Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.17
      1 /*	$NetBSD: sched_4bsd.c,v 1.17 2008/04/14 09:39:31 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.17 2008/04/14 09:39:31 yamt Exp $");
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_perfctrs.h"
     83 
     84 #define	__MUTEX_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/cpu.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/resourcevar.h>
     94 #include <sys/sched.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/kauth.h>
     97 #include <sys/lockdebug.h>
     98 #include <sys/kmem.h>
     99 #include <sys/intr.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 static void updatepri(struct lwp *);
    104 static void resetpriority(struct lwp *);
    105 
    106 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    107 
    108 /* Number of hardclock ticks per sched_tick() */
    109 static int rrticks;
    110 
    111 /*
    112  * Force switch among equal priority processes every 100ms.
    113  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    114  *
    115  * There's no need to lock anywhere in this routine, as it's
    116  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    117  */
    118 /* ARGSUSED */
    119 void
    120 sched_tick(struct cpu_info *ci)
    121 {
    122 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    123 
    124 	spc->spc_ticks = rrticks;
    125 
    126 	if (CURCPU_IDLE_P()) {
    127 		cpu_need_resched(ci, 0);
    128 		return;
    129 	}
    130 
    131 	if (spc->spc_flags & SPCF_SEENRR) {
    132 		/*
    133 		 * The process has already been through a roundrobin
    134 		 * without switching and may be hogging the CPU.
    135 		 * Indicate that the process should yield.
    136 		 */
    137 		spc->spc_flags |= SPCF_SHOULDYIELD;
    138 		cpu_need_resched(ci, 0);
    139 	} else
    140 		spc->spc_flags |= SPCF_SEENRR;
    141 }
    142 
    143 /*
    144  * Why PRIO_MAX - 2? From setpriority(2):
    145  *
    146  *	prio is a value in the range -20 to 20.  The default priority is
    147  *	0; lower priorities cause more favorable scheduling.  A value of
    148  *	19 or 20 will schedule a process only when nothing at priority <=
    149  *	0 is runnable.
    150  *
    151  * This gives estcpu influence over 18 priority levels, and leaves nice
    152  * with 40 levels.  One way to think about it is that nice has 20 levels
    153  * either side of estcpu's 18.
    154  */
    155 #define	ESTCPU_SHIFT	11
    156 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    157 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    158 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    159 
    160 /*
    161  * Constants for digital decay and forget:
    162  *	90% of (l_estcpu) usage in 5 * loadav time
    163  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    164  *          Note that, as ps(1) mentions, this can let percentages
    165  *          total over 100% (I've seen 137.9% for 3 processes).
    166  *
    167  * Note that hardclock updates l_estcpu and l_cpticks independently.
    168  *
    169  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    170  * That is, the system wants to compute a value of decay such
    171  * that the following for loop:
    172  * 	for (i = 0; i < (5 * loadavg); i++)
    173  * 		l_estcpu *= decay;
    174  * will compute
    175  * 	l_estcpu *= 0.1;
    176  * for all values of loadavg:
    177  *
    178  * Mathematically this loop can be expressed by saying:
    179  * 	decay ** (5 * loadavg) ~= .1
    180  *
    181  * The system computes decay as:
    182  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    183  *
    184  * We wish to prove that the system's computation of decay
    185  * will always fulfill the equation:
    186  * 	decay ** (5 * loadavg) ~= .1
    187  *
    188  * If we compute b as:
    189  * 	b = 2 * loadavg
    190  * then
    191  * 	decay = b / (b + 1)
    192  *
    193  * We now need to prove two things:
    194  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    195  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    196  *
    197  * Facts:
    198  *         For x close to zero, exp(x) =~ 1 + x, since
    199  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    200  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    201  *         For x close to zero, ln(1+x) =~ x, since
    202  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    203  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    204  *         ln(.1) =~ -2.30
    205  *
    206  * Proof of (1):
    207  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    208  *	solving for factor,
    209  *      ln(factor) =~ (-2.30/5*loadav), or
    210  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    211  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    212  *
    213  * Proof of (2):
    214  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    215  *	solving for power,
    216  *      power*ln(b/(b+1)) =~ -2.30, or
    217  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    218  *
    219  * Actual power values for the implemented algorithm are as follows:
    220  *      loadav: 1       2       3       4
    221  *      power:  5.68    10.32   14.94   19.55
    222  */
    223 
    224 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    225 #define	loadfactor(loadav)	(2 * (loadav))
    226 
    227 static fixpt_t
    228 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    229 {
    230 
    231 	if (estcpu == 0) {
    232 		return 0;
    233 	}
    234 
    235 #if !defined(_LP64)
    236 	/* avoid 64bit arithmetics. */
    237 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    238 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    239 		return estcpu * loadfac / (loadfac + FSCALE);
    240 	}
    241 #endif /* !defined(_LP64) */
    242 
    243 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    244 }
    245 
    246 /*
    247  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    248  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    249  * less than (1 << ESTCPU_SHIFT).
    250  *
    251  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    252  */
    253 static fixpt_t
    254 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    255 {
    256 
    257 	if ((n << FSHIFT) >= 7 * loadfac) {
    258 		return 0;
    259 	}
    260 
    261 	while (estcpu != 0 && n > 1) {
    262 		estcpu = decay_cpu(loadfac, estcpu);
    263 		n--;
    264 	}
    265 
    266 	return estcpu;
    267 }
    268 
    269 /*
    270  * sched_pstats_hook:
    271  *
    272  * Periodically called from sched_pstats(); used to recalculate priorities.
    273  */
    274 void
    275 sched_pstats_hook(struct lwp *l)
    276 {
    277 	fixpt_t loadfac;
    278 	int sleeptm;
    279 
    280 	/*
    281 	 * If the LWP has slept an entire second, stop recalculating
    282 	 * its priority until it wakes up.
    283 	 */
    284 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    285 	    l->l_stat == LSSUSPENDED) {
    286 		l->l_slptime++;
    287 		sleeptm = 1;
    288 	} else {
    289 		sleeptm = 0x7fffffff;
    290 	}
    291 
    292 	if (l->l_slptime <= sleeptm) {
    293 		loadfac = 2 * (averunnable.ldavg[0]);
    294 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    295 		resetpriority(l);
    296 	}
    297 }
    298 
    299 /*
    300  * Recalculate the priority of a process after it has slept for a while.
    301  */
    302 static void
    303 updatepri(struct lwp *l)
    304 {
    305 	fixpt_t loadfac;
    306 
    307 	KASSERT(lwp_locked(l, NULL));
    308 	KASSERT(l->l_slptime > 1);
    309 
    310 	loadfac = loadfactor(averunnable.ldavg[0]);
    311 
    312 	l->l_slptime--; /* the first time was done in sched_pstats */
    313 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    314 	resetpriority(l);
    315 }
    316 
    317 void
    318 sched_rqinit(void)
    319 {
    320 
    321 }
    322 
    323 void
    324 sched_setrunnable(struct lwp *l)
    325 {
    326 
    327  	if (l->l_slptime > 1)
    328  		updatepri(l);
    329 }
    330 
    331 void
    332 sched_nice(struct proc *p, int n)
    333 {
    334 	struct lwp *l;
    335 
    336 	KASSERT(mutex_owned(&p->p_smutex));
    337 
    338 	p->p_nice = n;
    339 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    340 		lwp_lock(l);
    341 		resetpriority(l);
    342 		lwp_unlock(l);
    343 	}
    344 }
    345 
    346 /*
    347  * Recompute the priority of an LWP.  Arrange to reschedule if
    348  * the resulting priority is better than that of the current LWP.
    349  */
    350 static void
    351 resetpriority(struct lwp *l)
    352 {
    353 	pri_t pri;
    354 	struct proc *p = l->l_proc;
    355 
    356 	KASSERT(lwp_locked(l, NULL));
    357 
    358 	if (l->l_class != SCHED_OTHER)
    359 		return;
    360 
    361 	/* See comments above ESTCPU_SHIFT definition. */
    362 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    363 	pri = imax(pri, 0);
    364 	if (pri != l->l_priority)
    365 		lwp_changepri(l, pri);
    366 }
    367 
    368 /*
    369  * We adjust the priority of the current process.  The priority of a process
    370  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    371  * is increased here.  The formula for computing priorities (in kern_synch.c)
    372  * will compute a different value each time l_estcpu increases. This can
    373  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    374  * queue will not change.  The CPU usage estimator ramps up quite quickly
    375  * when the process is running (linearly), and decays away exponentially, at
    376  * a rate which is proportionally slower when the system is busy.  The basic
    377  * principle is that the system will 90% forget that the process used a lot
    378  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    379  * processes which haven't run much recently, and to round-robin among other
    380  * processes.
    381  */
    382 
    383 void
    384 sched_schedclock(struct lwp *l)
    385 {
    386 
    387 	if (l->l_class != SCHED_OTHER)
    388 		return;
    389 
    390 	KASSERT(!CURCPU_IDLE_P());
    391 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    392 	lwp_lock(l);
    393 	resetpriority(l);
    394 	lwp_unlock(l);
    395 }
    396 
    397 /*
    398  * sched_proc_fork:
    399  *
    400  *	Inherit the parent's scheduler history.
    401  */
    402 void
    403 sched_proc_fork(struct proc *parent, struct proc *child)
    404 {
    405 	lwp_t *pl;
    406 
    407 	KASSERT(mutex_owned(&parent->p_smutex));
    408 
    409 	pl = LIST_FIRST(&parent->p_lwps);
    410 	child->p_estcpu_inherited = pl->l_estcpu;
    411 	child->p_forktime = sched_pstats_ticks;
    412 }
    413 
    414 /*
    415  * sched_proc_exit:
    416  *
    417  *	Chargeback parents for the sins of their children.
    418  */
    419 void
    420 sched_proc_exit(struct proc *parent, struct proc *child)
    421 {
    422 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    423 	fixpt_t estcpu;
    424 	lwp_t *pl, *cl;
    425 
    426 	/* XXX Only if parent != init?? */
    427 
    428 	mutex_enter(&parent->p_smutex);
    429 	pl = LIST_FIRST(&parent->p_lwps);
    430 	cl = LIST_FIRST(&child->p_lwps);
    431 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    432 	    sched_pstats_ticks - child->p_forktime);
    433 	if (cl->l_estcpu > estcpu) {
    434 		lwp_lock(pl);
    435 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    436 		lwp_unlock(pl);
    437 	}
    438 	mutex_exit(&parent->p_smutex);
    439 }
    440 
    441 void
    442 sched_wakeup(struct lwp *l)
    443 {
    444 
    445 	l->l_cpu = sched_takecpu(l);
    446 }
    447 
    448 void
    449 sched_slept(struct lwp *l)
    450 {
    451 
    452 }
    453 
    454 void
    455 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    456 {
    457 
    458 	l2->l_estcpu = l1->l_estcpu;
    459 }
    460 
    461 void
    462 sched_lwp_exit(struct lwp *l)
    463 {
    464 
    465 }
    466 
    467 void
    468 sched_lwp_collect(struct lwp *t)
    469 {
    470 	lwp_t *l;
    471 
    472 	/* Absorb estcpu value of collected LWP. */
    473 	l = curlwp;
    474 	lwp_lock(l);
    475 	l->l_estcpu += t->l_estcpu;
    476 	lwp_unlock(l);
    477 }
    478 
    479 void
    480 sched_oncpu(lwp_t *l)
    481 {
    482 
    483 }
    484 
    485 void
    486 sched_newts(lwp_t *l)
    487 {
    488 
    489 }
    490 
    491 /*
    492  * Sysctl nodes and initialization.
    493  */
    494 
    495 static int
    496 sysctl_sched_rtts(SYSCTLFN_ARGS)
    497 {
    498 	struct sysctlnode node;
    499 	int rttsms = hztoms(rrticks);
    500 
    501 	node = *rnode;
    502 	node.sysctl_data = &rttsms;
    503 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    504 }
    505 
    506 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    507 {
    508 	const struct sysctlnode *node = NULL;
    509 
    510 	sysctl_createv(clog, 0, NULL, NULL,
    511 		CTLFLAG_PERMANENT,
    512 		CTLTYPE_NODE, "kern", NULL,
    513 		NULL, 0, NULL, 0,
    514 		CTL_KERN, CTL_EOL);
    515 	sysctl_createv(clog, 0, NULL, &node,
    516 		CTLFLAG_PERMANENT,
    517 		CTLTYPE_NODE, "sched",
    518 		SYSCTL_DESCR("Scheduler options"),
    519 		NULL, 0, NULL, 0,
    520 		CTL_KERN, CTL_CREATE, CTL_EOL);
    521 
    522 	if (node == NULL)
    523 		return;
    524 
    525 	rrticks = hz / 10;
    526 
    527 	sysctl_createv(NULL, 0, &node, NULL,
    528 		CTLFLAG_PERMANENT,
    529 		CTLTYPE_STRING, "name", NULL,
    530 		NULL, 0, __UNCONST("4.4BSD"), 0,
    531 		CTL_CREATE, CTL_EOL);
    532 	sysctl_createv(NULL, 0, &node, NULL,
    533 		CTLFLAG_PERMANENT,
    534 		CTLTYPE_INT, "rtts",
    535 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    536 		sysctl_sched_rtts, 0, NULL, 0,
    537 		CTL_CREATE, CTL_EOL);
    538 }
    539