sched_4bsd.c revision 1.12 1 /* $NetBSD: sched_4bsd.c,v 1.12 2008/01/15 03:37:11 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.12 2008/01/15 03:37:11 rmind Exp $");
79
80 #include "opt_ddb.h"
81 #include "opt_lockdebug.h"
82 #include "opt_perfctrs.h"
83
84 #define __MUTEX_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/cpu.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sysctl.h>
96 #include <sys/kauth.h>
97 #include <sys/lockdebug.h>
98 #include <sys/kmem.h>
99 #include <sys/intr.h>
100
101 #include <uvm/uvm_extern.h>
102
103 /*
104 * Run queues.
105 *
106 * We maintain bitmasks of non-empty queues in order speed up finding
107 * the first runnable process. Since there can be (by definition) few
108 * real time LWPs in the the system, we maintain them on a linked list,
109 * sorted by priority.
110 */
111
112 #define PPB_SHIFT 5
113 #define PPB_MASK 31
114
115 #define NUM_Q (NPRI_KERNEL + NPRI_USER)
116 #define NUM_PPB (1 << PPB_SHIFT)
117 #define NUM_B (NUM_Q / NUM_PPB)
118
119 typedef struct runqueue {
120 TAILQ_HEAD(, lwp) rq_fixedpri; /* realtime, kthread */
121 u_int rq_count; /* total # jobs */
122 uint32_t rq_bitmap[NUM_B]; /* bitmap of queues */
123 TAILQ_HEAD(, lwp) rq_queue[NUM_Q]; /* user+kernel */
124 } runqueue_t;
125
126 static runqueue_t global_queue;
127
128 static void updatepri(struct lwp *);
129 static void resetpriority(struct lwp *);
130
131 fixpt_t decay_cpu(fixpt_t, fixpt_t);
132
133 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
134
135 /* The global scheduler state */
136 kmutex_t runqueue_lock;
137
138 /* Number of hardclock ticks per sched_tick() */
139 static int rrticks;
140
141 const int schedppq = 1;
142
143 /*
144 * Force switch among equal priority processes every 100ms.
145 * Called from hardclock every hz/10 == rrticks hardclock ticks.
146 *
147 * There's no need to lock anywhere in this routine, as it's
148 * CPU-local and runs at IPL_SCHED (called from clock interrupt).
149 */
150 /* ARGSUSED */
151 void
152 sched_tick(struct cpu_info *ci)
153 {
154 struct schedstate_percpu *spc = &ci->ci_schedstate;
155
156 spc->spc_ticks = rrticks;
157
158 if (CURCPU_IDLE_P())
159 return;
160
161 if (spc->spc_flags & SPCF_SEENRR) {
162 /*
163 * The process has already been through a roundrobin
164 * without switching and may be hogging the CPU.
165 * Indicate that the process should yield.
166 */
167 spc->spc_flags |= SPCF_SHOULDYIELD;
168 } else
169 spc->spc_flags |= SPCF_SEENRR;
170
171 cpu_need_resched(ci, 0);
172 }
173
174 /*
175 * Why PRIO_MAX - 2? From setpriority(2):
176 *
177 * prio is a value in the range -20 to 20. The default priority is
178 * 0; lower priorities cause more favorable scheduling. A value of
179 * 19 or 20 will schedule a process only when nothing at priority <=
180 * 0 is runnable.
181 *
182 * This gives estcpu influence over 18 priority levels, and leaves nice
183 * with 40 levels. One way to think about it is that nice has 20 levels
184 * either side of estcpu's 18.
185 */
186 #define ESTCPU_SHIFT 11
187 #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
188 #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
189 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
190
191 /*
192 * Constants for digital decay and forget:
193 * 90% of (l_estcpu) usage in 5 * loadav time
194 * 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
195 * Note that, as ps(1) mentions, this can let percentages
196 * total over 100% (I've seen 137.9% for 3 processes).
197 *
198 * Note that hardclock updates l_estcpu and l_cpticks independently.
199 *
200 * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
201 * That is, the system wants to compute a value of decay such
202 * that the following for loop:
203 * for (i = 0; i < (5 * loadavg); i++)
204 * l_estcpu *= decay;
205 * will compute
206 * l_estcpu *= 0.1;
207 * for all values of loadavg:
208 *
209 * Mathematically this loop can be expressed by saying:
210 * decay ** (5 * loadavg) ~= .1
211 *
212 * The system computes decay as:
213 * decay = (2 * loadavg) / (2 * loadavg + 1)
214 *
215 * We wish to prove that the system's computation of decay
216 * will always fulfill the equation:
217 * decay ** (5 * loadavg) ~= .1
218 *
219 * If we compute b as:
220 * b = 2 * loadavg
221 * then
222 * decay = b / (b + 1)
223 *
224 * We now need to prove two things:
225 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
226 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
227 *
228 * Facts:
229 * For x close to zero, exp(x) =~ 1 + x, since
230 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
231 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
232 * For x close to zero, ln(1+x) =~ x, since
233 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
234 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
235 * ln(.1) =~ -2.30
236 *
237 * Proof of (1):
238 * Solve (factor)**(power) =~ .1 given power (5*loadav):
239 * solving for factor,
240 * ln(factor) =~ (-2.30/5*loadav), or
241 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
242 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
243 *
244 * Proof of (2):
245 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
246 * solving for power,
247 * power*ln(b/(b+1)) =~ -2.30, or
248 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
249 *
250 * Actual power values for the implemented algorithm are as follows:
251 * loadav: 1 2 3 4
252 * power: 5.68 10.32 14.94 19.55
253 */
254
255 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
256 #define loadfactor(loadav) (2 * (loadav))
257
258 fixpt_t
259 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
260 {
261
262 if (estcpu == 0) {
263 return 0;
264 }
265
266 #if !defined(_LP64)
267 /* avoid 64bit arithmetics. */
268 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
269 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
270 return estcpu * loadfac / (loadfac + FSCALE);
271 }
272 #endif /* !defined(_LP64) */
273
274 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
275 }
276
277 /*
278 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
279 * sleeping for at least seven times the loadfactor will decay l_estcpu to
280 * less than (1 << ESTCPU_SHIFT).
281 *
282 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
283 */
284 static fixpt_t
285 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
286 {
287
288 if ((n << FSHIFT) >= 7 * loadfac) {
289 return 0;
290 }
291
292 while (estcpu != 0 && n > 1) {
293 estcpu = decay_cpu(loadfac, estcpu);
294 n--;
295 }
296
297 return estcpu;
298 }
299
300 /*
301 * sched_pstats_hook:
302 *
303 * Periodically called from sched_pstats(); used to recalculate priorities.
304 */
305 void
306 sched_pstats_hook(struct lwp *l)
307 {
308 fixpt_t loadfac;
309 int sleeptm;
310
311 /*
312 * If the LWP has slept an entire second, stop recalculating
313 * its priority until it wakes up.
314 */
315 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
316 l->l_stat == LSSUSPENDED) {
317 l->l_slptime++;
318 sleeptm = 1;
319 } else {
320 sleeptm = 0x7fffffff;
321 }
322
323 if (l->l_slptime <= sleeptm) {
324 loadfac = 2 * (averunnable.ldavg[0]);
325 l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
326 resetpriority(l);
327 }
328 }
329
330 /*
331 * Recalculate the priority of a process after it has slept for a while.
332 */
333 static void
334 updatepri(struct lwp *l)
335 {
336 fixpt_t loadfac;
337
338 KASSERT(lwp_locked(l, NULL));
339 KASSERT(l->l_slptime > 1);
340
341 loadfac = loadfactor(averunnable.ldavg[0]);
342
343 l->l_slptime--; /* the first time was done in sched_pstats */
344 l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
345 resetpriority(l);
346 }
347
348 static void
349 runqueue_init(runqueue_t *rq)
350 {
351 int i;
352
353 for (i = 0; i < NUM_Q; i++)
354 TAILQ_INIT(&rq->rq_queue[i]);
355 for (i = 0; i < NUM_B; i++)
356 rq->rq_bitmap[i] = 0;
357 TAILQ_INIT(&rq->rq_fixedpri);
358 rq->rq_count = 0;
359 }
360
361 static void
362 runqueue_enqueue(runqueue_t *rq, struct lwp *l)
363 {
364 pri_t pri;
365 lwp_t *l2;
366
367 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
368
369 pri = lwp_eprio(l);
370 rq->rq_count++;
371
372 if (pri >= PRI_KTHREAD) {
373 TAILQ_FOREACH(l2, &rq->rq_fixedpri, l_runq) {
374 if (lwp_eprio(l2) < pri) {
375 TAILQ_INSERT_BEFORE(l2, l, l_runq);
376 return;
377 }
378 }
379 TAILQ_INSERT_TAIL(&rq->rq_fixedpri, l, l_runq);
380 return;
381 }
382
383 rq->rq_bitmap[pri >> PPB_SHIFT] |=
384 (0x80000000U >> (pri & PPB_MASK));
385 TAILQ_INSERT_TAIL(&rq->rq_queue[pri], l, l_runq);
386 }
387
388 static void
389 runqueue_dequeue(runqueue_t *rq, struct lwp *l)
390 {
391 pri_t pri;
392
393 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
394
395 pri = lwp_eprio(l);
396 rq->rq_count--;
397
398 if (pri >= PRI_KTHREAD) {
399 TAILQ_REMOVE(&rq->rq_fixedpri, l, l_runq);
400 return;
401 }
402
403 TAILQ_REMOVE(&rq->rq_queue[pri], l, l_runq);
404 if (TAILQ_EMPTY(&rq->rq_queue[pri]))
405 rq->rq_bitmap[pri >> PPB_SHIFT] ^=
406 (0x80000000U >> (pri & PPB_MASK));
407 }
408
409 #if (NUM_B != 3) || (NUM_Q != 96)
410 #error adjust runqueue_nextlwp
411 #endif
412
413 static struct lwp *
414 runqueue_nextlwp(runqueue_t *rq)
415 {
416 pri_t pri;
417
418 KASSERT(rq->rq_count != 0);
419
420 if (!TAILQ_EMPTY(&rq->rq_fixedpri))
421 return TAILQ_FIRST(&rq->rq_fixedpri);
422
423 if (rq->rq_bitmap[2] != 0)
424 pri = 96 - ffs(rq->rq_bitmap[2]);
425 else if (rq->rq_bitmap[1] != 0)
426 pri = 64 - ffs(rq->rq_bitmap[1]);
427 else
428 pri = 32 - ffs(rq->rq_bitmap[0]);
429 return TAILQ_FIRST(&rq->rq_queue[pri]);
430 }
431
432 #if defined(DDB)
433 static void
434 runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
435 {
436 CPU_INFO_ITERATOR cii;
437 struct cpu_info *ci;
438 lwp_t *l;
439 int i;
440
441 printf("PID\tLID\tPRI\tIPRI\tEPRI\tLWP\t\t NAME\n");
442
443 TAILQ_FOREACH(l, &rq->rq_fixedpri, l_runq) {
444 (*pr)("%d\t%d\%d\t%d\t%d\t%016lx %s\n",
445 l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
446 (int)l->l_inheritedprio, lwp_eprio(l),
447 (long)l, l->l_proc->p_comm);
448 }
449
450 for (i = NUM_Q - 1; i >= 0; i--) {
451 TAILQ_FOREACH(l, &rq->rq_queue[i], l_runq) {
452 (*pr)("%d\t%d\t%d\t%d\t%d\t%016lx %s\n",
453 l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
454 (int)l->l_inheritedprio, lwp_eprio(l),
455 (long)l, l->l_proc->p_comm);
456 }
457 }
458
459 printf("CPUIDX\tRESCHED\tCURPRI\tFLAGS\n");
460 for (CPU_INFO_FOREACH(cii, ci)) {
461 printf("%d\t%d\t%d\t%04x\n", (int)ci->ci_index,
462 (int)ci->ci_want_resched,
463 (int)ci->ci_schedstate.spc_curpriority,
464 (int)ci->ci_schedstate.spc_flags);
465 }
466
467 printf("NEXTLWP\n%016lx\n", (long)sched_nextlwp());
468 }
469 #endif /* defined(DDB) */
470
471 /*
472 * Initialize the (doubly-linked) run queues
473 * to be empty.
474 */
475 void
476 sched_rqinit()
477 {
478
479 runqueue_init(&global_queue);
480 mutex_init(&runqueue_lock, MUTEX_DEFAULT, IPL_SCHED);
481 /* Initialize the lock pointer for lwp0 */
482 lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
483 }
484
485 void
486 sched_cpuattach(struct cpu_info *ci)
487 {
488 runqueue_t *rq;
489
490 ci->ci_schedstate.spc_mutex = &runqueue_lock;
491 rq = kmem_zalloc(sizeof(*rq), KM_SLEEP);
492 runqueue_init(rq);
493 ci->ci_schedstate.spc_sched_info = rq;
494 }
495
496 void
497 sched_setup()
498 {
499
500 rrticks = hz / 10;
501 }
502
503 void
504 sched_setrunnable(struct lwp *l)
505 {
506
507 if (l->l_slptime > 1)
508 updatepri(l);
509 }
510
511 bool
512 sched_curcpu_runnable_p(void)
513 {
514 struct schedstate_percpu *spc;
515 struct cpu_info *ci;
516 int bits;
517
518 ci = curcpu();
519 spc = &ci->ci_schedstate;
520 #ifndef __HAVE_FAST_SOFTINTS
521 bits = ci->ci_data.cpu_softints;
522 bits |= ((runqueue_t *)spc->spc_sched_info)->rq_count;
523 #else
524 bits = ((runqueue_t *)spc->spc_sched_info)->rq_count;
525 #endif
526 if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
527 bits |= global_queue.rq_count;
528 return bits != 0;
529 }
530
531 void
532 sched_nice(struct proc *p, int n)
533 {
534 struct lwp *l;
535
536 KASSERT(mutex_owned(&p->p_smutex));
537
538 p->p_nice = n;
539 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
540 lwp_lock(l);
541 resetpriority(l);
542 lwp_unlock(l);
543 }
544 }
545
546 /*
547 * Recompute the priority of an LWP. Arrange to reschedule if
548 * the resulting priority is better than that of the current LWP.
549 */
550 static void
551 resetpriority(struct lwp *l)
552 {
553 pri_t pri;
554 struct proc *p = l->l_proc;
555
556 KASSERT(lwp_locked(l, NULL));
557
558 if (l->l_class != SCHED_OTHER)
559 return;
560
561 /* See comments above ESTCPU_SHIFT definition. */
562 pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
563 pri = imax(pri, 0);
564 if (pri != l->l_priority)
565 lwp_changepri(l, pri);
566 }
567
568 /*
569 * We adjust the priority of the current process. The priority of a process
570 * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
571 * is increased here. The formula for computing priorities (in kern_synch.c)
572 * will compute a different value each time l_estcpu increases. This can
573 * cause a switch, but unless the priority crosses a PPQ boundary the actual
574 * queue will not change. The CPU usage estimator ramps up quite quickly
575 * when the process is running (linearly), and decays away exponentially, at
576 * a rate which is proportionally slower when the system is busy. The basic
577 * principle is that the system will 90% forget that the process used a lot
578 * of CPU time in 5 * loadav seconds. This causes the system to favor
579 * processes which haven't run much recently, and to round-robin among other
580 * processes.
581 */
582
583 void
584 sched_schedclock(struct lwp *l)
585 {
586
587 if (l->l_class != SCHED_OTHER)
588 return;
589
590 KASSERT(!CURCPU_IDLE_P());
591 l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
592 lwp_lock(l);
593 resetpriority(l);
594 lwp_unlock(l);
595 }
596
597 /*
598 * sched_proc_fork:
599 *
600 * Inherit the parent's scheduler history.
601 */
602 void
603 sched_proc_fork(struct proc *parent, struct proc *child)
604 {
605 lwp_t *pl;
606
607 KASSERT(mutex_owned(&parent->p_smutex));
608
609 pl = LIST_FIRST(&parent->p_lwps);
610 child->p_estcpu_inherited = pl->l_estcpu;
611 child->p_forktime = sched_pstats_ticks;
612 }
613
614 /*
615 * sched_proc_exit:
616 *
617 * Chargeback parents for the sins of their children.
618 */
619 void
620 sched_proc_exit(struct proc *parent, struct proc *child)
621 {
622 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
623 fixpt_t estcpu;
624 lwp_t *pl, *cl;
625
626 /* XXX Only if parent != init?? */
627
628 mutex_enter(&parent->p_smutex);
629 pl = LIST_FIRST(&parent->p_lwps);
630 cl = LIST_FIRST(&child->p_lwps);
631 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
632 sched_pstats_ticks - child->p_forktime);
633 if (cl->l_estcpu > estcpu) {
634 lwp_lock(pl);
635 pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
636 lwp_unlock(pl);
637 }
638 mutex_exit(&parent->p_smutex);
639 }
640
641 void
642 sched_enqueue(struct lwp *l, bool ctxswitch)
643 {
644
645 if (__predict_false(l->l_target_cpu != NULL)) {
646 /* Global mutex is used - just change the CPU */
647 l->l_cpu = l->l_target_cpu;
648 l->l_target_cpu = NULL;
649 }
650
651 if ((l->l_flag & LW_BOUND) != 0)
652 runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
653 else
654 runqueue_enqueue(&global_queue, l);
655 }
656
657 /*
658 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
659 * drop of the effective priority level from kernel to user needs to be
660 * moved here from userret(). The assignment in userret() is currently
661 * done unlocked.
662 */
663 void
664 sched_dequeue(struct lwp *l)
665 {
666
667 if ((l->l_flag & LW_BOUND) != 0)
668 runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
669 else
670 runqueue_dequeue(&global_queue, l);
671 }
672
673 struct lwp *
674 sched_nextlwp(void)
675 {
676 struct schedstate_percpu *spc;
677 runqueue_t *rq;
678 lwp_t *l1, *l2;
679
680 spc = &curcpu()->ci_schedstate;
681
682 /* For now, just pick the highest priority LWP. */
683 rq = spc->spc_sched_info;
684 l1 = NULL;
685 if (rq->rq_count != 0)
686 l1 = runqueue_nextlwp(rq);
687
688 rq = &global_queue;
689 if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0) ||
690 rq->rq_count == 0)
691 return l1;
692 l2 = runqueue_nextlwp(rq);
693
694 if (l1 == NULL)
695 return l2;
696 if (l2 == NULL)
697 return l1;
698 if (lwp_eprio(l2) > lwp_eprio(l1))
699 return l2;
700 else
701 return l1;
702 }
703
704 struct cpu_info *
705 sched_takecpu(struct lwp *l)
706 {
707
708 return l->l_cpu;
709 }
710
711 void
712 sched_wakeup(struct lwp *l)
713 {
714
715 }
716
717 void
718 sched_slept(struct lwp *l)
719 {
720
721 }
722
723 void
724 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
725 {
726
727 l2->l_estcpu = l1->l_estcpu;
728 }
729
730 void
731 sched_lwp_exit(struct lwp *l)
732 {
733
734 }
735
736 void
737 sched_lwp_collect(struct lwp *t)
738 {
739 lwp_t *l;
740
741 /* Absorb estcpu value of collected LWP. */
742 l = curlwp;
743 lwp_lock(l);
744 l->l_estcpu += t->l_estcpu;
745 lwp_unlock(l);
746 }
747
748 /*
749 * Sysctl nodes and initialization.
750 */
751
752 static int
753 sysctl_sched_rtts(SYSCTLFN_ARGS)
754 {
755 struct sysctlnode node;
756 int rttsms = hztoms(rrticks);
757
758 node = *rnode;
759 node.sysctl_data = &rttsms;
760 return sysctl_lookup(SYSCTLFN_CALL(&node));
761 }
762
763 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
764 {
765 const struct sysctlnode *node = NULL;
766
767 sysctl_createv(clog, 0, NULL, NULL,
768 CTLFLAG_PERMANENT,
769 CTLTYPE_NODE, "kern", NULL,
770 NULL, 0, NULL, 0,
771 CTL_KERN, CTL_EOL);
772 sysctl_createv(clog, 0, NULL, &node,
773 CTLFLAG_PERMANENT,
774 CTLTYPE_NODE, "sched",
775 SYSCTL_DESCR("Scheduler options"),
776 NULL, 0, NULL, 0,
777 CTL_KERN, CTL_CREATE, CTL_EOL);
778
779 KASSERT(node != NULL);
780
781 sysctl_createv(clog, 0, &node, NULL,
782 CTLFLAG_PERMANENT,
783 CTLTYPE_STRING, "name", NULL,
784 NULL, 0, __UNCONST("4.4BSD"), 0,
785 CTL_CREATE, CTL_EOL);
786 sysctl_createv(clog, 0, &node, NULL,
787 CTLFLAG_PERMANENT,
788 CTLTYPE_INT, "rtts",
789 SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
790 sysctl_sched_rtts, 0, NULL, 0,
791 CTL_CREATE, CTL_EOL);
792 sysctl_createv(clog, 0, &node, NULL,
793 CTLFLAG_READWRITE,
794 CTLTYPE_INT, "timesoftints",
795 SYSCTL_DESCR("Track CPU time for soft interrupts"),
796 NULL, 0, &softint_timing, 0,
797 CTL_CREATE, CTL_EOL);
798 }
799
800 #if defined(DDB)
801 void
802 sched_print_runqueue(void (*pr)(const char *, ...))
803 {
804
805 runqueue_print(&global_queue, pr);
806 }
807 #endif /* defined(DDB) */
808