Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.6.4
      1 /*	$NetBSD: sched_4bsd.c,v 1.1.6.4 2007/07/07 11:56:11 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.4 2007/07/07 11:56:11 ad Exp $");
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_perfctrs.h"
     83 
     84 #define	__MUTEX_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/cpu.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/resourcevar.h>
     94 #include <sys/sched.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/kauth.h>
     97 #include <sys/lockdebug.h>
     98 #include <sys/kmem.h>
     99 
    100 #include <uvm/uvm_extern.h>
    101 
    102 /*
    103  * Run queues.
    104  *
    105  * We maintain a bitmask of non-empty queues in order speed up finding
    106  * the first runnable process.
    107  */
    108 
    109 #define	PPQ		4			/* priorities per queue */
    110 #define	RUNQUE_NQS	(PRI_COUNT / PPQ)	/* number of runqueues */
    111 
    112 typedef struct subqueue {
    113 	TAILQ_HEAD(, lwp) sq_queue;
    114 } subqueue_t;
    115 
    116 typedef struct runqueue {
    117 	subqueue_t	rq_subqueues[RUNQUE_NQS];	/* run queues */
    118 	uint64_t	rq_bitmap;	/* bitmap of non-empty queues */
    119 } runqueue_t;
    120 
    121 static runqueue_t global_queue;
    122 
    123 static void updatepri(struct lwp *);
    124 static void resetpriority(struct lwp *);
    125 static void resetprocpriority(struct proc *);
    126 
    127 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    128 
    129 /* The global scheduler state */
    130 kmutex_t sched_mutex;
    131 
    132 /* Number of hardclock ticks per sched_tick() */
    133 int rrticks;
    134 
    135 const int schedppq = PPQ;
    136 
    137 /*
    138  * Force switch among equal priority processes every 100ms.
    139  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    140  */
    141 /* ARGSUSED */
    142 void
    143 sched_tick(struct cpu_info *ci)
    144 {
    145 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    146 
    147 	spc->spc_ticks = rrticks;
    148 
    149 	if (!CURCPU_IDLE_P()) {
    150 		if (spc->spc_flags & SPCF_SEENRR) {
    151 			/*
    152 			 * The process has already been through a roundrobin
    153 			 * without switching and may be hogging the CPU.
    154 			 * Indicate that the process should yield.
    155 			 */
    156 			spc->spc_flags |= SPCF_SHOULDYIELD;
    157 		} else
    158 			spc->spc_flags |= SPCF_SEENRR;
    159 	}
    160 	cpu_need_resched(curcpu(), 0);
    161 }
    162 
    163 #define	NICE_WEIGHT 	1			/* priorities per nice level */
    164 
    165 #define	ESTCPU_SHIFT	11
    166 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    167 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    168 
    169 /*
    170  * Constants for digital decay and forget:
    171  *	90% of (p_estcpu) usage in 5 * loadav time
    172  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    173  *          Note that, as ps(1) mentions, this can let percentages
    174  *          total over 100% (I've seen 137.9% for 3 processes).
    175  *
    176  * Note that hardclock updates p_estcpu and p_cpticks independently.
    177  *
    178  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    179  * That is, the system wants to compute a value of decay such
    180  * that the following for loop:
    181  * 	for (i = 0; i < (5 * loadavg); i++)
    182  * 		p_estcpu *= decay;
    183  * will compute
    184  * 	p_estcpu *= 0.1;
    185  * for all values of loadavg:
    186  *
    187  * Mathematically this loop can be expressed by saying:
    188  * 	decay ** (5 * loadavg) ~= .1
    189  *
    190  * The system computes decay as:
    191  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    192  *
    193  * We wish to prove that the system's computation of decay
    194  * will always fulfill the equation:
    195  * 	decay ** (5 * loadavg) ~= .1
    196  *
    197  * If we compute b as:
    198  * 	b = 2 * loadavg
    199  * then
    200  * 	decay = b / (b + 1)
    201  *
    202  * We now need to prove two things:
    203  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    204  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    205  *
    206  * Facts:
    207  *         For x close to zero, exp(x) =~ 1 + x, since
    208  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    209  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    210  *         For x close to zero, ln(1+x) =~ x, since
    211  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    212  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    213  *         ln(.1) =~ -2.30
    214  *
    215  * Proof of (1):
    216  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    217  *	solving for factor,
    218  *      ln(factor) =~ (-2.30/5*loadav), or
    219  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    220  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    221  *
    222  * Proof of (2):
    223  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    224  *	solving for power,
    225  *      power*ln(b/(b+1)) =~ -2.30, or
    226  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    227  *
    228  * Actual power values for the implemented algorithm are as follows:
    229  *      loadav: 1       2       3       4
    230  *      power:  5.68    10.32   14.94   19.55
    231  */
    232 
    233 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    234 #define	loadfactor(loadav)	(2 * (loadav))
    235 
    236 static fixpt_t
    237 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    238 {
    239 
    240 	if (estcpu == 0) {
    241 		return 0;
    242 	}
    243 
    244 #if !defined(_LP64)
    245 	/* avoid 64bit arithmetics. */
    246 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    247 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    248 		return estcpu * loadfac / (loadfac + FSCALE);
    249 	}
    250 #endif /* !defined(_LP64) */
    251 
    252 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    253 }
    254 
    255 /*
    256  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    257  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    258  * less than (1 << ESTCPU_SHIFT).
    259  *
    260  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    261  */
    262 static fixpt_t
    263 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    264 {
    265 
    266 	if ((n << FSHIFT) >= 7 * loadfac) {
    267 		return 0;
    268 	}
    269 
    270 	while (estcpu != 0 && n > 1) {
    271 		estcpu = decay_cpu(loadfac, estcpu);
    272 		n--;
    273 	}
    274 
    275 	return estcpu;
    276 }
    277 
    278 /*
    279  * sched_pstats_hook:
    280  *
    281  * Periodically called from sched_pstats(); used to recalculate priorities.
    282  */
    283 void
    284 sched_pstats_hook(struct proc *p, int minslp)
    285 {
    286 	struct lwp *l;
    287 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    288 
    289 	/*
    290 	 * If the process has slept the entire second,
    291 	 * stop recalculating its priority until it wakes up.
    292 	 */
    293 	if (minslp <= 1) {
    294 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    295 
    296 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    297 			if ((l->l_flag & LW_IDLE) != 0)
    298 				continue;
    299 			lwp_lock(l);
    300 			if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
    301 				resetpriority(l);
    302 			lwp_unlock(l);
    303 		}
    304 	}
    305 }
    306 
    307 /*
    308  * Recalculate the priority of a process after it has slept for a while.
    309  */
    310 static void
    311 updatepri(struct lwp *l)
    312 {
    313 	struct proc *p = l->l_proc;
    314 	fixpt_t loadfac;
    315 
    316 	KASSERT(lwp_locked(l, NULL));
    317 	KASSERT(l->l_slptime > 1);
    318 
    319 	loadfac = loadfactor(averunnable.ldavg[0]);
    320 
    321 	l->l_slptime--; /* the first time was done in sched_pstats */
    322 	/* XXX NJWLWP */
    323 	/* XXXSMP occasionally unlocked, should be per-LWP */
    324 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    325 	resetpriority(l);
    326 }
    327 
    328 /*
    329  * On some architectures, it's faster to use a MSB ordering for the priorites
    330  * than the traditional LSB ordering.
    331  */
    332 #define	RQMASK(n)	(1ULL << (n))
    333 #define WHICHQ(p)	(RUNQUE_NQS - 1 - ((p) / PPQ))
    334 
    335 /*
    336  * The primitives that manipulate the run queues.  whichqs tells which of
    337  * the queues have processes in them.  sched_enqueue() puts processes into
    338  * queues, sched_dequeue() removes them from queues.
    339  */
    340 #ifdef RQDEBUG
    341 static void
    342 runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    343 {
    344 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    345 	const uint32_t bitmap = rq->rq_bitmap;
    346 	struct lwp *l2;
    347 	int found = 0;
    348 	int die = 0;
    349 	int empty = 1;
    350 
    351 	TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
    352 		if (l2->l_stat != LSRUN) {
    353 			printf("runqueue_check[%d]: lwp %p state (%d) "
    354 			    " != LSRUN\n", whichq, l2, l2->l_stat);
    355 		}
    356 		if (l2 == l)
    357 			found = 1;
    358 		empty = 0;
    359 	}
    360 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    361 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    362 		    whichq, rq);
    363 		die = 1;
    364 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    365 		printf("runqueue_check[%d]: bit clear for non-empty "
    366 		    "run-queue %p\n", whichq, rq);
    367 		die = 1;
    368 	}
    369 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    370 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    371 		    whichq, l);
    372 		die = 1;
    373 	}
    374 	if (l != NULL && empty) {
    375 		printf("runqueue_check[%d]: empty run-queue %p with "
    376 		    "active lwp %p\n", whichq, rq, l);
    377 		die = 1;
    378 	}
    379 	if (l != NULL && !found) {
    380 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    381 		    whichq, l, rq);
    382 		die = 1;
    383 	}
    384 	if (die)
    385 		panic("runqueue_check: inconsistency found");
    386 }
    387 #else /* RQDEBUG */
    388 #define	runqueue_check(a, b, c)	/* nothing */
    389 #endif /* RQDEBUG */
    390 
    391 static void
    392 runqueue_init(runqueue_t *rq)
    393 {
    394 	int i;
    395 
    396 	for (i = 0; i < RUNQUE_NQS; i++)
    397 		TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
    398 }
    399 
    400 static void
    401 runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    402 {
    403 	subqueue_t *sq;
    404 	const int whichq = WHICHQ(lwp_eprio(l));
    405 	const uint64_t rqmask = RQMASK(whichq);
    406 
    407 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    408 
    409 	runqueue_check(rq, whichq, NULL);
    410 	rq->rq_bitmap |= rqmask;
    411 	sq = &rq->rq_subqueues[whichq];
    412 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
    413 	runqueue_check(rq, whichq, l);
    414 }
    415 
    416 static void
    417 runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    418 {
    419 	subqueue_t *sq;
    420 	const int whichq = WHICHQ(lwp_eprio(l));
    421 	const uint64_t rqmask = RQMASK(whichq);
    422 
    423 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    424 
    425 	runqueue_check(rq, whichq, l);
    426 	KASSERT((rq->rq_bitmap & rqmask) != 0);
    427 	sq = &rq->rq_subqueues[whichq];
    428 	TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
    429 	if (TAILQ_EMPTY(&sq->sq_queue))
    430 		rq->rq_bitmap &= ~rqmask;
    431 	runqueue_check(rq, whichq, NULL);
    432 }
    433 
    434 static struct lwp *
    435 runqueue_nextlwp(runqueue_t *rq)
    436 {
    437 	const uint64_t bitmap = rq->rq_bitmap;
    438 	int whichq;
    439 
    440 	if (bitmap == 0) {
    441 		return NULL;
    442 	}
    443 	whichq = ffs((uint32_t)bitmap) - 1;
    444 	if (whichq != -1)
    445 		return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
    446 	whichq = ffs((uint32_t)(bitmap >> 32)) - 1;
    447 	return TAILQ_FIRST(&rq->rq_subqueues[whichq + 32].sq_queue);
    448 }
    449 
    450 #if defined(DDB)
    451 static void
    452 runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    453 {
    454 	const uint64_t bitmap = rq->rq_bitmap;
    455 	struct lwp *l;
    456 	int i, first;
    457 
    458 	for (i = 0; i < RUNQUE_NQS; i++) {
    459 		const subqueue_t *sq;
    460 		first = 1;
    461 		sq = &rq->rq_subqueues[i];
    462 		TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
    463 			if (first) {
    464 				(*pr)("%c%d",
    465 				    (bitmap & RQMASK(i)) ? ' ' : '!', i);
    466 				first = 0;
    467 			}
    468 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    469 			    l->l_proc->p_pid,
    470 			    l->l_lid, l->l_proc->p_comm,
    471 			    (int)l->l_priority, (int)l->l_usrpri);
    472 		}
    473 	}
    474 }
    475 #endif /* defined(DDB) */
    476 
    477 /*
    478  * Initialize the (doubly-linked) run queues
    479  * to be empty.
    480  */
    481 void
    482 sched_rqinit()
    483 {
    484 
    485 	runqueue_init(&global_queue);
    486 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    487 	/* Initialize the lock pointer for lwp0 */
    488 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    489 }
    490 
    491 void
    492 sched_cpuattach(struct cpu_info *ci)
    493 {
    494 	runqueue_t *rq;
    495 
    496 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    497 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    498 	runqueue_init(rq);
    499 	ci->ci_schedstate.spc_sched_info = rq;
    500 }
    501 
    502 void
    503 sched_setup()
    504 {
    505 
    506 	rrticks = hz / 10;
    507 }
    508 
    509 void
    510 sched_setrunnable(struct lwp *l)
    511 {
    512 
    513  	if (l->l_slptime > 1)
    514  		updatepri(l);
    515 }
    516 
    517 bool
    518 sched_curcpu_runnable_p(void)
    519 {
    520 	runqueue_t *rq = curcpu()->ci_schedstate.spc_sched_info;
    521 
    522 	return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
    523 }
    524 
    525 void
    526 sched_nice(struct proc *chgp, int n)
    527 {
    528 
    529 	chgp->p_nice = n;
    530 	(void)resetprocpriority(chgp);
    531 }
    532 
    533 /*
    534  * Compute the priority of a process when running in user mode.
    535  * Arrange to reschedule if the resulting priority is better
    536  * than that of the current process.
    537  */
    538 static void
    539 resetpriority(struct lwp *l)
    540 {
    541 	unsigned int newpriority;
    542 	struct proc *p = l->l_proc;
    543 
    544 	/* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
    545 	KASSERT(lwp_locked(l, NULL));
    546 
    547 	if ((l->l_flag & LW_SYSTEM) != 0)
    548 		return;
    549 
    550 	newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
    551 	    NICE_WEIGHT * (p->p_nice - NZERO);
    552 	newpriority = max(newpriority, 0);
    553 	lwp_changepri(l, newpriority);
    554 }
    555 
    556 /*
    557  * Recompute priority for all LWPs in a process.
    558  */
    559 static void
    560 resetprocpriority(struct proc *p)
    561 {
    562 	struct lwp *l;
    563 
    564 	KASSERT(mutex_owned(&p->p_stmutex));
    565 
    566 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    567 		lwp_lock(l);
    568 		resetpriority(l);
    569 		lwp_unlock(l);
    570 	}
    571 }
    572 
    573 /*
    574  * We adjust the priority of the current process.  The priority of a process
    575  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    576  * is increased here.  The formula for computing priorities (in kern_synch.c)
    577  * will compute a different value each time p_estcpu increases. This can
    578  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    579  * queue will not change.  The CPU usage estimator ramps up quite quickly
    580  * when the process is running (linearly), and decays away exponentially, at
    581  * a rate which is proportionally slower when the system is busy.  The basic
    582  * principle is that the system will 90% forget that the process used a lot
    583  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    584  * processes which haven't run much recently, and to round-robin among other
    585  * processes.
    586  */
    587 
    588 void
    589 sched_schedclock(struct lwp *l)
    590 {
    591 	struct proc *p = l->l_proc;
    592 
    593 	KASSERT(!CURCPU_IDLE_P());
    594 	mutex_spin_enter(&p->p_stmutex);
    595 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    596 	lwp_lock(l);
    597 	resetpriority(l);
    598 	mutex_spin_exit(&p->p_stmutex);
    599 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
    600 		l->l_priority = l->l_usrpri;
    601 	lwp_unlock(l);
    602 }
    603 
    604 /*
    605  * sched_proc_fork:
    606  *
    607  *	Inherit the parent's scheduler history.
    608  */
    609 void
    610 sched_proc_fork(struct proc *parent, struct proc *child)
    611 {
    612 
    613 	KASSERT(mutex_owned(&parent->p_smutex));
    614 
    615 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    616 	child->p_forktime = sched_pstats_ticks;
    617 }
    618 
    619 /*
    620  * sched_proc_exit:
    621  *
    622  *	Chargeback parents for the sins of their children.
    623  */
    624 void
    625 sched_proc_exit(struct proc *parent, struct proc *child)
    626 {
    627 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    628 	fixpt_t estcpu;
    629 
    630 	/* XXX Only if parent != init?? */
    631 
    632 	mutex_spin_enter(&parent->p_stmutex);
    633 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    634 	    sched_pstats_ticks - child->p_forktime);
    635 	if (child->p_estcpu > estcpu)
    636 		parent->p_estcpu =
    637 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    638 	mutex_spin_exit(&parent->p_stmutex);
    639 }
    640 
    641 void
    642 sched_enqueue(struct lwp *l, bool ctxswitch)
    643 {
    644 
    645 	if ((l->l_flag & LW_BOUND) != 0)
    646 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    647 	else
    648 		runqueue_enqueue(&global_queue, l);
    649 }
    650 
    651 /*
    652  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    653  * drop of the effective priority level from kernel to user needs to be
    654  * moved here from userret().  The assignment in userret() is currently
    655  * done unlocked.
    656  */
    657 void
    658 sched_dequeue(struct lwp *l)
    659 {
    660 
    661 	if ((l->l_flag & LW_BOUND) != 0)
    662 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    663 	else
    664 		runqueue_dequeue(&global_queue, l);
    665 }
    666 
    667 struct lwp *
    668 sched_nextlwp(void)
    669 {
    670 	lwp_t *l1, *l2;
    671 
    672 	/* For now, just pick the highest priority LWP. */
    673 	l1 = runqueue_nextlwp(curcpu()->ci_schedstate.spc_sched_info);
    674 	l2 = runqueue_nextlwp(&global_queue);
    675 
    676 	if (l1 == NULL)
    677 		return l2;
    678 	if (l2 == NULL)
    679 		return l1;
    680 	if (lwp_eprio(l2) > lwp_eprio(l1))
    681 		return l2;
    682 	else
    683 		return l1;
    684 }
    685 
    686 /* Dummy */
    687 void
    688 sched_lwp_fork(struct lwp *l)
    689 {
    690 
    691 }
    692 
    693 void
    694 sched_lwp_exit(struct lwp *l)
    695 {
    696 
    697 }
    698 
    699 /* SysCtl */
    700 
    701 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    702 {
    703 	const struct sysctlnode *node = NULL;
    704 
    705 	sysctl_createv(clog, 0, NULL, NULL,
    706 		CTLFLAG_PERMANENT,
    707 		CTLTYPE_NODE, "kern", NULL,
    708 		NULL, 0, NULL, 0,
    709 		CTL_KERN, CTL_EOL);
    710 	sysctl_createv(clog, 0, NULL, &node,
    711 		CTLFLAG_PERMANENT,
    712 		CTLTYPE_NODE, "sched",
    713 		SYSCTL_DESCR("Scheduler options"),
    714 		NULL, 0, NULL, 0,
    715 		CTL_KERN, CTL_CREATE, CTL_EOL);
    716 
    717 	if (node != NULL) {
    718 		sysctl_createv(clog, 0, &node, NULL,
    719 			CTLFLAG_PERMANENT,
    720 			CTLTYPE_STRING, "name", NULL,
    721 			NULL, 0, __UNCONST("4.4BSD"), 0,
    722 			CTL_CREATE, CTL_EOL);
    723 	}
    724 }
    725 
    726 #if defined(DDB)
    727 void
    728 sched_print_runqueue(void (*pr)(const char *, ...))
    729 {
    730 
    731 	runqueue_print(&global_queue, pr);
    732 }
    733 #endif /* defined(DDB) */
    734