sched_4bsd.c revision 1.1.6.8 1 /* $NetBSD: sched_4bsd.c,v 1.1.6.8 2007/08/26 12:04:47 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.8 2007/08/26 12:04:47 ad Exp $");
79
80 #include "opt_ddb.h"
81 #include "opt_lockdebug.h"
82 #include "opt_perfctrs.h"
83
84 #define __MUTEX_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/cpu.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sysctl.h>
96 #include <sys/kauth.h>
97 #include <sys/lockdebug.h>
98 #include <sys/kmem.h>
99 #include <sys/intr.h>
100
101 #include <uvm/uvm_extern.h>
102
103 /*
104 * Run queues.
105 *
106 * We maintain a bitmask of non-empty queues in order speed up finding
107 * the first runnable process.
108 */
109
110 #define PPQ 4 /* priorities per queue */
111 #define RUNQUE_NQS (PRI_COUNT / PPQ) /* number of runqueues */
112
113 typedef struct subqueue {
114 TAILQ_HEAD(, lwp) sq_queue;
115 } subqueue_t;
116
117 typedef struct runqueue {
118 subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
119 uint64_t rq_bitmap; /* bitmap of non-empty queues */
120 } runqueue_t;
121
122 static runqueue_t global_queue;
123
124 static void updatepri(struct lwp *);
125 static void resetpriority(struct lwp *);
126 static void resetprocpriority(struct proc *);
127
128 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
129
130 /* The global scheduler state */
131 kmutex_t sched_mutex;
132
133 /* Number of hardclock ticks per sched_tick() */
134 int rrticks;
135
136 const int schedppq = PPQ;
137
138 /*
139 * Force switch among equal priority processes every 100ms.
140 * Called from hardclock every hz/10 == rrticks hardclock ticks.
141 *
142 * There's no need to lock anywhere in this routine, as it's
143 * CPU-local and runs at IPL_SCHED (called from clock interrupt).
144 */
145 /* ARGSUSED */
146 void
147 sched_tick(struct cpu_info *ci)
148 {
149 struct schedstate_percpu *spc = &ci->ci_schedstate;
150
151 spc->spc_ticks = rrticks;
152
153 if (!CURCPU_IDLE_P()) {
154 if (spc->spc_flags & SPCF_SEENRR) {
155 /*
156 * The process has already been through a roundrobin
157 * without switching and may be hogging the CPU.
158 * Indicate that the process should yield.
159 */
160 spc->spc_flags |= SPCF_SHOULDYIELD;
161 } else
162 spc->spc_flags |= SPCF_SEENRR;
163 }
164 cpu_need_resched(ci, 0);
165 }
166
167 #define NICE_WEIGHT 1 /* priorities per nice level */
168
169 #define ESTCPU_SHIFT 11
170 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
171 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
172
173 /*
174 * Constants for digital decay and forget:
175 * 90% of (p_estcpu) usage in 5 * loadav time
176 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
177 * Note that, as ps(1) mentions, this can let percentages
178 * total over 100% (I've seen 137.9% for 3 processes).
179 *
180 * Note that hardclock updates p_estcpu and p_cpticks independently.
181 *
182 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
183 * That is, the system wants to compute a value of decay such
184 * that the following for loop:
185 * for (i = 0; i < (5 * loadavg); i++)
186 * p_estcpu *= decay;
187 * will compute
188 * p_estcpu *= 0.1;
189 * for all values of loadavg:
190 *
191 * Mathematically this loop can be expressed by saying:
192 * decay ** (5 * loadavg) ~= .1
193 *
194 * The system computes decay as:
195 * decay = (2 * loadavg) / (2 * loadavg + 1)
196 *
197 * We wish to prove that the system's computation of decay
198 * will always fulfill the equation:
199 * decay ** (5 * loadavg) ~= .1
200 *
201 * If we compute b as:
202 * b = 2 * loadavg
203 * then
204 * decay = b / (b + 1)
205 *
206 * We now need to prove two things:
207 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
208 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
209 *
210 * Facts:
211 * For x close to zero, exp(x) =~ 1 + x, since
212 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
213 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
214 * For x close to zero, ln(1+x) =~ x, since
215 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
216 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
217 * ln(.1) =~ -2.30
218 *
219 * Proof of (1):
220 * Solve (factor)**(power) =~ .1 given power (5*loadav):
221 * solving for factor,
222 * ln(factor) =~ (-2.30/5*loadav), or
223 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
224 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
225 *
226 * Proof of (2):
227 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
228 * solving for power,
229 * power*ln(b/(b+1)) =~ -2.30, or
230 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
231 *
232 * Actual power values for the implemented algorithm are as follows:
233 * loadav: 1 2 3 4
234 * power: 5.68 10.32 14.94 19.55
235 */
236
237 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
238 #define loadfactor(loadav) (2 * (loadav))
239
240 static fixpt_t
241 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
242 {
243
244 if (estcpu == 0) {
245 return 0;
246 }
247
248 #if !defined(_LP64)
249 /* avoid 64bit arithmetics. */
250 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
251 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
252 return estcpu * loadfac / (loadfac + FSCALE);
253 }
254 #endif /* !defined(_LP64) */
255
256 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
257 }
258
259 /*
260 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
261 * sleeping for at least seven times the loadfactor will decay p_estcpu to
262 * less than (1 << ESTCPU_SHIFT).
263 *
264 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
265 */
266 static fixpt_t
267 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
268 {
269
270 if ((n << FSHIFT) >= 7 * loadfac) {
271 return 0;
272 }
273
274 while (estcpu != 0 && n > 1) {
275 estcpu = decay_cpu(loadfac, estcpu);
276 n--;
277 }
278
279 return estcpu;
280 }
281
282 /*
283 * sched_pstats_hook:
284 *
285 * Periodically called from sched_pstats(); used to recalculate priorities.
286 */
287 void
288 sched_pstats_hook(struct proc *p, int minslp)
289 {
290 struct lwp *l;
291 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
292
293 /*
294 * If the process has slept the entire second,
295 * stop recalculating its priority until it wakes up.
296 */
297 if (minslp <= 1) {
298 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
299
300 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
301 if ((l->l_flag & LW_IDLE) != 0)
302 continue;
303 lwp_lock(l);
304 if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
305 resetpriority(l);
306 lwp_unlock(l);
307 }
308 }
309 }
310
311 /*
312 * Recalculate the priority of a process after it has slept for a while.
313 */
314 static void
315 updatepri(struct lwp *l)
316 {
317 struct proc *p = l->l_proc;
318 fixpt_t loadfac;
319
320 KASSERT(lwp_locked(l, NULL));
321 KASSERT(l->l_slptime > 1);
322
323 loadfac = loadfactor(averunnable.ldavg[0]);
324
325 l->l_slptime--; /* the first time was done in sched_pstats */
326 /* XXX NJWLWP */
327 /* XXXSMP occasionally unlocked, should be per-LWP */
328 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
329 resetpriority(l);
330 }
331
332 /*
333 * On some architectures, it's faster to use a MSB ordering for the priorites
334 * than the traditional LSB ordering.
335 */
336 #define RQMASK(n) (1ULL << (n))
337 #define WHICHQ(p) (RUNQUE_NQS - 1 - ((p) / PPQ))
338
339 /*
340 * The primitives that manipulate the run queues. whichqs tells which of
341 * the queues have processes in them. sched_enqueue() puts processes into
342 * queues, sched_dequeue() removes them from queues.
343 */
344 #ifdef RQDEBUG
345 static void
346 runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
347 {
348 const subqueue_t * const sq = &rq->rq_subqueues[whichq];
349 const uint32_t bitmap = rq->rq_bitmap;
350 struct lwp *l2;
351 int found = 0;
352 int die = 0;
353 int empty = 1;
354
355 TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
356 if (l2->l_stat != LSRUN) {
357 printf("runqueue_check[%d]: lwp %p state (%d) "
358 " != LSRUN\n", whichq, l2, l2->l_stat);
359 }
360 if (l2 == l)
361 found = 1;
362 empty = 0;
363 }
364 if (empty && (bitmap & RQMASK(whichq)) != 0) {
365 printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
366 whichq, rq);
367 die = 1;
368 } else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
369 printf("runqueue_check[%d]: bit clear for non-empty "
370 "run-queue %p\n", whichq, rq);
371 die = 1;
372 }
373 if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
374 printf("runqueue_check[%d]: bit clear for active lwp %p\n",
375 whichq, l);
376 die = 1;
377 }
378 if (l != NULL && empty) {
379 printf("runqueue_check[%d]: empty run-queue %p with "
380 "active lwp %p\n", whichq, rq, l);
381 die = 1;
382 }
383 if (l != NULL && !found) {
384 printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
385 whichq, l, rq);
386 die = 1;
387 }
388 if (die)
389 panic("runqueue_check: inconsistency found");
390 }
391 #else /* RQDEBUG */
392 #define runqueue_check(a, b, c) /* nothing */
393 #endif /* RQDEBUG */
394
395 static void
396 runqueue_init(runqueue_t *rq)
397 {
398 int i;
399
400 for (i = 0; i < RUNQUE_NQS; i++)
401 TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
402 }
403
404 static void
405 runqueue_enqueue(runqueue_t *rq, struct lwp *l)
406 {
407 subqueue_t *sq;
408 const int whichq = WHICHQ(lwp_eprio(l));
409 const uint64_t rqmask = RQMASK(whichq);
410
411 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
412
413 runqueue_check(rq, whichq, NULL);
414 rq->rq_bitmap |= rqmask;
415 sq = &rq->rq_subqueues[whichq];
416 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
417 runqueue_check(rq, whichq, l);
418 }
419
420 static void
421 runqueue_dequeue(runqueue_t *rq, struct lwp *l)
422 {
423 subqueue_t *sq;
424 const int whichq = WHICHQ(lwp_eprio(l));
425 const uint64_t rqmask = RQMASK(whichq);
426
427 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
428
429 runqueue_check(rq, whichq, l);
430 KASSERT((rq->rq_bitmap & rqmask) != 0);
431 sq = &rq->rq_subqueues[whichq];
432 TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
433 if (TAILQ_EMPTY(&sq->sq_queue))
434 rq->rq_bitmap &= ~rqmask;
435 runqueue_check(rq, whichq, NULL);
436 }
437
438 static struct lwp *
439 runqueue_nextlwp(runqueue_t *rq)
440 {
441 const uint64_t bitmap = rq->rq_bitmap;
442 int whichq;
443
444 if (bitmap == 0) {
445 return NULL;
446 }
447 whichq = ffs((uint32_t)bitmap) - 1;
448 if (whichq != -1)
449 return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
450 whichq = ffs((uint32_t)(bitmap >> 32)) - 1;
451 return TAILQ_FIRST(&rq->rq_subqueues[whichq + 32].sq_queue);
452 }
453
454 #if defined(DDB)
455 static void
456 runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
457 {
458 const uint64_t bitmap = rq->rq_bitmap;
459 struct lwp *l;
460 int i, first;
461
462 for (i = 0; i < RUNQUE_NQS; i++) {
463 const subqueue_t *sq;
464 first = 1;
465 sq = &rq->rq_subqueues[i];
466 TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
467 if (first) {
468 (*pr)("%c%d",
469 (bitmap & RQMASK(i)) ? ' ' : '!', i);
470 first = 0;
471 }
472 (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
473 l->l_proc->p_pid,
474 l->l_lid, l->l_proc->p_comm,
475 (int)l->l_priority, (int)l->l_usrpri);
476 }
477 }
478 }
479 #endif /* defined(DDB) */
480
481 /*
482 * Initialize the (doubly-linked) run queues
483 * to be empty.
484 */
485 void
486 sched_rqinit()
487 {
488
489 runqueue_init(&global_queue);
490 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
491 /* Initialize the lock pointer for lwp0 */
492 lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
493 }
494
495 void
496 sched_cpuattach(struct cpu_info *ci)
497 {
498 runqueue_t *rq;
499
500 ci->ci_schedstate.spc_mutex = &sched_mutex;
501 rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
502 runqueue_init(rq);
503 ci->ci_schedstate.spc_sched_info = rq;
504 }
505
506 void
507 sched_setup()
508 {
509
510 rrticks = hz / 10;
511 }
512
513 void
514 sched_setrunnable(struct lwp *l)
515 {
516
517 if (l->l_slptime > 1)
518 updatepri(l);
519 }
520
521 bool
522 sched_curcpu_runnable_p(void)
523 {
524 struct schedstate_percpu *spc;
525 runqueue_t *rq;
526
527 spc = &curcpu()->ci_schedstate;
528 rq = spc->spc_sched_info;
529
530 if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
531 return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
532 return rq->rq_bitmap != 0;
533 }
534
535 void
536 sched_nice(struct proc *chgp, int n)
537 {
538
539 chgp->p_nice = n;
540 (void)resetprocpriority(chgp);
541 }
542
543 /*
544 * Compute the priority of a process when running in user mode.
545 * Arrange to reschedule if the resulting priority is better
546 * than that of the current process.
547 */
548 static void
549 resetpriority(struct lwp *l)
550 {
551 unsigned int newpriority;
552 struct proc *p = l->l_proc;
553
554 /* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
555 KASSERT(lwp_locked(l, NULL));
556
557 if ((l->l_flag & LW_SYSTEM) != 0)
558 return;
559
560 newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
561 NICE_WEIGHT * (p->p_nice - NZERO);
562 newpriority = max(newpriority, 0);
563 lwp_changepri(l, newpriority);
564 }
565
566 /*
567 * Recompute priority for all LWPs in a process.
568 */
569 static void
570 resetprocpriority(struct proc *p)
571 {
572 struct lwp *l;
573
574 KASSERT(mutex_owned(&p->p_stmutex));
575
576 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
577 lwp_lock(l);
578 resetpriority(l);
579 lwp_unlock(l);
580 }
581 }
582
583 /*
584 * We adjust the priority of the current process. The priority of a process
585 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
586 * is increased here. The formula for computing priorities (in kern_synch.c)
587 * will compute a different value each time p_estcpu increases. This can
588 * cause a switch, but unless the priority crosses a PPQ boundary the actual
589 * queue will not change. The CPU usage estimator ramps up quite quickly
590 * when the process is running (linearly), and decays away exponentially, at
591 * a rate which is proportionally slower when the system is busy. The basic
592 * principle is that the system will 90% forget that the process used a lot
593 * of CPU time in 5 * loadav seconds. This causes the system to favor
594 * processes which haven't run much recently, and to round-robin among other
595 * processes.
596 */
597
598 void
599 sched_schedclock(struct lwp *l)
600 {
601 struct proc *p = l->l_proc;
602
603 KASSERT(!CURCPU_IDLE_P());
604 mutex_spin_enter(&p->p_stmutex);
605 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
606 lwp_lock(l);
607 resetpriority(l);
608 mutex_spin_exit(&p->p_stmutex);
609 if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
610 l->l_priority = l->l_usrpri;
611 lwp_unlock(l);
612 }
613
614 /*
615 * sched_proc_fork:
616 *
617 * Inherit the parent's scheduler history.
618 */
619 void
620 sched_proc_fork(struct proc *parent, struct proc *child)
621 {
622
623 KASSERT(mutex_owned(&parent->p_smutex));
624
625 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
626 child->p_forktime = sched_pstats_ticks;
627 }
628
629 /*
630 * sched_proc_exit:
631 *
632 * Chargeback parents for the sins of their children.
633 */
634 void
635 sched_proc_exit(struct proc *parent, struct proc *child)
636 {
637 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
638 fixpt_t estcpu;
639
640 /* XXX Only if parent != init?? */
641
642 mutex_spin_enter(&parent->p_stmutex);
643 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
644 sched_pstats_ticks - child->p_forktime);
645 if (child->p_estcpu > estcpu)
646 parent->p_estcpu =
647 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
648 mutex_spin_exit(&parent->p_stmutex);
649 }
650
651 void
652 sched_enqueue(struct lwp *l, bool ctxswitch)
653 {
654
655 if ((l->l_flag & LW_BOUND) != 0)
656 runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
657 else
658 runqueue_enqueue(&global_queue, l);
659 }
660
661 /*
662 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
663 * drop of the effective priority level from kernel to user needs to be
664 * moved here from userret(). The assignment in userret() is currently
665 * done unlocked.
666 */
667 void
668 sched_dequeue(struct lwp *l)
669 {
670
671 if ((l->l_flag & LW_BOUND) != 0)
672 runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
673 else
674 runqueue_dequeue(&global_queue, l);
675 }
676
677 struct lwp *
678 sched_nextlwp(void)
679 {
680 struct schedstate_percpu *spc;
681 lwp_t *l1, *l2;
682
683 spc = &curcpu()->ci_schedstate;
684
685 /* For now, just pick the highest priority LWP. */
686 l1 = runqueue_nextlwp(spc->spc_sched_info);
687 if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0))
688 return l1;
689 l2 = runqueue_nextlwp(&global_queue);
690
691 if (l1 == NULL)
692 return l2;
693 if (l2 == NULL)
694 return l1;
695 if (lwp_eprio(l2) > lwp_eprio(l1))
696 return l2;
697 else
698 return l1;
699 }
700
701 void
702 sched_lwp_fork(struct lwp *l)
703 {
704
705 }
706
707 void
708 sched_lwp_exit(struct lwp *l)
709 {
710
711 }
712
713 /*
714 * sysctl setup. XXX This should be split with kern_synch.c.
715 */
716 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
717 {
718 const struct sysctlnode *node = NULL;
719
720 sysctl_createv(clog, 0, NULL, NULL,
721 CTLFLAG_PERMANENT,
722 CTLTYPE_NODE, "kern", NULL,
723 NULL, 0, NULL, 0,
724 CTL_KERN, CTL_EOL);
725 sysctl_createv(clog, 0, NULL, &node,
726 CTLFLAG_PERMANENT,
727 CTLTYPE_NODE, "sched",
728 SYSCTL_DESCR("Scheduler options"),
729 NULL, 0, NULL, 0,
730 CTL_KERN, CTL_CREATE, CTL_EOL);
731
732 KASSERT(node != NULL);
733
734 sysctl_createv(clog, 0, &node, NULL,
735 CTLFLAG_PERMANENT,
736 CTLTYPE_STRING, "name", NULL,
737 NULL, 0, __UNCONST("4.4BSD"), 0,
738 CTL_CREATE, CTL_EOL);
739 sysctl_createv(clog, 0, &node, NULL,
740 CTLFLAG_READWRITE,
741 CTLTYPE_INT, "timesoftints",
742 SYSCTL_DESCR("Track CPU time for soft interrupts"),
743 NULL, 0, &softint_timing, 0,
744 CTL_CREATE, CTL_EOL);
745 }
746
747 #if defined(DDB)
748 void
749 sched_print_runqueue(void (*pr)(const char *, ...))
750 {
751
752 runqueue_print(&global_queue, pr);
753 }
754 #endif /* defined(DDB) */
755