Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.6.3
      1 /*	$NetBSD: sched_4bsd.c,v 1.1.6.3 2007/07/01 21:43:41 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.3 2007/07/01 21:43:41 ad Exp $");
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_perfctrs.h"
     83 
     84 #define	__MUTEX_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/cpu.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/resourcevar.h>
     94 #include <sys/sched.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/kauth.h>
     97 #include <sys/lockdebug.h>
     98 #include <sys/kmem.h>
     99 
    100 #include <uvm/uvm_extern.h>
    101 
    102 /*
    103  * Run queues.
    104  *
    105  * We have 32 run queues in descending priority of 0..31.  We maintain
    106  * a bitmask of non-empty queues in order speed up finding the first
    107  * runnable process.  The bitmask is maintained only by machine-dependent
    108  * code, allowing the most efficient instructions to be used to find the
    109  * first non-empty queue.
    110  */
    111 
    112 #define	RUNQUE_NQS	64			/* number of runqueues */
    113 #define	PPQ		(PRI_COUNT / RUNQUE_NQS)/* priorities per queue */
    114 
    115 typedef struct subqueue {
    116 	TAILQ_HEAD(, lwp) sq_queue;
    117 } subqueue_t;
    118 
    119 typedef struct runqueue {
    120 	subqueue_t	rq_subqueues[RUNQUE_NQS];	/* run queues */
    121 	uint64_t	rq_bitmap;	/* bitmap of non-empty queues */
    122 } runqueue_t;
    123 
    124 static runqueue_t global_queue;
    125 
    126 static void updatepri(struct lwp *);
    127 static void resetpriority(struct lwp *);
    128 static void resetprocpriority(struct proc *);
    129 
    130 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    131 
    132 /* The global scheduler state */
    133 kmutex_t sched_mutex;
    134 
    135 /* Number of hardclock ticks per sched_tick() */
    136 int rrticks;
    137 
    138 /*
    139  * Force switch among equal priority processes every 100ms.
    140  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    141  */
    142 /* ARGSUSED */
    143 void
    144 sched_tick(struct cpu_info *ci)
    145 {
    146 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    147 
    148 	spc->spc_ticks = rrticks;
    149 
    150 	if (!CURCPU_IDLE_P()) {
    151 		if (spc->spc_flags & SPCF_SEENRR) {
    152 			/*
    153 			 * The process has already been through a roundrobin
    154 			 * without switching and may be hogging the CPU.
    155 			 * Indicate that the process should yield.
    156 			 */
    157 			spc->spc_flags |= SPCF_SHOULDYIELD;
    158 		} else
    159 			spc->spc_flags |= SPCF_SEENRR;
    160 	}
    161 	cpu_need_resched(curcpu(), 0);
    162 }
    163 
    164 #define	NICE_WEIGHT 	1			/* priorities per nice level */
    165 
    166 #define	ESTCPU_SHIFT	11
    167 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    168 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    169 
    170 /*
    171  * Constants for digital decay and forget:
    172  *	90% of (p_estcpu) usage in 5 * loadav time
    173  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    174  *          Note that, as ps(1) mentions, this can let percentages
    175  *          total over 100% (I've seen 137.9% for 3 processes).
    176  *
    177  * Note that hardclock updates p_estcpu and p_cpticks independently.
    178  *
    179  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    180  * That is, the system wants to compute a value of decay such
    181  * that the following for loop:
    182  * 	for (i = 0; i < (5 * loadavg); i++)
    183  * 		p_estcpu *= decay;
    184  * will compute
    185  * 	p_estcpu *= 0.1;
    186  * for all values of loadavg:
    187  *
    188  * Mathematically this loop can be expressed by saying:
    189  * 	decay ** (5 * loadavg) ~= .1
    190  *
    191  * The system computes decay as:
    192  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    193  *
    194  * We wish to prove that the system's computation of decay
    195  * will always fulfill the equation:
    196  * 	decay ** (5 * loadavg) ~= .1
    197  *
    198  * If we compute b as:
    199  * 	b = 2 * loadavg
    200  * then
    201  * 	decay = b / (b + 1)
    202  *
    203  * We now need to prove two things:
    204  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    205  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    206  *
    207  * Facts:
    208  *         For x close to zero, exp(x) =~ 1 + x, since
    209  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    210  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    211  *         For x close to zero, ln(1+x) =~ x, since
    212  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    213  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    214  *         ln(.1) =~ -2.30
    215  *
    216  * Proof of (1):
    217  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    218  *	solving for factor,
    219  *      ln(factor) =~ (-2.30/5*loadav), or
    220  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    221  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    222  *
    223  * Proof of (2):
    224  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    225  *	solving for power,
    226  *      power*ln(b/(b+1)) =~ -2.30, or
    227  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    228  *
    229  * Actual power values for the implemented algorithm are as follows:
    230  *      loadav: 1       2       3       4
    231  *      power:  5.68    10.32   14.94   19.55
    232  */
    233 
    234 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    235 #define	loadfactor(loadav)	(2 * (loadav))
    236 
    237 static fixpt_t
    238 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    239 {
    240 
    241 	if (estcpu == 0) {
    242 		return 0;
    243 	}
    244 
    245 #if !defined(_LP64)
    246 	/* avoid 64bit arithmetics. */
    247 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    248 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    249 		return estcpu * loadfac / (loadfac + FSCALE);
    250 	}
    251 #endif /* !defined(_LP64) */
    252 
    253 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    254 }
    255 
    256 /*
    257  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    258  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    259  * less than (1 << ESTCPU_SHIFT).
    260  *
    261  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    262  */
    263 static fixpt_t
    264 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    265 {
    266 
    267 	if ((n << FSHIFT) >= 7 * loadfac) {
    268 		return 0;
    269 	}
    270 
    271 	while (estcpu != 0 && n > 1) {
    272 		estcpu = decay_cpu(loadfac, estcpu);
    273 		n--;
    274 	}
    275 
    276 	return estcpu;
    277 }
    278 
    279 /*
    280  * sched_pstats_hook:
    281  *
    282  * Periodically called from sched_pstats(); used to recalculate priorities.
    283  */
    284 void
    285 sched_pstats_hook(struct proc *p, int minslp)
    286 {
    287 	struct lwp *l;
    288 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    289 
    290 	/*
    291 	 * If the process has slept the entire second,
    292 	 * stop recalculating its priority until it wakes up.
    293 	 */
    294 	if (minslp <= 1) {
    295 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    296 
    297 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    298 			if ((l->l_flag & LW_IDLE) != 0)
    299 				continue;
    300 			lwp_lock(l);
    301 			if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
    302 				resetpriority(l);
    303 			lwp_unlock(l);
    304 		}
    305 	}
    306 }
    307 
    308 /*
    309  * Recalculate the priority of a process after it has slept for a while.
    310  */
    311 static void
    312 updatepri(struct lwp *l)
    313 {
    314 	struct proc *p = l->l_proc;
    315 	fixpt_t loadfac;
    316 
    317 	KASSERT(lwp_locked(l, NULL));
    318 	KASSERT(l->l_slptime > 1);
    319 
    320 	loadfac = loadfactor(averunnable.ldavg[0]);
    321 
    322 	l->l_slptime--; /* the first time was done in sched_pstats */
    323 	/* XXX NJWLWP */
    324 	/* XXXSMP occasionally unlocked, should be per-LWP */
    325 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    326 	resetpriority(l);
    327 }
    328 
    329 /*
    330  * On some architectures, it's faster to use a MSB ordering for the priorites
    331  * than the traditional LSB ordering.
    332  */
    333 #define	RQMASK(n)	(1ULL << (n))
    334 #define WHICHQ(p)	(RUNQUE_NQS - 1 - ((p) / PPQ))
    335 
    336 /*
    337  * The primitives that manipulate the run queues.  whichqs tells which
    338  * of the 32 queues qs have processes in them.  sched_enqueue() puts processes
    339  * into queues, sched_dequeue removes them from queues.  The running process is
    340  * on no queue, other processes are on a queue related to p->p_priority,
    341  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
    342  * available queues.
    343  */
    344 #ifdef RQDEBUG
    345 static void
    346 runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    347 {
    348 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    349 	const uint32_t bitmap = rq->rq_bitmap;
    350 	struct lwp *l2;
    351 	int found = 0;
    352 	int die = 0;
    353 	int empty = 1;
    354 
    355 	TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
    356 		if (l2->l_stat != LSRUN) {
    357 			printf("runqueue_check[%d]: lwp %p state (%d) "
    358 			    " != LSRUN\n", whichq, l2, l2->l_stat);
    359 		}
    360 		if (l2 == l)
    361 			found = 1;
    362 		empty = 0;
    363 	}
    364 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    365 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    366 		    whichq, rq);
    367 		die = 1;
    368 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    369 		printf("runqueue_check[%d]: bit clear for non-empty "
    370 		    "run-queue %p\n", whichq, rq);
    371 		die = 1;
    372 	}
    373 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    374 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    375 		    whichq, l);
    376 		die = 1;
    377 	}
    378 	if (l != NULL && empty) {
    379 		printf("runqueue_check[%d]: empty run-queue %p with "
    380 		    "active lwp %p\n", whichq, rq, l);
    381 		die = 1;
    382 	}
    383 	if (l != NULL && !found) {
    384 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    385 		    whichq, l, rq);
    386 		die = 1;
    387 	}
    388 	if (die)
    389 		panic("runqueue_check: inconsistency found");
    390 }
    391 #else /* RQDEBUG */
    392 #define	runqueue_check(a, b, c)	/* nothing */
    393 #endif /* RQDEBUG */
    394 
    395 static void
    396 runqueue_init(runqueue_t *rq)
    397 {
    398 	int i;
    399 
    400 	for (i = 0; i < RUNQUE_NQS; i++)
    401 		TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
    402 }
    403 
    404 static void
    405 runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    406 {
    407 	subqueue_t *sq;
    408 	const int whichq = WHICHQ(lwp_eprio(l));
    409 	const uint64_t rqmask = RQMASK(whichq);
    410 
    411 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    412 
    413 	runqueue_check(rq, whichq, NULL);
    414 	rq->rq_bitmap |= rqmask;
    415 	sq = &rq->rq_subqueues[whichq];
    416 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
    417 	runqueue_check(rq, whichq, l);
    418 }
    419 
    420 static void
    421 runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    422 {
    423 	subqueue_t *sq;
    424 	const int whichq = WHICHQ(lwp_eprio(l));
    425 	const uint64_t rqmask = RQMASK(whichq);
    426 
    427 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    428 
    429 	runqueue_check(rq, whichq, l);
    430 	KASSERT((rq->rq_bitmap & rqmask) != 0);
    431 	sq = &rq->rq_subqueues[whichq];
    432 	TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
    433 	if (TAILQ_EMPTY(&sq->sq_queue))
    434 		rq->rq_bitmap &= ~rqmask;
    435 	runqueue_check(rq, whichq, NULL);
    436 }
    437 
    438 static struct lwp *
    439 runqueue_nextlwp(runqueue_t *rq)
    440 {
    441 	const uint64_t bitmap = rq->rq_bitmap;
    442 	int whichq;
    443 
    444 	if (bitmap == 0) {
    445 		return NULL;
    446 	}
    447 	whichq = ffs((uint32_t)bitmap) - 1;
    448 	if (whichq != -1)
    449 		return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
    450 	whichq = ffs((uint32_t)(bitmap >> 32)) - 1;
    451 	return TAILQ_FIRST(&rq->rq_subqueues[whichq + 32].sq_queue);
    452 }
    453 
    454 #if defined(DDB)
    455 static void
    456 runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    457 {
    458 	const uint64_t bitmap = rq->rq_bitmap;
    459 	struct lwp *l;
    460 	int i, first;
    461 
    462 	for (i = 0; i < RUNQUE_NQS; i++) {
    463 		const subqueue_t *sq;
    464 		first = 1;
    465 		sq = &rq->rq_subqueues[i];
    466 		TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
    467 			if (first) {
    468 				(*pr)("%c%d",
    469 				    (bitmap & RQMASK(i)) ? ' ' : '!', i);
    470 				first = 0;
    471 			}
    472 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    473 			    l->l_proc->p_pid,
    474 			    l->l_lid, l->l_proc->p_comm,
    475 			    (int)l->l_priority, (int)l->l_usrpri);
    476 		}
    477 	}
    478 }
    479 #endif /* defined(DDB) */
    480 
    481 /*
    482  * Initialize the (doubly-linked) run queues
    483  * to be empty.
    484  */
    485 void
    486 sched_rqinit()
    487 {
    488 
    489 	runqueue_init(&global_queue);
    490 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    491 	/* Initialize the lock pointer for lwp0 */
    492 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    493 }
    494 
    495 void
    496 sched_cpuattach(struct cpu_info *ci)
    497 {
    498 	runqueue_t *rq;
    499 
    500 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    501 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    502 	runqueue_init(rq);
    503 	ci->ci_schedstate.spc_sched_info = rq;
    504 }
    505 
    506 void
    507 sched_setup()
    508 {
    509 
    510 	rrticks = hz / 10;
    511 }
    512 
    513 void
    514 sched_setrunnable(struct lwp *l)
    515 {
    516 
    517  	if (l->l_slptime > 1)
    518  		updatepri(l);
    519 }
    520 
    521 bool
    522 sched_curcpu_runnable_p(void)
    523 {
    524 	runqueue_t *rq = curcpu()->ci_schedstate.spc_sched_info;
    525 
    526 	return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
    527 }
    528 
    529 void
    530 sched_nice(struct proc *chgp, int n)
    531 {
    532 
    533 	chgp->p_nice = n;
    534 	(void)resetprocpriority(chgp);
    535 }
    536 
    537 /*
    538  * Compute the priority of a process when running in user mode.
    539  * Arrange to reschedule if the resulting priority is better
    540  * than that of the current process.
    541  */
    542 static void
    543 resetpriority(struct lwp *l)
    544 {
    545 	unsigned int newpriority;
    546 	struct proc *p = l->l_proc;
    547 
    548 	/* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
    549 	KASSERT(lwp_locked(l, NULL));
    550 
    551 	if ((l->l_flag & LW_SYSTEM) != 0)
    552 		return;
    553 
    554 	newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
    555 	    NICE_WEIGHT * (p->p_nice - NZERO);
    556 	newpriority = max(newpriority, 0);
    557 	lwp_changepri(l, newpriority);
    558 }
    559 
    560 /*
    561  * Recompute priority for all LWPs in a process.
    562  */
    563 static void
    564 resetprocpriority(struct proc *p)
    565 {
    566 	struct lwp *l;
    567 
    568 	KASSERT(mutex_owned(&p->p_stmutex));
    569 
    570 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    571 		lwp_lock(l);
    572 		resetpriority(l);
    573 		lwp_unlock(l);
    574 	}
    575 }
    576 
    577 /*
    578  * We adjust the priority of the current process.  The priority of a process
    579  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    580  * is increased here.  The formula for computing priorities (in kern_synch.c)
    581  * will compute a different value each time p_estcpu increases. This can
    582  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    583  * queue will not change.  The CPU usage estimator ramps up quite quickly
    584  * when the process is running (linearly), and decays away exponentially, at
    585  * a rate which is proportionally slower when the system is busy.  The basic
    586  * principle is that the system will 90% forget that the process used a lot
    587  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    588  * processes which haven't run much recently, and to round-robin among other
    589  * processes.
    590  */
    591 
    592 void
    593 sched_schedclock(struct lwp *l)
    594 {
    595 	struct proc *p = l->l_proc;
    596 
    597 	KASSERT(!CURCPU_IDLE_P());
    598 	mutex_spin_enter(&p->p_stmutex);
    599 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    600 	lwp_lock(l);
    601 	resetpriority(l);
    602 	mutex_spin_exit(&p->p_stmutex);
    603 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
    604 		l->l_priority = l->l_usrpri;
    605 	lwp_unlock(l);
    606 }
    607 
    608 /*
    609  * sched_proc_fork:
    610  *
    611  *	Inherit the parent's scheduler history.
    612  */
    613 void
    614 sched_proc_fork(struct proc *parent, struct proc *child)
    615 {
    616 
    617 	KASSERT(mutex_owned(&parent->p_smutex));
    618 
    619 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    620 	child->p_forktime = sched_pstats_ticks;
    621 }
    622 
    623 /*
    624  * sched_proc_exit:
    625  *
    626  *	Chargeback parents for the sins of their children.
    627  */
    628 void
    629 sched_proc_exit(struct proc *parent, struct proc *child)
    630 {
    631 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    632 	fixpt_t estcpu;
    633 
    634 	/* XXX Only if parent != init?? */
    635 
    636 	mutex_spin_enter(&parent->p_stmutex);
    637 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    638 	    sched_pstats_ticks - child->p_forktime);
    639 	if (child->p_estcpu > estcpu)
    640 		parent->p_estcpu =
    641 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    642 	mutex_spin_exit(&parent->p_stmutex);
    643 }
    644 
    645 void
    646 sched_enqueue(struct lwp *l, bool ctxswitch)
    647 {
    648 
    649 	if ((l->l_flag & LW_BOUND) != 0)
    650 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    651 	else
    652 		runqueue_enqueue(&global_queue, l);
    653 }
    654 
    655 /*
    656  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    657  * drop of the effective priority level from kernel to user needs to be
    658  * moved here from userret().  The assignment in userret() is currently
    659  * done unlocked.
    660  */
    661 void
    662 sched_dequeue(struct lwp *l)
    663 {
    664 
    665 	if ((l->l_flag & LW_BOUND) != 0)
    666 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    667 	else
    668 		runqueue_dequeue(&global_queue, l);
    669 }
    670 
    671 struct lwp *
    672 sched_nextlwp(void)
    673 {
    674 	lwp_t *l1, *l2;
    675 
    676 	/* For now, just pick the highest priority LWP. */
    677 	l1 = runqueue_nextlwp(curcpu()->ci_schedstate.spc_sched_info);
    678 	l2 = runqueue_nextlwp(&global_queue);
    679 
    680 	if (l1 == NULL)
    681 		return l2;
    682 	if (l2 == NULL)
    683 		return l1;
    684 	if (lwp_eprio(l2) > lwp_eprio(l1))
    685 		return l2;
    686 	else
    687 		return l1;
    688 }
    689 
    690 /* Dummy */
    691 void
    692 sched_lwp_fork(struct lwp *l)
    693 {
    694 
    695 }
    696 
    697 void
    698 sched_lwp_exit(struct lwp *l)
    699 {
    700 
    701 }
    702 
    703 /* SysCtl */
    704 
    705 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    706 {
    707 	const struct sysctlnode *node = NULL;
    708 
    709 	sysctl_createv(clog, 0, NULL, NULL,
    710 		CTLFLAG_PERMANENT,
    711 		CTLTYPE_NODE, "kern", NULL,
    712 		NULL, 0, NULL, 0,
    713 		CTL_KERN, CTL_EOL);
    714 	sysctl_createv(clog, 0, NULL, &node,
    715 		CTLFLAG_PERMANENT,
    716 		CTLTYPE_NODE, "sched",
    717 		SYSCTL_DESCR("Scheduler options"),
    718 		NULL, 0, NULL, 0,
    719 		CTL_KERN, CTL_CREATE, CTL_EOL);
    720 
    721 	if (node != NULL) {
    722 		sysctl_createv(clog, 0, &node, NULL,
    723 			CTLFLAG_PERMANENT,
    724 			CTLTYPE_STRING, "name", NULL,
    725 			NULL, 0, __UNCONST("4.4BSD"), 0,
    726 			CTL_CREATE, CTL_EOL);
    727 	}
    728 }
    729 
    730 #if defined(DDB)
    731 void
    732 sched_print_runqueue(void (*pr)(const char *, ...))
    733 {
    734 
    735 	runqueue_print(&global_queue, pr);
    736 }
    737 #endif /* defined(DDB) */
    738