_percpu *spc = &ci->ci_schedstate;
141
142 spc->spc_ticks = rrticks;
143
144 if (!CURCPU_IDLE_P()) {
145 if (spc->spc_flags & SPCF_SEENRR) {
146 /*
147 * The process has already been through a roundrobin
148 * without switching and may be hogging the CPU.
149 * Indicate that the process should yield.
150 */
151 spc->spc_flags |= SPCF_SHOULDYIELD;
152 } else
153 spc->spc_flags |= SPCF_SEENRR;
154 }
155 cpu_need_resched(curcpu(), 0);
156 }
157
158 #define NICE_WEIGHT 2 /* priorities per nice level */
159
160 #define ESTCPU_SHIFT 11
161 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
162 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
163
164 /*
165 * Constants for digital decay and forget:
166 * 90% of (p_estcpu) usage in 5 * loadav time
167 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
168 * Note that, as ps(1) mentions, this can let percentages
169 * total over 100% (I've seen 137.9% for 3 processes).
170 *
171 * Note that hardclock updates p_estcpu and p_cpticks independently.
172 *
173 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
174 * That is, the system wants to compute a value of decay such
175 * that the following for loop:
176 * for (i = 0; i < (5 * loadavg); i++)
177 * p_estcpu *= decay;
178 * will compute
179 * p_estcpu *= 0.1;
180 * for all values of loadavg:
181 *
182 * Mathematically this loop can be expressed by saying:
183 * decay ** (5 * loadavg) ~= .1
184 *
185 * The system computes decay as:
186 * decay = (2 * loadavg) / (2 * loadavg + 1)
187 *
188 * We wish to prove that the system's computation of decay
189 * will always fulfill the equation:
190 * decay ** (5 * loadavg) ~= .1
191 *
192 * If we compute b as:
193 * b = 2 * loadavg
194 * then
195 * decay = b / (b + 1)
196 *
197 * We now need to prove two things:
198 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
199 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
200 *
201 * Facts:
202 * For x close to zero, exp(x) =~ 1 + x, since
203 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
204 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
205 * For x close to zero, ln(1+x) =~ x, since
206 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
207 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
208 * ln(.1) =~ -2.30
209 *
210 * Proof of (1):
211 * Solve (factor)**(power) =~ .1 given power (5*loadav):
212 * solving for factor,
213 * ln(factor) =~ (-2.30/5*loadav), or
214 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
215 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
216 *
217 * Proof of (2):
218 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
219 * solving for power,
220 * power*ln(b/(b+1)) =~ -2.30, or
221 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
222 *
223 * Actual power values for the implemented algorithm are as follows:
224 * loadav: 1 2 3 4
225 * power: 5.68 10.32 14.94 19.55
226 */
227
228 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
229 #define loadfactor(loadav) (2 * (loadav))
230
231 static fixpt_t
232 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
233 {
234
235 if (estcpu == 0) {
236 return 0;
237 }
238
239 #if !defined(_LP64)
240 /* avoid 64bit arithmetics. */
241 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
242 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
243 return estcpu * loadfac / (loadfac + FSCALE);
244 }
245 #endif /* !defined(_LP64) */
246
247 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
248 }
249
250 /*
251 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
252 * sleeping for at least seven times the loadfactor will decay p_estcpu to
253 * less than (1 << ESTCPU_SHIFT).
254 *
255 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
256 */
257 static fixpt_t
258 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
259 {
260
261 if ((n << FSHIFT) >= 7 * loadfac) {
262 return 0;
263 }
264
265 while (estcpu != 0 && n > 1) {
266 estcpu = decay_cpu(loadfac, estcpu);
267 n--;
268 }
269
270 return estcpu;
271 }
272
273 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
274 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
275
276 /*
277 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
278 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
279 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
280 *
281 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
282 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
283 *
284 * If you dont want to bother with the faster/more-accurate formula, you
285 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
286 * (more general) method of calculating the %age of CPU used by a process.
287 */
288 #define CCPU_SHIFT 11
289
290 /*
291 * schedcpu:
292 *
293 * Recompute process priorities, every hz ticks.
294 *
295 * XXXSMP This needs to be reorganised in order to reduce the locking
296 * burden.
297 */
298 /* ARGSUSED */
299 void
300 schedcpu(void *arg)
301 {
302 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
303 struct rlimit *rlim;
304 struct lwp *l;
305 struct proc *p;
306 int minslp, clkhz, sig;
307 long runtm;
308
309 schedcpu_ticks++;
310
311 mutex_enter(&proclist_mutex);
312 PROCLIST_FOREACH(p, &allproc) {
313 /*
314 * Increment time in/out of memory and sleep time (if
315 * sleeping). We ignore overflow; with 16-bit int's
316 * (remember them?) overflow takes 45 days.
317 */
318 minslp = 2;
319 mutex_enter(&p->p_smutex);
320 runtm = p->p_rtime.tv_sec;
321 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
322 if ((l->l_flag & LW_IDLE) != 0)
323 continue;
324 lwp_lock(l);
325 runtm += l->l_rtime.tv_sec;
326 l->l_swtime++;
327 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
328 l->l_stat == LSSUSPENDED) {
329 l->l_slptime++;
330 minslp = min(minslp, l->l_slptime);
331 } else
332 minslp = 0;
333 lwp_unlock(l);
334 }
335 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
336
337 /*
338 * Check if the process exceeds its CPU resource allocation.
339 * If over max, kill it.
340 */
341 rlim = &p->p_rlimit[RLIMIT_CPU];
342 sig = 0;
343 if (runtm >= rlim->rlim_cur) {
344 if (runtm >= rlim->rlim_max)
345 sig = SIGKILL;
346 else {
347 sig = SIGXCPU;
348 if (rlim->rlim_cur < rlim->rlim_max)
349 rlim->rlim_cur += 5;
350 }
351 }
352
353 /*
354 * If the process has run for more than autonicetime, reduce
355 * priority to give others a chance.
356 */
357 if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
358 && kauth_cred_geteuid(p->p_cred)) {
359 mutex_spin_enter(&p->p_stmutex);
360 p->p_nice = autoniceval + NZERO;
361 resetprocpriority(p);
362 mutex_spin_exit(&p->p_stmutex);
363 }
364
365 /*
366 * If the process has slept the entire second,
367 * stop recalculating its priority until it wakes up.
368 */
369 if (minslp <= 1) {
370 /*
371 * p_pctcpu is only for ps.
372 */
373 mutex_spin_enter(&p->p_stmutex);
374 clkhz = stathz != 0 ? stathz : hz;
375 #if (FSHIFT >= CCPU_SHIFT)
376 p->p_pctcpu += (clkhz == 100)?
377 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
378 100 * (((fixpt_t) p->p_cpticks)
379 << (FSHIFT - CCPU_SHIFT)) / clkhz;
380 #else
381 p->p_pctcpu += ((FSCALE - ccpu) *
382 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
383 #endif
384 p->p_cpticks = 0;
385 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
386
387 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
388 if ((l->l_flag & LW_IDLE) != 0)
389 continue;
390 lwp_lock(l);
391 if (l->l_slptime <= 1 &&
392 l->l_priority >= PUSER)
393 resetpriority(l);
394 lwp_unlock(l);
395 }
396 mutex_spin_exit(&p->p_stmutex);
397 }
398
399 mutex_exit(&p->p_smutex);
400 if (sig) {
401 psignal(p, sig);
402 }
403 }
404 mutex_exit(&proclist_mutex);
405 uvm_meter();
406 wakeup((caddr_t)&lbolt);
407 callout_schedule(&schedcpu_ch, hz);
408 }
409
410 /*
411 * Recalculate the priority of a process after it has slept for a while.
412 */
413 void
414 updatepri(struct lwp *l)
415 {
416 struct proc *p = l->l_proc;
417 fixpt_t loadfac;
418
419 LOCK_ASSERT(lwp_locked(l, NULL));
420 KASSERT(l->l_slptime > 1);
421
422 loadfac = loadfactor(averunnable.ldavg[0]);
423
424 l->l_slptime--; /* the first time was done in schedcpu */
425 /* XXX NJWLWP */
426 /* XXXSMP occasionally unlocked, should be per-LWP */
427 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
428 resetpriority(l);
429 }
430
431 /*
432 * Initialize the (doubly-linked) run queues
433 * to be empty.
434 */
435 void
436 sched_rqinit()
437 {
438 int i;
439
440 for (i = 0; i < RUNQUE_NQS; i++)
441 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
442 (struct lwp *)&sched_qs[i];
443
444 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
445 }
446
447 void
448 sched_setup()
449 {
450 rrticks = hz / 10;
451
452 schedcpu(NULL);
453 }
454
455 void
456 sched_setrunnable(struct lwp *l)
457 {
458 if (l->l_slptime > 1)
459 updatepri(l);
460 }
461
462 boolean_t
463 sched_curcpu_runnable_p(void)
464 {
465
466 return sched_whichqs != 0;
467 }
468
469 void
470 sched_nice(struct proc *chgp, int n)
471 {
472 chgp->p_nice = n;
473 (void)resetprocpriority(chgp);
474 }
475
476 /*
477 * Compute the priority of a process when running in user mode.
478 * Arrange to reschedule if the resulting priority is better
479 * than that of the current process.
480 */
481 void
482 resetpriority(struct lwp *l)
483 {
484 unsigned int newpriority;
485 struct proc *p = l->l_proc;
486
487 /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
488 LOCK_ASSERT(lwp_locked(l, NULL));
489
490 if ((l->l_flag & LW_SYSTEM) != 0)
491 return;
492
493 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
494 NICE_WEIGHT * (p->p_nice - NZERO);
495 newpriority = min(newpriority, MAXPRI);
496 lwp_changepri(l, newpriority);
497 }
498
499 /*
500 * Recompute priority for all LWPs in a process.
501 */
502 void
503 resetprocpriority(struct proc *p)
504 {
505 struct lwp *l;
506
507 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
508
509 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
510 lwp_lock(l);
511 resetpriority(l);
512 lwp_unlock(l);
513 }
514 }
515
516 /*
517 * We adjust the priority of the current process. The priority of a process
518 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
519 * is increased here. The formula for computing priorities (in kern_synch.c)
520 * will compute a different value each time p_estcpu increases. This can
521 * cause a switch, but unless the priority crosses a PPQ boundary the actual
522 * queue will not change. The CPU usage estimator ramps up quite quickly
523 * when the process is running (linearly), and decays away exponentially, at
524 * a rate which is proportionally slower when the system is busy. The basic
525 * principle is that the system will 90% forget that the process used a lot
526 * of CPU time in 5 * loadav seconds. This causes the system to favor
527 * processes which haven't run much recently, and to round-robin among other
528 * processes.
529 */
530
531 void
532 sched_clock(struct lwp *l)
533 {
534 struct proc *p = l->l_proc;
535
536 KASSERT(!CURCPU_IDLE_P());
537 mutex_spin_enter(&p->p_stmutex);
538 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
539 lwp_lock(l);
540 resetpriority(l);
541 mutex_spin_exit(&p->p_stmutex);
542 if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
543 l->l_priority = l->l_usrpri;
544 lwp_unlock(l);
545 }
546
547 /*
548 * scheduler_fork_hook:
549 *
550 * Inherit the parent's scheduler history.
551 */
552 void
553 sched_proc_fork(struct proc *parent, struct proc *child)
554 {
555
556 LOCK_ASSERT(mutex_owned(&parent->p_smutex));
557
558 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
559 child->p_forktime = schedcpu_ticks;
560 }
561
562 /*
563 * scheduler_wait_hook:
564 *
565 * Chargeback parents for the sins of their children.
566 */
567 void
568 sched_proc_exit(struct proc *parent, struct proc *child)
569 {
570 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
571 fixpt_t estcpu;
572
573 /* XXX Only if parent != init?? */
574
575 mutex_spin_enter(&parent->p_stmutex);
576 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
577 schedcpu_ticks - child->p_forktime);
578 if (child->p_estcpu > estcpu)
579 parent->p_estcpu =
580 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
581 mutex_spin_exit(&parent->p_stmutex);
582 }
583
584 /*
585 * On some architectures, it's faster to use a MSB ordering for the priorites
586 * than the traditional LSB ordering.
587 */
588 #ifdef __HAVE_BIGENDIAN_BITOPS
589 #define RQMASK(n) (0x80000000 >> (n))
590 #else
591 #define RQMASK(n) (0x00000001 << (n))
592 #endif
593
594 /*
595 * Low-level routines to access the run queue. Optimised assembler
596 * routines can override these.
597 */
598
599 #ifndef __HAVE_MD_RUNQUEUE
600
601 /*
602 * The primitives that manipulate the run queues. whichqs tells which
603 * of the 32 queues qs have processes in them. sched_enqueue puts processes
604 * into queues, sched_dequeue removes them from queues. The running process is
605 * on no queue, other processes are on a queue related to p->p_priority,
606 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
607 * available queues.
608 */
609 #ifdef RQDEBUG
610 static void
611 checkrunqueue(int whichq, struct lwp *l)
612 {
613 const struct prochd * const rq = &sched_qs[whichq];
614 struct lwp *l2;
615 int found = 0;
616 int die = 0;
617 int empty = 1;
618 for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
619 if (l2->l_stat != LSRUN) {
620 printf("checkrunqueue[%d]: lwp %p state (%d) "
621 " != LSRUN\n", whichq, l2, l2->l_stat);
622 }
623 if (l2->l_back->l_forw != l2) {
624 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
625 "corrupt %p\n", whichq, l2, l2->l_back,
626 l2->l_back->l_forw);
627 die = 1;
628 }
629 if (l2->l_forw->l_back != l2) {
630 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
631 "corrupt %p\n", whichq, l2, l2->l_forw,
632 l2->l_forw->l_back);
633 die = 1;
634 }
635 if (l2 == l)
636 found = 1;
637 empty = 0;
638 }
639 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
640 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
641 whichq, rq);
642 die = 1;
643 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
644 printf("checkrunqueue[%d]: bit clear for non-empty "
645 "run-queue %p\n", whichq, rq);
646 die = 1;
647 }
648 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
649 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
650 whichq, l);
651 die = 1;
652 }
653 if (l != NULL && empty) {
654 printf("checkrunqueue[%d]: empty run-queue %p with "
655 "active lwp %p\n", whichq, rq, l);
656 die = 1;
657 }
658 if (l != NULL && !found) {
659 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
660 whichq, l, rq);
661 die = 1;
662 }
663 if (die)
664 panic("checkrunqueue: inconsistency found");
665 }
666 #endif /* RQDEBUG */
667
668 void
669 sched_enqueue(struct lwp *l)
670 {
671 struct prochd*rq;
672 struct lwp *prev;
673 const int whichq = lwp_eprio(l) / PPQ;
674
675 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
676
677 #ifdef RQDEBUG
678 checkrunqueue(whichq, NULL);
679 #endif
680 #ifdef DIAGNOSTIC
681 if (l->l_back != NULL || l->l_stat != LSRUN)
682 panic("sched_enqueue");
683 #endif
684 sched_whichqs |= RQMASK(whichq);
685 rq = &sched_qs[whichq];
686 prev = rq->ph_rlink;
687 l->l_forw = (struct lwp *)rq;
688 rq->ph_rlink = l;
689 prev->l_forw = l;
690 l->l_back = prev;
691 #ifdef RQDEBUG
692 checkrunqueue(whichq, l);
693 #endif
694 }
695
696 /*
697 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
698 * drop of the effective priority level from kernel to user needs to be
699 * moved here from userret(). The assignment in userret() is currently
700 * done unlocked.
701 */
702 void
703 sched_dequeue(struct lwp *l)
704 {
705 struct lwp *prev, *next;
706 const int whichq = lwp_eprio(l) / PPQ;
707
708 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
709
710 #ifdef RQDEBUG
711 checkrunqueue(whichq, l);
712 #endif
713
714 #if defined(DIAGNOSTIC)
715 if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
716 /* Shouldn't happen - interrupts disabled. */
717 panic("sched_dequeue: bit %d not set", whichq);
718 }
719 #endif
720 prev = l->l_back;
721 l->l_back = NULL;
722 next = l->l_forw;
723 prev->l_forw = next;
724 next->l_back = prev;
725 if (prev == next)
726 sched_whichqs &= ~RQMASK(whichq);
727 #ifdef RQDEBUG
728 checkrunqueue(whichq, NULL);
729 #endif
730 }
731
732 struct lwp *
733 sched_nextlwp(void)
734 {
735 const struct prochd *rq;
736 struct lwp *l;
737 int whichq;
738
739 if (sched_whichqs == 0) {
740 return NULL;
741 }
742 #ifdef __HAVE_BIGENDIAN_BITOPS
743 for (whichq = 0; ; whichq++) {
744 if ((sched_whichqs & RQMASK(whichq)) != 0) {
745 break;
746 }
747 }
748 #else
749 whichq = ffs(sched_whichqs) - 1;
750 #endif
751 rq = &sched_qs[whichq];
752 l = rq->ph_link;
753 return l;
754 }
755
756 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
757
758 #if defined(DDB)
759 void
760 sched_print_runqueue(void (*pr)(const char *, ...))
761 {
762 struct prochd *ph;
763 struct lwp *l;
764 int i, first;
765
766 for (i = 0; i < RUNQUE_NQS; i++)
767 {
768 first = 1;
769 ph = &sched_qs[i];
770 for (l = ph->ph_link; l != (void *)ph; l = l->l_forw) {
771 if (first) {
772 (*pr)("%c%d",
773 (sched_whichqs & RQMASK(i))
774 ? ' ' : '!', i);
775 first = 0;
776 }
777 (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
778 l->l_proc->p_pid,
779 l->l_lid, l->l_proc->p_comm,
780 (int)l->l_priority, (int)l->l_usrpri);
781 }
782 }
783 }
784 #endif /* defined(DDB) */
785 #undef RQMASK
786