Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.6.5
      1 /*	$NetBSD: sched_4bsd.c,v 1.1.6.5 2007/07/14 22:09:48 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.5 2007/07/14 22:09:48 ad Exp $");
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_perfctrs.h"
     83 
     84 #define	__MUTEX_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/cpu.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/resourcevar.h>
     94 #include <sys/sched.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/kauth.h>
     97 #include <sys/lockdebug.h>
     98 #include <sys/kmem.h>
     99 #include <sys/intr.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 /*
    104  * Run queues.
    105  *
    106  * We maintain a bitmask of non-empty queues in order speed up finding
    107  * the first runnable process.
    108  */
    109 
    110 #define	PPQ		4			/* priorities per queue */
    111 #define	RUNQUE_NQS	(PRI_COUNT / PPQ)	/* number of runqueues */
    112 
    113 typedef struct subqueue {
    114 	TAILQ_HEAD(, lwp) sq_queue;
    115 } subqueue_t;
    116 
    117 typedef struct runqueue {
    118 	subqueue_t	rq_subqueues[RUNQUE_NQS];	/* run queues */
    119 	uint64_t	rq_bitmap;	/* bitmap of non-empty queues */
    120 } runqueue_t;
    121 
    122 static runqueue_t global_queue;
    123 
    124 static void updatepri(struct lwp *);
    125 static void resetpriority(struct lwp *);
    126 static void resetprocpriority(struct proc *);
    127 
    128 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    129 
    130 /* The global scheduler state */
    131 kmutex_t sched_mutex;
    132 
    133 /* Number of hardclock ticks per sched_tick() */
    134 int rrticks;
    135 
    136 const int schedppq = PPQ;
    137 
    138 /*
    139  * Force switch among equal priority processes every 100ms.
    140  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    141  */
    142 /* ARGSUSED */
    143 void
    144 sched_tick(struct cpu_info *ci)
    145 {
    146 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    147 
    148 	spc->spc_ticks = rrticks;
    149 
    150 	if (!CURCPU_IDLE_P()) {
    151 		if (spc->spc_flags & SPCF_SEENRR) {
    152 			/*
    153 			 * The process has already been through a roundrobin
    154 			 * without switching and may be hogging the CPU.
    155 			 * Indicate that the process should yield.
    156 			 */
    157 			spc->spc_flags |= SPCF_SHOULDYIELD;
    158 		} else
    159 			spc->spc_flags |= SPCF_SEENRR;
    160 	}
    161 	cpu_need_resched(curcpu(), 0);
    162 }
    163 
    164 #define	NICE_WEIGHT 	1			/* priorities per nice level */
    165 
    166 #define	ESTCPU_SHIFT	11
    167 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    168 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    169 
    170 /*
    171  * Constants for digital decay and forget:
    172  *	90% of (p_estcpu) usage in 5 * loadav time
    173  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    174  *          Note that, as ps(1) mentions, this can let percentages
    175  *          total over 100% (I've seen 137.9% for 3 processes).
    176  *
    177  * Note that hardclock updates p_estcpu and p_cpticks independently.
    178  *
    179  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    180  * That is, the system wants to compute a value of decay such
    181  * that the following for loop:
    182  * 	for (i = 0; i < (5 * loadavg); i++)
    183  * 		p_estcpu *= decay;
    184  * will compute
    185  * 	p_estcpu *= 0.1;
    186  * for all values of loadavg:
    187  *
    188  * Mathematically this loop can be expressed by saying:
    189  * 	decay ** (5 * loadavg) ~= .1
    190  *
    191  * The system computes decay as:
    192  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    193  *
    194  * We wish to prove that the system's computation of decay
    195  * will always fulfill the equation:
    196  * 	decay ** (5 * loadavg) ~= .1
    197  *
    198  * If we compute b as:
    199  * 	b = 2 * loadavg
    200  * then
    201  * 	decay = b / (b + 1)
    202  *
    203  * We now need to prove two things:
    204  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    205  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    206  *
    207  * Facts:
    208  *         For x close to zero, exp(x) =~ 1 + x, since
    209  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    210  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    211  *         For x close to zero, ln(1+x) =~ x, since
    212  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    213  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    214  *         ln(.1) =~ -2.30
    215  *
    216  * Proof of (1):
    217  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    218  *	solving for factor,
    219  *      ln(factor) =~ (-2.30/5*loadav), or
    220  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    221  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    222  *
    223  * Proof of (2):
    224  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    225  *	solving for power,
    226  *      power*ln(b/(b+1)) =~ -2.30, or
    227  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    228  *
    229  * Actual power values for the implemented algorithm are as follows:
    230  *      loadav: 1       2       3       4
    231  *      power:  5.68    10.32   14.94   19.55
    232  */
    233 
    234 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    235 #define	loadfactor(loadav)	(2 * (loadav))
    236 
    237 static fixpt_t
    238 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    239 {
    240 
    241 	if (estcpu == 0) {
    242 		return 0;
    243 	}
    244 
    245 #if !defined(_LP64)
    246 	/* avoid 64bit arithmetics. */
    247 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    248 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    249 		return estcpu * loadfac / (loadfac + FSCALE);
    250 	}
    251 #endif /* !defined(_LP64) */
    252 
    253 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    254 }
    255 
    256 /*
    257  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    258  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    259  * less than (1 << ESTCPU_SHIFT).
    260  *
    261  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    262  */
    263 static fixpt_t
    264 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    265 {
    266 
    267 	if ((n << FSHIFT) >= 7 * loadfac) {
    268 		return 0;
    269 	}
    270 
    271 	while (estcpu != 0 && n > 1) {
    272 		estcpu = decay_cpu(loadfac, estcpu);
    273 		n--;
    274 	}
    275 
    276 	return estcpu;
    277 }
    278 
    279 /*
    280  * sched_pstats_hook:
    281  *
    282  * Periodically called from sched_pstats(); used to recalculate priorities.
    283  */
    284 void
    285 sched_pstats_hook(struct proc *p, int minslp)
    286 {
    287 	struct lwp *l;
    288 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    289 
    290 	/*
    291 	 * If the process has slept the entire second,
    292 	 * stop recalculating its priority until it wakes up.
    293 	 */
    294 	if (minslp <= 1) {
    295 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    296 
    297 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    298 			if ((l->l_flag & LW_IDLE) != 0)
    299 				continue;
    300 			lwp_lock(l);
    301 			if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
    302 				resetpriority(l);
    303 			lwp_unlock(l);
    304 		}
    305 	}
    306 }
    307 
    308 /*
    309  * Recalculate the priority of a process after it has slept for a while.
    310  */
    311 static void
    312 updatepri(struct lwp *l)
    313 {
    314 	struct proc *p = l->l_proc;
    315 	fixpt_t loadfac;
    316 
    317 	KASSERT(lwp_locked(l, NULL));
    318 	KASSERT(l->l_slptime > 1);
    319 
    320 	loadfac = loadfactor(averunnable.ldavg[0]);
    321 
    322 	l->l_slptime--; /* the first time was done in sched_pstats */
    323 	/* XXX NJWLWP */
    324 	/* XXXSMP occasionally unlocked, should be per-LWP */
    325 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    326 	resetpriority(l);
    327 }
    328 
    329 /*
    330  * On some architectures, it's faster to use a MSB ordering for the priorites
    331  * than the traditional LSB ordering.
    332  */
    333 #define	RQMASK(n)	(1ULL << (n))
    334 #define WHICHQ(p)	(RUNQUE_NQS - 1 - ((p) / PPQ))
    335 
    336 /*
    337  * The primitives that manipulate the run queues.  whichqs tells which of
    338  * the queues have processes in them.  sched_enqueue() puts processes into
    339  * queues, sched_dequeue() removes them from queues.
    340  */
    341 #ifdef RQDEBUG
    342 static void
    343 runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    344 {
    345 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    346 	const uint32_t bitmap = rq->rq_bitmap;
    347 	struct lwp *l2;
    348 	int found = 0;
    349 	int die = 0;
    350 	int empty = 1;
    351 
    352 	TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
    353 		if (l2->l_stat != LSRUN) {
    354 			printf("runqueue_check[%d]: lwp %p state (%d) "
    355 			    " != LSRUN\n", whichq, l2, l2->l_stat);
    356 		}
    357 		if (l2 == l)
    358 			found = 1;
    359 		empty = 0;
    360 	}
    361 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    362 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    363 		    whichq, rq);
    364 		die = 1;
    365 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    366 		printf("runqueue_check[%d]: bit clear for non-empty "
    367 		    "run-queue %p\n", whichq, rq);
    368 		die = 1;
    369 	}
    370 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    371 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    372 		    whichq, l);
    373 		die = 1;
    374 	}
    375 	if (l != NULL && empty) {
    376 		printf("runqueue_check[%d]: empty run-queue %p with "
    377 		    "active lwp %p\n", whichq, rq, l);
    378 		die = 1;
    379 	}
    380 	if (l != NULL && !found) {
    381 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    382 		    whichq, l, rq);
    383 		die = 1;
    384 	}
    385 	if (die)
    386 		panic("runqueue_check: inconsistency found");
    387 }
    388 #else /* RQDEBUG */
    389 #define	runqueue_check(a, b, c)	/* nothing */
    390 #endif /* RQDEBUG */
    391 
    392 static void
    393 runqueue_init(runqueue_t *rq)
    394 {
    395 	int i;
    396 
    397 	for (i = 0; i < RUNQUE_NQS; i++)
    398 		TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
    399 }
    400 
    401 static void
    402 runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    403 {
    404 	subqueue_t *sq;
    405 	const int whichq = WHICHQ(lwp_eprio(l));
    406 	const uint64_t rqmask = RQMASK(whichq);
    407 
    408 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    409 
    410 	runqueue_check(rq, whichq, NULL);
    411 	rq->rq_bitmap |= rqmask;
    412 	sq = &rq->rq_subqueues[whichq];
    413 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
    414 	runqueue_check(rq, whichq, l);
    415 }
    416 
    417 static void
    418 runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    419 {
    420 	subqueue_t *sq;
    421 	const int whichq = WHICHQ(lwp_eprio(l));
    422 	const uint64_t rqmask = RQMASK(whichq);
    423 
    424 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    425 
    426 	runqueue_check(rq, whichq, l);
    427 	KASSERT((rq->rq_bitmap & rqmask) != 0);
    428 	sq = &rq->rq_subqueues[whichq];
    429 	TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
    430 	if (TAILQ_EMPTY(&sq->sq_queue))
    431 		rq->rq_bitmap &= ~rqmask;
    432 	runqueue_check(rq, whichq, NULL);
    433 }
    434 
    435 static struct lwp *
    436 runqueue_nextlwp(runqueue_t *rq)
    437 {
    438 	const uint64_t bitmap = rq->rq_bitmap;
    439 	int whichq;
    440 
    441 	if (bitmap == 0) {
    442 		return NULL;
    443 	}
    444 	whichq = ffs((uint32_t)bitmap) - 1;
    445 	if (whichq != -1)
    446 		return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
    447 	whichq = ffs((uint32_t)(bitmap >> 32)) - 1;
    448 	return TAILQ_FIRST(&rq->rq_subqueues[whichq + 32].sq_queue);
    449 }
    450 
    451 #if defined(DDB)
    452 static void
    453 runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    454 {
    455 	const uint64_t bitmap = rq->rq_bitmap;
    456 	struct lwp *l;
    457 	int i, first;
    458 
    459 	for (i = 0; i < RUNQUE_NQS; i++) {
    460 		const subqueue_t *sq;
    461 		first = 1;
    462 		sq = &rq->rq_subqueues[i];
    463 		TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
    464 			if (first) {
    465 				(*pr)("%c%d",
    466 				    (bitmap & RQMASK(i)) ? ' ' : '!', i);
    467 				first = 0;
    468 			}
    469 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    470 			    l->l_proc->p_pid,
    471 			    l->l_lid, l->l_proc->p_comm,
    472 			    (int)l->l_priority, (int)l->l_usrpri);
    473 		}
    474 	}
    475 }
    476 #endif /* defined(DDB) */
    477 
    478 /*
    479  * Initialize the (doubly-linked) run queues
    480  * to be empty.
    481  */
    482 void
    483 sched_rqinit()
    484 {
    485 
    486 	runqueue_init(&global_queue);
    487 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    488 	/* Initialize the lock pointer for lwp0 */
    489 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    490 }
    491 
    492 void
    493 sched_cpuattach(struct cpu_info *ci)
    494 {
    495 	runqueue_t *rq;
    496 
    497 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    498 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    499 	runqueue_init(rq);
    500 	ci->ci_schedstate.spc_sched_info = rq;
    501 }
    502 
    503 void
    504 sched_setup()
    505 {
    506 
    507 	rrticks = hz / 10;
    508 }
    509 
    510 void
    511 sched_setrunnable(struct lwp *l)
    512 {
    513 
    514  	if (l->l_slptime > 1)
    515  		updatepri(l);
    516 }
    517 
    518 bool
    519 sched_curcpu_runnable_p(void)
    520 {
    521 	runqueue_t *rq = curcpu()->ci_schedstate.spc_sched_info;
    522 
    523 	return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
    524 }
    525 
    526 void
    527 sched_nice(struct proc *chgp, int n)
    528 {
    529 
    530 	chgp->p_nice = n;
    531 	(void)resetprocpriority(chgp);
    532 }
    533 
    534 /*
    535  * Compute the priority of a process when running in user mode.
    536  * Arrange to reschedule if the resulting priority is better
    537  * than that of the current process.
    538  */
    539 static void
    540 resetpriority(struct lwp *l)
    541 {
    542 	unsigned int newpriority;
    543 	struct proc *p = l->l_proc;
    544 
    545 	/* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
    546 	KASSERT(lwp_locked(l, NULL));
    547 
    548 	if ((l->l_flag & LW_SYSTEM) != 0)
    549 		return;
    550 
    551 	newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
    552 	    NICE_WEIGHT * (p->p_nice - NZERO);
    553 	newpriority = max(newpriority, 0);
    554 	lwp_changepri(l, newpriority);
    555 }
    556 
    557 /*
    558  * Recompute priority for all LWPs in a process.
    559  */
    560 static void
    561 resetprocpriority(struct proc *p)
    562 {
    563 	struct lwp *l;
    564 
    565 	KASSERT(mutex_owned(&p->p_stmutex));
    566 
    567 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    568 		lwp_lock(l);
    569 		resetpriority(l);
    570 		lwp_unlock(l);
    571 	}
    572 }
    573 
    574 /*
    575  * We adjust the priority of the current process.  The priority of a process
    576  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    577  * is increased here.  The formula for computing priorities (in kern_synch.c)
    578  * will compute a different value each time p_estcpu increases. This can
    579  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    580  * queue will not change.  The CPU usage estimator ramps up quite quickly
    581  * when the process is running (linearly), and decays away exponentially, at
    582  * a rate which is proportionally slower when the system is busy.  The basic
    583  * principle is that the system will 90% forget that the process used a lot
    584  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    585  * processes which haven't run much recently, and to round-robin among other
    586  * processes.
    587  */
    588 
    589 void
    590 sched_schedclock(struct lwp *l)
    591 {
    592 	struct proc *p = l->l_proc;
    593 
    594 	KASSERT(!CURCPU_IDLE_P());
    595 	mutex_spin_enter(&p->p_stmutex);
    596 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    597 	lwp_lock(l);
    598 	resetpriority(l);
    599 	mutex_spin_exit(&p->p_stmutex);
    600 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
    601 		l->l_priority = l->l_usrpri;
    602 	lwp_unlock(l);
    603 }
    604 
    605 /*
    606  * sched_proc_fork:
    607  *
    608  *	Inherit the parent's scheduler history.
    609  */
    610 void
    611 sched_proc_fork(struct proc *parent, struct proc *child)
    612 {
    613 
    614 	KASSERT(mutex_owned(&parent->p_smutex));
    615 
    616 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    617 	child->p_forktime = sched_pstats_ticks;
    618 }
    619 
    620 /*
    621  * sched_proc_exit:
    622  *
    623  *	Chargeback parents for the sins of their children.
    624  */
    625 void
    626 sched_proc_exit(struct proc *parent, struct proc *child)
    627 {
    628 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    629 	fixpt_t estcpu;
    630 
    631 	/* XXX Only if parent != init?? */
    632 
    633 	mutex_spin_enter(&parent->p_stmutex);
    634 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    635 	    sched_pstats_ticks - child->p_forktime);
    636 	if (child->p_estcpu > estcpu)
    637 		parent->p_estcpu =
    638 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    639 	mutex_spin_exit(&parent->p_stmutex);
    640 }
    641 
    642 void
    643 sched_enqueue(struct lwp *l, bool ctxswitch)
    644 {
    645 
    646 	if ((l->l_flag & LW_BOUND) != 0)
    647 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    648 	else
    649 		runqueue_enqueue(&global_queue, l);
    650 }
    651 
    652 /*
    653  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    654  * drop of the effective priority level from kernel to user needs to be
    655  * moved here from userret().  The assignment in userret() is currently
    656  * done unlocked.
    657  */
    658 void
    659 sched_dequeue(struct lwp *l)
    660 {
    661 
    662 	if ((l->l_flag & LW_BOUND) != 0)
    663 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    664 	else
    665 		runqueue_dequeue(&global_queue, l);
    666 }
    667 
    668 struct lwp *
    669 sched_nextlwp(void)
    670 {
    671 	lwp_t *l1, *l2;
    672 
    673 	/* For now, just pick the highest priority LWP. */
    674 	l1 = runqueue_nextlwp(curcpu()->ci_schedstate.spc_sched_info);
    675 	l2 = runqueue_nextlwp(&global_queue);
    676 
    677 	if (l1 == NULL)
    678 		return l2;
    679 	if (l2 == NULL)
    680 		return l1;
    681 	if (lwp_eprio(l2) > lwp_eprio(l1))
    682 		return l2;
    683 	else
    684 		return l1;
    685 }
    686 
    687 void
    688 sched_lwp_fork(struct lwp *l)
    689 {
    690 
    691 }
    692 
    693 void
    694 sched_lwp_exit(struct lwp *l)
    695 {
    696 
    697 }
    698 
    699 /*
    700  * sysctl setup.  XXX This should be split with kern_synch.c.
    701  */
    702 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    703 {
    704 	const struct sysctlnode *node = NULL;
    705 
    706 	sysctl_createv(clog, 0, NULL, NULL,
    707 		CTLFLAG_PERMANENT,
    708 		CTLTYPE_NODE, "kern", NULL,
    709 		NULL, 0, NULL, 0,
    710 		CTL_KERN, CTL_EOL);
    711 	sysctl_createv(clog, 0, NULL, &node,
    712 		CTLFLAG_PERMANENT,
    713 		CTLTYPE_NODE, "sched",
    714 		SYSCTL_DESCR("Scheduler options"),
    715 		NULL, 0, NULL, 0,
    716 		CTL_KERN, CTL_CREATE, CTL_EOL);
    717 
    718 	KASSERT(node != NULL);
    719 
    720 	sysctl_createv(clog, 0, &node, NULL,
    721 		CTLFLAG_PERMANENT,
    722 		CTLTYPE_STRING, "name", NULL,
    723 		NULL, 0, __UNCONST("4.4BSD"), 0,
    724 		CTL_CREATE, CTL_EOL);
    725 	sysctl_createv(clog, 0, &node, NULL,
    726 		CTLFLAG_READWRITE,
    727 		CTLTYPE_INT, "timesoftints",
    728 		SYSCTL_DESCR("Track CPU time for soft interrupts"),
    729 		NULL, 0, &softint_timing, 0,
    730 		CTL_CREATE, CTL_EOL);
    731 }
    732 
    733 #if defined(DDB)
    734 void
    735 sched_print_runqueue(void (*pr)(const char *, ...))
    736 {
    737 
    738 	runqueue_print(&global_queue, pr);
    739 }
    740 #endif /* defined(DDB) */
    741