Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.6.11
      1 /*	$NetBSD: sched_4bsd.c,v 1.1.6.11 2007/10/18 15:47:34 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.11 2007/10/18 15:47:34 ad Exp $");
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_perfctrs.h"
     83 
     84 #define	__MUTEX_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/cpu.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/resourcevar.h>
     94 #include <sys/sched.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/kauth.h>
     97 #include <sys/lockdebug.h>
     98 #include <sys/kmem.h>
     99 #include <sys/intr.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 /*
    104  * Run queues.
    105  *
    106  * We maintain bitmasks of non-empty queues in order speed up finding
    107  * the first runnable process.  Since there can be (by definition) few
    108  * real time LWPs in the the system, we maintain them on a linked list,
    109  * sorted by priority.
    110  */
    111 
    112 #define	PPB_SHIFT	5
    113 #define	PPB_MASK	31
    114 
    115 #define	NUM_Q		(NPRI_KERNEL + NPRI_USER)
    116 #define	NUM_PPB		(1 << PPB_SHIFT)
    117 #define	NUM_B		(NUM_Q / NUM_PPB)
    118 
    119 typedef struct runqueue {
    120 	TAILQ_HEAD(, lwp) rq_queue[NUM_Q];	/* user+kernel */
    121 	TAILQ_HEAD(, lwp) rq_rt;		/* realtime */
    122 	uint32_t	rq_bitmap[NUM_B];	/* bitmap of queues */
    123 	u_int		rq_count;		/* total # jobs */
    124 } runqueue_t;
    125 
    126 static runqueue_t global_queue;
    127 
    128 static void updatepri(struct lwp *);
    129 static void resetpriority(struct lwp *);
    130 static void resetprocpriority(struct proc *);
    131 
    132 fixpt_t decay_cpu(fixpt_t, fixpt_t);
    133 
    134 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    135 
    136 /* The global scheduler state */
    137 kmutex_t sched_mutex;
    138 
    139 /* Number of hardclock ticks per sched_tick() */
    140 int rrticks;
    141 
    142 const int schedppq = 1;
    143 
    144 /*
    145  * Force switch among equal priority processes every 100ms.
    146  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    147  *
    148  * There's no need to lock anywhere in this routine, as it's
    149  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    150  */
    151 /* ARGSUSED */
    152 void
    153 sched_tick(struct cpu_info *ci)
    154 {
    155 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    156 
    157 	spc->spc_ticks = rrticks;
    158 
    159 	if (CURCPU_IDLE_P())
    160 		return;
    161 
    162 	if (spc->spc_flags & SPCF_SEENRR) {
    163 		/*
    164 		 * The process has already been through a roundrobin
    165 		 * without switching and may be hogging the CPU.
    166 		 * Indicate that the process should yield.
    167 		 */
    168 		spc->spc_flags |= SPCF_SHOULDYIELD;
    169 	} else
    170 		spc->spc_flags |= SPCF_SEENRR;
    171 
    172 	cpu_need_resched(ci, 0);
    173 }
    174 
    175 #define	NICE_WEIGHT 	1			/* priorities per nice level */
    176 
    177 #define	ESTCPU_SHIFT	11
    178 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - 1) << ESTCPU_SHIFT)
    179 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    180 
    181 /*
    182  * Constants for digital decay and forget:
    183  *	90% of (p_estcpu) usage in 5 * loadav time
    184  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    185  *          Note that, as ps(1) mentions, this can let percentages
    186  *          total over 100% (I've seen 137.9% for 3 processes).
    187  *
    188  * Note that hardclock updates p_estcpu and p_cpticks independently.
    189  *
    190  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    191  * That is, the system wants to compute a value of decay such
    192  * that the following for loop:
    193  * 	for (i = 0; i < (5 * loadavg); i++)
    194  * 		p_estcpu *= decay;
    195  * will compute
    196  * 	p_estcpu *= 0.1;
    197  * for all values of loadavg:
    198  *
    199  * Mathematically this loop can be expressed by saying:
    200  * 	decay ** (5 * loadavg) ~= .1
    201  *
    202  * The system computes decay as:
    203  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    204  *
    205  * We wish to prove that the system's computation of decay
    206  * will always fulfill the equation:
    207  * 	decay ** (5 * loadavg) ~= .1
    208  *
    209  * If we compute b as:
    210  * 	b = 2 * loadavg
    211  * then
    212  * 	decay = b / (b + 1)
    213  *
    214  * We now need to prove two things:
    215  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    216  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    217  *
    218  * Facts:
    219  *         For x close to zero, exp(x) =~ 1 + x, since
    220  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    221  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    222  *         For x close to zero, ln(1+x) =~ x, since
    223  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    224  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    225  *         ln(.1) =~ -2.30
    226  *
    227  * Proof of (1):
    228  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    229  *	solving for factor,
    230  *      ln(factor) =~ (-2.30/5*loadav), or
    231  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    232  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    233  *
    234  * Proof of (2):
    235  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    236  *	solving for power,
    237  *      power*ln(b/(b+1)) =~ -2.30, or
    238  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    239  *
    240  * Actual power values for the implemented algorithm are as follows:
    241  *      loadav: 1       2       3       4
    242  *      power:  5.68    10.32   14.94   19.55
    243  */
    244 
    245 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    246 #define	loadfactor(loadav)	(2 * (loadav))
    247 
    248 fixpt_t
    249 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    250 {
    251 
    252 	if (estcpu == 0) {
    253 		return 0;
    254 	}
    255 
    256 #if !defined(_LP64)
    257 	/* avoid 64bit arithmetics. */
    258 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    259 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    260 		return estcpu * loadfac / (loadfac + FSCALE);
    261 	}
    262 #endif /* !defined(_LP64) */
    263 
    264 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    265 }
    266 
    267 /*
    268  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    269  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    270  * less than (1 << ESTCPU_SHIFT).
    271  *
    272  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    273  */
    274 static fixpt_t
    275 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    276 {
    277 
    278 	if ((n << FSHIFT) >= 7 * loadfac) {
    279 		return 0;
    280 	}
    281 
    282 	while (estcpu != 0 && n > 1) {
    283 		estcpu = decay_cpu(loadfac, estcpu);
    284 		n--;
    285 	}
    286 
    287 	return estcpu;
    288 }
    289 
    290 /*
    291  * sched_pstats_hook:
    292  *
    293  * Periodically called from sched_pstats(); used to recalculate priorities.
    294  */
    295 void
    296 sched_pstats_hook(struct lwp *l)
    297 {
    298 
    299 	if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
    300 		resetpriority(l);
    301 }
    302 
    303 /*
    304  * Recalculate the priority of a process after it has slept for a while.
    305  */
    306 static void
    307 updatepri(struct lwp *l)
    308 {
    309 	struct proc *p = l->l_proc;
    310 	fixpt_t loadfac;
    311 
    312 	KASSERT(lwp_locked(l, NULL));
    313 	KASSERT(l->l_slptime > 1);
    314 
    315 	loadfac = loadfactor(averunnable.ldavg[0]);
    316 
    317 	l->l_slptime--; /* the first time was done in sched_pstats */
    318 	/* XXX NJWLWP */
    319 	/* XXXSMP occasionally unlocked, should be per-LWP */
    320 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    321 	resetpriority(l);
    322 }
    323 
    324 /*
    325  * The primitives that manipulate the run queues.  whichqs tells which of
    326  * the queues have processes in them.  sched_enqueue() puts processes into
    327  * queues, sched_dequeue() removes them from queues.
    328  */
    329 #ifdef RQDEBUG
    330 static void
    331 runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    332 {
    333 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    334 	const uint32_t bitmap = rq->rq_bitmap;
    335 	struct lwp *l2;
    336 	int found = 0;
    337 	int die = 0;
    338 	int empty = 1;
    339 	int j;
    340 
    341 	for (j = 0; j < PPQ; j++) {
    342 		TAILQ_FOREACH(l2, &sq->sq_queue[j], l_runq) {
    343 			if (l2->l_stat != LSRUN) {
    344 				printf("runqueue_check[%d]: lwp %p state (%d) "
    345 				    " != LSRUN\n", whichq, l2, l2->l_stat);
    346 			}
    347 			if (l2 == l)
    348 				found = 1;
    349 			empty = 0;
    350 		}
    351 	}
    352 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    353 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    354 		    whichq, rq);
    355 		die = 1;
    356 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    357 		printf("runqueue_check[%d]: bit clear for non-empty "
    358 		    "run-queue %p\n", whichq, rq);
    359 		die = 1;
    360 	}
    361 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    362 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    363 		    whichq, l);
    364 		die = 1;
    365 	}
    366 	if (l != NULL && empty) {
    367 		printf("runqueue_check[%d]: empty run-queue %p with "
    368 		    "active lwp %p\n", whichq, rq, l);
    369 		die = 1;
    370 	}
    371 	if (l != NULL && !found) {
    372 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    373 		    whichq, l, rq);
    374 		die = 1;
    375 	}
    376 	if (die)
    377 		panic("runqueue_check: inconsistency found");
    378 }
    379 #else /* RQDEBUG */
    380 #define	runqueue_check(a, b, c)	/* nothing */
    381 #endif /* RQDEBUG */
    382 
    383 static void
    384 runqueue_init(runqueue_t *rq)
    385 {
    386 	int i;
    387 
    388 	for (i = 0; i < NUM_Q; i++)
    389 		TAILQ_INIT(&rq->rq_queue[i]);
    390 	for (i = 0; i < NUM_B; i++)
    391 		rq->rq_bitmap[i] = 0;
    392 	TAILQ_INIT(&rq->rq_rt);
    393 	rq->rq_count = 0;
    394 }
    395 
    396 static void
    397 runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    398 {
    399 	pri_t pri;
    400 	lwp_t *l2;
    401 
    402 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    403 
    404 	pri = lwp_eprio(l);
    405 	rq->rq_count++;
    406 
    407 	if (pri >= PRI_USER_RT) {
    408 		TAILQ_FOREACH(l2, &rq->rq_rt, l_runq) {
    409 			if (lwp_eprio(l2) < pri) {
    410 				TAILQ_INSERT_BEFORE(l2, l, l_runq);
    411 				return;
    412 			}
    413 		}
    414 		TAILQ_INSERT_TAIL(&rq->rq_rt, l, l_runq);
    415 		return;
    416 	}
    417 
    418 	runqueue_check(rq, pri, NULL);
    419 	rq->rq_bitmap[pri >> PPB_SHIFT] |=
    420 	    (0x80000000 >> (pri & PPB_MASK));
    421 	TAILQ_INSERT_TAIL(&rq->rq_queue[pri], l, l_runq);
    422 	runqueue_check(rq, pri, l);
    423 }
    424 
    425 static void
    426 runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    427 {
    428 	pri_t pri;
    429 
    430 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    431 
    432 	pri = lwp_eprio(l);
    433 	rq->rq_count--;
    434 
    435 	if (pri >= PRI_USER_RT) {
    436 		TAILQ_REMOVE(&rq->rq_rt, l, l_runq);
    437 		return;
    438 	}
    439 
    440 	runqueue_check(rq, pri, l);
    441 	TAILQ_REMOVE(&rq->rq_queue[pri], l, l_runq);
    442 	if (TAILQ_EMPTY(&rq->rq_queue[pri]))
    443 		rq->rq_bitmap[pri >> PPB_SHIFT] &=
    444 		    ~(0x80000000 >> (pri & PPB_MASK));
    445 	runqueue_check(rq, pri, NULL);
    446 }
    447 
    448 static struct lwp *
    449 runqueue_nextlwp(runqueue_t *rq)
    450 {
    451 	pri_t pri;
    452 	int i;
    453 
    454 	KASSERT(rq->rq_count != 0);
    455 
    456 	if (!TAILQ_EMPTY(&rq->rq_rt))
    457 		return TAILQ_FIRST(&rq->rq_rt);
    458 
    459 	for (i = NUM_B - 1; i >= 0; i--) {
    460 		if (rq->rq_bitmap[i] != 0) {
    461 			pri = (32 - ffs(rq->rq_bitmap[i])) + i * NUM_PPB;
    462 			return TAILQ_FIRST(&rq->rq_queue[pri]);
    463 		}
    464 	}
    465 
    466 	panic("runqueue_nextlwp");
    467 }
    468 
    469 #if defined(DDB)
    470 static void
    471 runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    472 {
    473 	lwp_t *l;
    474 	int i;
    475 
    476 	TAILQ_FOREACH(l, &rq->rq_rt, l_runq) {
    477 		(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    478 		    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    479 		    (int)l->l_priority, (int)l->l_usrpri);
    480 	}
    481 
    482 	for (i = NUM_Q - 1; i >= 0; i--) {
    483 		TAILQ_FOREACH(l, &rq->rq_queue[i], l_runq) {
    484 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    485 			    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    486 			   (int)l->l_priority, (int)l->l_usrpri);
    487 		}
    488 	}
    489 }
    490 #endif /* defined(DDB) */
    491 
    492 /*
    493  * Initialize the (doubly-linked) run queues
    494  * to be empty.
    495  */
    496 void
    497 sched_rqinit()
    498 {
    499 
    500 	runqueue_init(&global_queue);
    501 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    502 	/* Initialize the lock pointer for lwp0 */
    503 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    504 }
    505 
    506 void
    507 sched_cpuattach(struct cpu_info *ci)
    508 {
    509 	runqueue_t *rq;
    510 
    511 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    512 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    513 	runqueue_init(rq);
    514 	ci->ci_schedstate.spc_sched_info = rq;
    515 }
    516 
    517 void
    518 sched_setup()
    519 {
    520 
    521 	rrticks = hz / 10;
    522 }
    523 
    524 void
    525 sched_setrunnable(struct lwp *l)
    526 {
    527 
    528  	if (l->l_slptime > 1)
    529  		updatepri(l);
    530 }
    531 
    532 bool
    533 sched_curcpu_runnable_p(void)
    534 {
    535 	struct schedstate_percpu *spc;
    536 	struct cpu_info *ci;
    537 	runqueue_t *rq;
    538 
    539 	ci = curcpu();
    540 	spc = &ci->ci_schedstate;
    541 	rq = spc->spc_sched_info;
    542 
    543 #ifndef __HAVE_FAST_SOFTINTS
    544 	if (ci->ci_data.cpu_softints != 0)
    545 		return true;
    546 #endif
    547 	if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
    548 		return (global_queue.rq_count | rq->rq_count) != 0;
    549 	return rq->rq_count != 0;
    550 }
    551 
    552 void
    553 sched_nice(struct proc *chgp, int n)
    554 {
    555 
    556 	chgp->p_nice = n;
    557 	(void)resetprocpriority(chgp);
    558 }
    559 
    560 /*
    561  * Compute the priority of a process when running in user mode.
    562  * Arrange to reschedule if the resulting priority is better
    563  * than that of the current process.
    564  */
    565 static void
    566 resetpriority(struct lwp *l)
    567 {
    568 	unsigned int newpriority;
    569 	struct proc *p = l->l_proc;
    570 
    571 	/* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
    572 	KASSERT(lwp_locked(l, NULL));
    573 
    574 	if ((l->l_flag & LW_SYSTEM) != 0)
    575 		return;
    576 
    577 	newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
    578 	    NICE_WEIGHT * (p->p_nice - NZERO);
    579 	newpriority = max(newpriority, 0);
    580 	lwp_changepri(l, newpriority);
    581 }
    582 
    583 /*
    584  * Recompute priority for all LWPs in a process.
    585  */
    586 static void
    587 resetprocpriority(struct proc *p)
    588 {
    589 	struct lwp *l;
    590 
    591 	KASSERT(mutex_owned(&p->p_stmutex));
    592 
    593 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    594 		lwp_lock(l);
    595 		resetpriority(l);
    596 		lwp_unlock(l);
    597 	}
    598 }
    599 
    600 /*
    601  * We adjust the priority of the current process.  The priority of a process
    602  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    603  * is increased here.  The formula for computing priorities (in kern_synch.c)
    604  * will compute a different value each time p_estcpu increases. This can
    605  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    606  * queue will not change.  The CPU usage estimator ramps up quite quickly
    607  * when the process is running (linearly), and decays away exponentially, at
    608  * a rate which is proportionally slower when the system is busy.  The basic
    609  * principle is that the system will 90% forget that the process used a lot
    610  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    611  * processes which haven't run much recently, and to round-robin among other
    612  * processes.
    613  */
    614 
    615 void
    616 sched_schedclock(struct lwp *l)
    617 {
    618 	struct proc *p = l->l_proc;
    619 
    620 	KASSERT(!CURCPU_IDLE_P());
    621 	mutex_spin_enter(&p->p_stmutex);
    622 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    623 	lwp_lock(l);
    624 	resetpriority(l);
    625 	mutex_spin_exit(&p->p_stmutex);
    626 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
    627 		l->l_priority = l->l_usrpri;
    628 	lwp_unlock(l);
    629 }
    630 
    631 /*
    632  * sched_proc_fork:
    633  *
    634  *	Inherit the parent's scheduler history.
    635  */
    636 void
    637 sched_proc_fork(struct proc *parent, struct proc *child)
    638 {
    639 
    640 	KASSERT(mutex_owned(&parent->p_smutex));
    641 
    642 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    643 	child->p_forktime = sched_pstats_ticks;
    644 }
    645 
    646 /*
    647  * sched_proc_exit:
    648  *
    649  *	Chargeback parents for the sins of their children.
    650  */
    651 void
    652 sched_proc_exit(struct proc *parent, struct proc *child)
    653 {
    654 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    655 	fixpt_t estcpu;
    656 
    657 	/* XXX Only if parent != init?? */
    658 
    659 	mutex_spin_enter(&parent->p_stmutex);
    660 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    661 	    sched_pstats_ticks - child->p_forktime);
    662 	if (child->p_estcpu > estcpu)
    663 		parent->p_estcpu =
    664 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    665 	mutex_spin_exit(&parent->p_stmutex);
    666 }
    667 
    668 void
    669 sched_enqueue(struct lwp *l, bool ctxswitch)
    670 {
    671 
    672 	if ((l->l_flag & LW_BOUND) != 0)
    673 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    674 	else
    675 		runqueue_enqueue(&global_queue, l);
    676 }
    677 
    678 /*
    679  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    680  * drop of the effective priority level from kernel to user needs to be
    681  * moved here from userret().  The assignment in userret() is currently
    682  * done unlocked.
    683  */
    684 void
    685 sched_dequeue(struct lwp *l)
    686 {
    687 
    688 	if ((l->l_flag & LW_BOUND) != 0)
    689 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    690 	else
    691 		runqueue_dequeue(&global_queue, l);
    692 }
    693 
    694 struct lwp *
    695 sched_nextlwp(void)
    696 {
    697 	struct schedstate_percpu *spc;
    698 	runqueue_t *rq;
    699 	lwp_t *l1, *l2;
    700 
    701 	spc = &curcpu()->ci_schedstate;
    702 
    703 	/* For now, just pick the highest priority LWP. */
    704 	rq = spc->spc_sched_info;
    705 	l1 = NULL;
    706 	if (rq->rq_count != 0)
    707 		l1 = runqueue_nextlwp(rq);
    708 
    709 	rq = &global_queue;
    710 	if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0) ||
    711 	    rq->rq_count == 0)
    712 		return l1;
    713 	l2 = runqueue_nextlwp(rq);
    714 
    715 	if (l1 == NULL)
    716 		return l2;
    717 	if (l2 == NULL)
    718 		return l1;
    719 	if (lwp_eprio(l2) > lwp_eprio(l1))
    720 		return l2;
    721 	else
    722 		return l1;
    723 }
    724 
    725 struct cpu_info *
    726 sched_takecpu(struct lwp *l)
    727 {
    728 
    729 	return l->l_cpu;
    730 }
    731 
    732 void
    733 sched_wakeup(struct lwp *l)
    734 {
    735 
    736 }
    737 
    738 void
    739 sched_slept(struct lwp *l)
    740 {
    741 
    742 }
    743 
    744 void
    745 sched_lwp_fork(struct lwp *l)
    746 {
    747 
    748 }
    749 
    750 void
    751 sched_lwp_exit(struct lwp *l)
    752 {
    753 
    754 }
    755 
    756 /*
    757  * sysctl setup.  XXX This should be split with kern_synch.c.
    758  */
    759 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    760 {
    761 	const struct sysctlnode *node = NULL;
    762 
    763 	sysctl_createv(clog, 0, NULL, NULL,
    764 		CTLFLAG_PERMANENT,
    765 		CTLTYPE_NODE, "kern", NULL,
    766 		NULL, 0, NULL, 0,
    767 		CTL_KERN, CTL_EOL);
    768 	sysctl_createv(clog, 0, NULL, &node,
    769 		CTLFLAG_PERMANENT,
    770 		CTLTYPE_NODE, "sched",
    771 		SYSCTL_DESCR("Scheduler options"),
    772 		NULL, 0, NULL, 0,
    773 		CTL_KERN, CTL_CREATE, CTL_EOL);
    774 
    775 	KASSERT(node != NULL);
    776 
    777 	sysctl_createv(clog, 0, &node, NULL,
    778 		CTLFLAG_PERMANENT,
    779 		CTLTYPE_STRING, "name", NULL,
    780 		NULL, 0, __UNCONST("4.4BSD"), 0,
    781 		CTL_CREATE, CTL_EOL);
    782 	sysctl_createv(clog, 0, &node, NULL,
    783 		CTLFLAG_READWRITE,
    784 		CTLTYPE_INT, "timesoftints",
    785 		SYSCTL_DESCR("Track CPU time for soft interrupts"),
    786 		NULL, 0, &softint_timing, 0,
    787 		CTL_CREATE, CTL_EOL);
    788 }
    789 
    790 #if defined(DDB)
    791 void
    792 sched_print_runqueue(void (*pr)(const char *, ...))
    793 {
    794 
    795 	runqueue_print(&global_queue, pr);
    796 }
    797 #endif /* defined(DDB) */
    798