sched_4bsd.c revision 1.1.6.2 1 /* $NetBSD: sched_4bsd.c,v 1.1.6.2 2007/06/17 21:31:29 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.2 2007/06/17 21:31:29 ad Exp $");
79
80 #include "opt_ddb.h"
81 #include "opt_lockdebug.h"
82 #include "opt_perfctrs.h"
83
84 #define __MUTEX_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/cpu.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sysctl.h>
96 #include <sys/kauth.h>
97 #include <sys/lockdebug.h>
98 #include <sys/kmem.h>
99
100 #include <uvm/uvm_extern.h>
101
102 /*
103 * Run queues.
104 *
105 * We have 32 run queues in descending priority of 0..31. We maintain
106 * a bitmask of non-empty queues in order speed up finding the first
107 * runnable process. The bitmask is maintained only by machine-dependent
108 * code, allowing the most efficient instructions to be used to find the
109 * first non-empty queue.
110 */
111
112 #define RUNQUE_NQS 64 /* number of runqueues */
113 #define PPQ (PRI_COUNT / RUNQUE_NQS)/* priorities per queue */
114
115 typedef struct subqueue {
116 TAILQ_HEAD(, lwp) sq_queue;
117 } subqueue_t;
118
119 typedef struct runqueue {
120 subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
121 uint64_t rq_bitmap; /* bitmap of non-empty queues */
122 } runqueue_t;
123
124 static runqueue_t global_queue;
125
126 static void updatepri(struct lwp *);
127 static void resetpriority(struct lwp *);
128 static void resetprocpriority(struct proc *);
129
130 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
131
132 /* The global scheduler state */
133 kmutex_t sched_mutex;
134
135 /* Number of hardclock ticks per sched_tick() */
136 int rrticks;
137
138 /*
139 * Force switch among equal priority processes every 100ms.
140 * Called from hardclock every hz/10 == rrticks hardclock ticks.
141 */
142 /* ARGSUSED */
143 void
144 sched_tick(struct cpu_info *ci)
145 {
146 struct schedstate_percpu *spc = &ci->ci_schedstate;
147
148 spc->spc_ticks = rrticks;
149
150 if (!CURCPU_IDLE_P()) {
151 if (spc->spc_flags & SPCF_SEENRR) {
152 /*
153 * The process has already been through a roundrobin
154 * without switching and may be hogging the CPU.
155 * Indicate that the process should yield.
156 */
157 spc->spc_flags |= SPCF_SHOULDYIELD;
158 } else
159 spc->spc_flags |= SPCF_SEENRR;
160 }
161 cpu_need_resched(curcpu(), 0);
162 }
163
164 #define NICE_WEIGHT 1 /* priorities per nice level */
165
166 #define ESTCPU_SHIFT 11
167 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
168 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
169
170 /*
171 * Constants for digital decay and forget:
172 * 90% of (p_estcpu) usage in 5 * loadav time
173 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
174 * Note that, as ps(1) mentions, this can let percentages
175 * total over 100% (I've seen 137.9% for 3 processes).
176 *
177 * Note that hardclock updates p_estcpu and p_cpticks independently.
178 *
179 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
180 * That is, the system wants to compute a value of decay such
181 * that the following for loop:
182 * for (i = 0; i < (5 * loadavg); i++)
183 * p_estcpu *= decay;
184 * will compute
185 * p_estcpu *= 0.1;
186 * for all values of loadavg:
187 *
188 * Mathematically this loop can be expressed by saying:
189 * decay ** (5 * loadavg) ~= .1
190 *
191 * The system computes decay as:
192 * decay = (2 * loadavg) / (2 * loadavg + 1)
193 *
194 * We wish to prove that the system's computation of decay
195 * will always fulfill the equation:
196 * decay ** (5 * loadavg) ~= .1
197 *
198 * If we compute b as:
199 * b = 2 * loadavg
200 * then
201 * decay = b / (b + 1)
202 *
203 * We now need to prove two things:
204 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
205 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
206 *
207 * Facts:
208 * For x close to zero, exp(x) =~ 1 + x, since
209 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
210 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
211 * For x close to zero, ln(1+x) =~ x, since
212 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
213 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
214 * ln(.1) =~ -2.30
215 *
216 * Proof of (1):
217 * Solve (factor)**(power) =~ .1 given power (5*loadav):
218 * solving for factor,
219 * ln(factor) =~ (-2.30/5*loadav), or
220 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
221 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
222 *
223 * Proof of (2):
224 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
225 * solving for power,
226 * power*ln(b/(b+1)) =~ -2.30, or
227 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
228 *
229 * Actual power values for the implemented algorithm are as follows:
230 * loadav: 1 2 3 4
231 * power: 5.68 10.32 14.94 19.55
232 */
233
234 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
235 #define loadfactor(loadav) (2 * (loadav))
236
237 static fixpt_t
238 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
239 {
240
241 if (estcpu == 0) {
242 return 0;
243 }
244
245 #if !defined(_LP64)
246 /* avoid 64bit arithmetics. */
247 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
248 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
249 return estcpu * loadfac / (loadfac + FSCALE);
250 }
251 #endif /* !defined(_LP64) */
252
253 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
254 }
255
256 /*
257 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
258 * sleeping for at least seven times the loadfactor will decay p_estcpu to
259 * less than (1 << ESTCPU_SHIFT).
260 *
261 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
262 */
263 static fixpt_t
264 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
265 {
266
267 if ((n << FSHIFT) >= 7 * loadfac) {
268 return 0;
269 }
270
271 while (estcpu != 0 && n > 1) {
272 estcpu = decay_cpu(loadfac, estcpu);
273 n--;
274 }
275
276 return estcpu;
277 }
278
279 /*
280 * sched_pstats_hook:
281 *
282 * Periodically called from sched_pstats(); used to recalculate priorities.
283 */
284 void
285 sched_pstats_hook(struct proc *p, int minslp)
286 {
287 struct lwp *l;
288 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
289
290 /*
291 * If the process has slept the entire second,
292 * stop recalculating its priority until it wakes up.
293 */
294 if (minslp <= 1) {
295 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
296
297 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
298 if ((l->l_flag & LW_IDLE) != 0)
299 continue;
300 lwp_lock(l);
301 if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
302 resetpriority(l);
303 lwp_unlock(l);
304 }
305 }
306 }
307
308 /*
309 * Recalculate the priority of a process after it has slept for a while.
310 */
311 static void
312 updatepri(struct lwp *l)
313 {
314 struct proc *p = l->l_proc;
315 fixpt_t loadfac;
316
317 KASSERT(lwp_locked(l, NULL));
318 KASSERT(l->l_slptime > 1);
319
320 loadfac = loadfactor(averunnable.ldavg[0]);
321
322 l->l_slptime--; /* the first time was done in sched_pstats */
323 /* XXX NJWLWP */
324 /* XXXSMP occasionally unlocked, should be per-LWP */
325 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
326 resetpriority(l);
327 }
328
329 /*
330 * On some architectures, it's faster to use a MSB ordering for the priorites
331 * than the traditional LSB ordering.
332 */
333 #define RQMASK(n) (1ULL << (n))
334 #define WHICHQ(p) (RUNQUE_NQS - 1 - ((p) / PPQ))
335
336 /*
337 * The primitives that manipulate the run queues. whichqs tells which
338 * of the 32 queues qs have processes in them. sched_enqueue() puts processes
339 * into queues, sched_dequeue removes them from queues. The running process is
340 * on no queue, other processes are on a queue related to p->p_priority,
341 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
342 * available queues.
343 */
344 #ifdef RQDEBUG
345 static void
346 runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
347 {
348 const subqueue_t * const sq = &rq->rq_subqueues[whichq];
349 const uint32_t bitmap = rq->rq_bitmap;
350 struct lwp *l2;
351 int found = 0;
352 int die = 0;
353 int empty = 1;
354
355 TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
356 if (l2->l_stat != LSRUN) {
357 printf("runqueue_check[%d]: lwp %p state (%d) "
358 " != LSRUN\n", whichq, l2, l2->l_stat);
359 }
360 if (l2 == l)
361 found = 1;
362 empty = 0;
363 }
364 if (empty && (bitmap & RQMASK(whichq)) != 0) {
365 printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
366 whichq, rq);
367 die = 1;
368 } else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
369 printf("runqueue_check[%d]: bit clear for non-empty "
370 "run-queue %p\n", whichq, rq);
371 die = 1;
372 }
373 if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
374 printf("runqueue_check[%d]: bit clear for active lwp %p\n",
375 whichq, l);
376 die = 1;
377 }
378 if (l != NULL && empty) {
379 printf("runqueue_check[%d]: empty run-queue %p with "
380 "active lwp %p\n", whichq, rq, l);
381 die = 1;
382 }
383 if (l != NULL && !found) {
384 printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
385 whichq, l, rq);
386 die = 1;
387 }
388 if (die)
389 panic("runqueue_check: inconsistency found");
390 }
391 #else /* RQDEBUG */
392 #define runqueue_check(a, b, c) /* nothing */
393 #endif /* RQDEBUG */
394
395 static void
396 runqueue_init(runqueue_t *rq)
397 {
398 int i;
399
400 for (i = 0; i < RUNQUE_NQS; i++)
401 TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
402 }
403
404 static void
405 runqueue_enqueue(runqueue_t *rq, struct lwp *l)
406 {
407 subqueue_t *sq;
408 const int whichq = WHICHQ(lwp_eprio(l));
409 const uint64_t rqmask = RQMASK(whichq);
410
411 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
412
413 runqueue_check(rq, whichq, NULL);
414 rq->rq_bitmap |= rqmask;
415 sq = &rq->rq_subqueues[whichq];
416 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
417 runqueue_check(rq, whichq, l);
418 }
419
420 static void
421 runqueue_dequeue(runqueue_t *rq, struct lwp *l)
422 {
423 subqueue_t *sq;
424 const int whichq = WHICHQ(lwp_eprio(l));
425 const uint64_t rqmask = RQMASK(whichq);
426
427 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
428
429 runqueue_check(rq, whichq, l);
430 KASSERT((rq->rq_bitmap & rqmask) != 0);
431 sq = &rq->rq_subqueues[whichq];
432 TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
433 if (TAILQ_EMPTY(&sq->sq_queue))
434 rq->rq_bitmap &= ~rqmask;
435 runqueue_check(rq, whichq, NULL);
436 }
437
438 static struct lwp *
439 runqueue_nextlwp(runqueue_t *rq)
440 {
441 const uint64_t bitmap = rq->rq_bitmap;
442 int whichq;
443
444 if (bitmap == 0) {
445 return NULL;
446 }
447 whichq = ffs((uint32_t)bitmap) - 1;
448 if (whichq != -1)
449 return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
450 whichq = ffs((uint32_t)(bitmap >> 32)) - 1;
451 return TAILQ_FIRST(&rq->rq_subqueues[whichq + 32].sq_queue);
452 }
453
454 #if defined(DDB)
455 static void
456 runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
457 {
458 const uint64_t bitmap = rq->rq_bitmap;
459 struct lwp *l;
460 int i, first;
461
462 for (i = 0; i < RUNQUE_NQS; i++) {
463 const subqueue_t *sq;
464 first = 1;
465 sq = &rq->rq_subqueues[i];
466 TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
467 if (first) {
468 (*pr)("%c%d",
469 (bitmap & RQMASK(i)) ? ' ' : '!', i);
470 first = 0;
471 }
472 (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
473 l->l_proc->p_pid,
474 l->l_lid, l->l_proc->p_comm,
475 (int)l->l_priority, (int)l->l_usrpri);
476 }
477 }
478 }
479 #endif /* defined(DDB) */
480
481 /*
482 * Initialize the (doubly-linked) run queues
483 * to be empty.
484 */
485 void
486 sched_rqinit()
487 {
488
489 runqueue_init(&global_queue);
490 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
491 /* Initialize the lock pointer for lwp0 */
492 lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
493 }
494
495 void
496 sched_cpuattach(struct cpu_info *ci)
497 {
498 runqueue_t *rq;
499
500 ci->ci_schedstate.spc_mutex = &sched_mutex;
501 rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
502 runqueue_init(rq);
503 ci->ci_schedstate.spc_sched_info = rq;
504 }
505
506 void
507 sched_setup()
508 {
509
510 rrticks = hz / 10;
511 sched_pstats(NULL);
512 }
513
514 void
515 sched_setrunnable(struct lwp *l)
516 {
517
518 if (l->l_slptime > 1)
519 updatepri(l);
520 }
521
522 bool
523 sched_curcpu_runnable_p(void)
524 {
525 runqueue_t *rq = curcpu()->ci_schedstate.spc_sched_info;
526
527 return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
528 }
529
530 void
531 sched_nice(struct proc *chgp, int n)
532 {
533
534 chgp->p_nice = n;
535 (void)resetprocpriority(chgp);
536 }
537
538 /*
539 * Compute the priority of a process when running in user mode.
540 * Arrange to reschedule if the resulting priority is better
541 * than that of the current process.
542 */
543 static void
544 resetpriority(struct lwp *l)
545 {
546 unsigned int newpriority;
547 struct proc *p = l->l_proc;
548
549 /* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
550 KASSERT(lwp_locked(l, NULL));
551
552 if ((l->l_flag & LW_SYSTEM) != 0)
553 return;
554
555 newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
556 NICE_WEIGHT * (p->p_nice - NZERO);
557 newpriority = max(newpriority, 0);
558 lwp_changepri(l, newpriority);
559 }
560
561 /*
562 * Recompute priority for all LWPs in a process.
563 */
564 static void
565 resetprocpriority(struct proc *p)
566 {
567 struct lwp *l;
568
569 KASSERT(mutex_owned(&p->p_stmutex));
570
571 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
572 lwp_lock(l);
573 resetpriority(l);
574 lwp_unlock(l);
575 }
576 }
577
578 /*
579 * We adjust the priority of the current process. The priority of a process
580 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
581 * is increased here. The formula for computing priorities (in kern_synch.c)
582 * will compute a different value each time p_estcpu increases. This can
583 * cause a switch, but unless the priority crosses a PPQ boundary the actual
584 * queue will not change. The CPU usage estimator ramps up quite quickly
585 * when the process is running (linearly), and decays away exponentially, at
586 * a rate which is proportionally slower when the system is busy. The basic
587 * principle is that the system will 90% forget that the process used a lot
588 * of CPU time in 5 * loadav seconds. This causes the system to favor
589 * processes which haven't run much recently, and to round-robin among other
590 * processes.
591 */
592
593 void
594 sched_schedclock(struct lwp *l)
595 {
596 struct proc *p = l->l_proc;
597
598 KASSERT(!CURCPU_IDLE_P());
599 mutex_spin_enter(&p->p_stmutex);
600 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
601 lwp_lock(l);
602 resetpriority(l);
603 mutex_spin_exit(&p->p_stmutex);
604 if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
605 l->l_priority = l->l_usrpri;
606 lwp_unlock(l);
607 }
608
609 /*
610 * sched_proc_fork:
611 *
612 * Inherit the parent's scheduler history.
613 */
614 void
615 sched_proc_fork(struct proc *parent, struct proc *child)
616 {
617
618 KASSERT(mutex_owned(&parent->p_smutex));
619
620 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
621 child->p_forktime = sched_pstats_ticks;
622 }
623
624 /*
625 * sched_proc_exit:
626 *
627 * Chargeback parents for the sins of their children.
628 */
629 void
630 sched_proc_exit(struct proc *parent, struct proc *child)
631 {
632 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
633 fixpt_t estcpu;
634
635 /* XXX Only if parent != init?? */
636
637 mutex_spin_enter(&parent->p_stmutex);
638 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
639 sched_pstats_ticks - child->p_forktime);
640 if (child->p_estcpu > estcpu)
641 parent->p_estcpu =
642 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
643 mutex_spin_exit(&parent->p_stmutex);
644 }
645
646 void
647 sched_enqueue(struct lwp *l, bool ctxswitch)
648 {
649
650 if ((l->l_flag & LW_BOUND) != 0)
651 runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
652 else
653 runqueue_enqueue(&global_queue, l);
654 }
655
656 /*
657 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
658 * drop of the effective priority level from kernel to user needs to be
659 * moved here from userret(). The assignment in userret() is currently
660 * done unlocked.
661 */
662 void
663 sched_dequeue(struct lwp *l)
664 {
665
666 if ((l->l_flag & LW_BOUND) != 0)
667 runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
668 else
669 runqueue_dequeue(&global_queue, l);
670 }
671
672 struct lwp *
673 sched_nextlwp(void)
674 {
675 lwp_t *l1, *l2;
676
677 /* For now, just pick the highest priority LWP. */
678 l1 = runqueue_nextlwp(curcpu()->ci_schedstate.spc_sched_info);
679 l2 = runqueue_nextlwp(&global_queue);
680
681 if (l1 == NULL)
682 return l2;
683 if (l2 == NULL)
684 return l1;
685 if (lwp_eprio(l2) > lwp_eprio(l1))
686 return l2;
687 else
688 return l1;
689 }
690
691 /* Dummy */
692 void
693 sched_lwp_fork(struct lwp *l)
694 {
695
696 }
697
698 void
699 sched_lwp_exit(struct lwp *l)
700 {
701
702 }
703
704 /* SysCtl */
705
706 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
707 {
708 const struct sysctlnode *node = NULL;
709
710 sysctl_createv(clog, 0, NULL, NULL,
711 CTLFLAG_PERMANENT,
712 CTLTYPE_NODE, "kern", NULL,
713 NULL, 0, NULL, 0,
714 CTL_KERN, CTL_EOL);
715 sysctl_createv(clog, 0, NULL, &node,
716 CTLFLAG_PERMANENT,
717 CTLTYPE_NODE, "sched",
718 SYSCTL_DESCR("Scheduler options"),
719 NULL, 0, NULL, 0,
720 CTL_KERN, CTL_CREATE, CTL_EOL);
721
722 if (node != NULL) {
723 sysctl_createv(clog, 0, &node, NULL,
724 CTLFLAG_PERMANENT,
725 CTLTYPE_STRING, "name", NULL,
726 NULL, 0, __UNCONST("4.4BSD"), 0,
727 CTL_CREATE, CTL_EOL);
728 }
729 }
730
731 #if defined(DDB)
732 void
733 sched_print_runqueue(void (*pr)(const char *, ...))
734 {
735
736 runqueue_print(&global_queue, pr);
737 }
738 #endif /* defined(DDB) */
739