sched_4bsd.c revision 1.17 1 /* $NetBSD: sched_4bsd.c,v 1.17 2008/04/14 09:39:31 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.17 2008/04/14 09:39:31 yamt Exp $");
79
80 #include "opt_ddb.h"
81 #include "opt_lockdebug.h"
82 #include "opt_perfctrs.h"
83
84 #define __MUTEX_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/cpu.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sysctl.h>
96 #include <sys/kauth.h>
97 #include <sys/lockdebug.h>
98 #include <sys/kmem.h>
99 #include <sys/intr.h>
100
101 #include <uvm/uvm_extern.h>
102
103 static void updatepri(struct lwp *);
104 static void resetpriority(struct lwp *);
105
106 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
107
108 /* Number of hardclock ticks per sched_tick() */
109 static int rrticks;
110
111 /*
112 * Force switch among equal priority processes every 100ms.
113 * Called from hardclock every hz/10 == rrticks hardclock ticks.
114 *
115 * There's no need to lock anywhere in this routine, as it's
116 * CPU-local and runs at IPL_SCHED (called from clock interrupt).
117 */
118 /* ARGSUSED */
119 void
120 sched_tick(struct cpu_info *ci)
121 {
122 struct schedstate_percpu *spc = &ci->ci_schedstate;
123
124 spc->spc_ticks = rrticks;
125
126 if (CURCPU_IDLE_P()) {
127 cpu_need_resched(ci, 0);
128 return;
129 }
130
131 if (spc->spc_flags & SPCF_SEENRR) {
132 /*
133 * The process has already been through a roundrobin
134 * without switching and may be hogging the CPU.
135 * Indicate that the process should yield.
136 */
137 spc->spc_flags |= SPCF_SHOULDYIELD;
138 cpu_need_resched(ci, 0);
139 } else
140 spc->spc_flags |= SPCF_SEENRR;
141 }
142
143 /*
144 * Why PRIO_MAX - 2? From setpriority(2):
145 *
146 * prio is a value in the range -20 to 20. The default priority is
147 * 0; lower priorities cause more favorable scheduling. A value of
148 * 19 or 20 will schedule a process only when nothing at priority <=
149 * 0 is runnable.
150 *
151 * This gives estcpu influence over 18 priority levels, and leaves nice
152 * with 40 levels. One way to think about it is that nice has 20 levels
153 * either side of estcpu's 18.
154 */
155 #define ESTCPU_SHIFT 11
156 #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
157 #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
158 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
159
160 /*
161 * Constants for digital decay and forget:
162 * 90% of (l_estcpu) usage in 5 * loadav time
163 * 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
164 * Note that, as ps(1) mentions, this can let percentages
165 * total over 100% (I've seen 137.9% for 3 processes).
166 *
167 * Note that hardclock updates l_estcpu and l_cpticks independently.
168 *
169 * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
170 * That is, the system wants to compute a value of decay such
171 * that the following for loop:
172 * for (i = 0; i < (5 * loadavg); i++)
173 * l_estcpu *= decay;
174 * will compute
175 * l_estcpu *= 0.1;
176 * for all values of loadavg:
177 *
178 * Mathematically this loop can be expressed by saying:
179 * decay ** (5 * loadavg) ~= .1
180 *
181 * The system computes decay as:
182 * decay = (2 * loadavg) / (2 * loadavg + 1)
183 *
184 * We wish to prove that the system's computation of decay
185 * will always fulfill the equation:
186 * decay ** (5 * loadavg) ~= .1
187 *
188 * If we compute b as:
189 * b = 2 * loadavg
190 * then
191 * decay = b / (b + 1)
192 *
193 * We now need to prove two things:
194 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
195 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
196 *
197 * Facts:
198 * For x close to zero, exp(x) =~ 1 + x, since
199 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
200 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
201 * For x close to zero, ln(1+x) =~ x, since
202 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
203 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
204 * ln(.1) =~ -2.30
205 *
206 * Proof of (1):
207 * Solve (factor)**(power) =~ .1 given power (5*loadav):
208 * solving for factor,
209 * ln(factor) =~ (-2.30/5*loadav), or
210 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
211 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
212 *
213 * Proof of (2):
214 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
215 * solving for power,
216 * power*ln(b/(b+1)) =~ -2.30, or
217 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
218 *
219 * Actual power values for the implemented algorithm are as follows:
220 * loadav: 1 2 3 4
221 * power: 5.68 10.32 14.94 19.55
222 */
223
224 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
225 #define loadfactor(loadav) (2 * (loadav))
226
227 static fixpt_t
228 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
229 {
230
231 if (estcpu == 0) {
232 return 0;
233 }
234
235 #if !defined(_LP64)
236 /* avoid 64bit arithmetics. */
237 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
238 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
239 return estcpu * loadfac / (loadfac + FSCALE);
240 }
241 #endif /* !defined(_LP64) */
242
243 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
244 }
245
246 /*
247 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
248 * sleeping for at least seven times the loadfactor will decay l_estcpu to
249 * less than (1 << ESTCPU_SHIFT).
250 *
251 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
252 */
253 static fixpt_t
254 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
255 {
256
257 if ((n << FSHIFT) >= 7 * loadfac) {
258 return 0;
259 }
260
261 while (estcpu != 0 && n > 1) {
262 estcpu = decay_cpu(loadfac, estcpu);
263 n--;
264 }
265
266 return estcpu;
267 }
268
269 /*
270 * sched_pstats_hook:
271 *
272 * Periodically called from sched_pstats(); used to recalculate priorities.
273 */
274 void
275 sched_pstats_hook(struct lwp *l)
276 {
277 fixpt_t loadfac;
278 int sleeptm;
279
280 /*
281 * If the LWP has slept an entire second, stop recalculating
282 * its priority until it wakes up.
283 */
284 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
285 l->l_stat == LSSUSPENDED) {
286 l->l_slptime++;
287 sleeptm = 1;
288 } else {
289 sleeptm = 0x7fffffff;
290 }
291
292 if (l->l_slptime <= sleeptm) {
293 loadfac = 2 * (averunnable.ldavg[0]);
294 l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
295 resetpriority(l);
296 }
297 }
298
299 /*
300 * Recalculate the priority of a process after it has slept for a while.
301 */
302 static void
303 updatepri(struct lwp *l)
304 {
305 fixpt_t loadfac;
306
307 KASSERT(lwp_locked(l, NULL));
308 KASSERT(l->l_slptime > 1);
309
310 loadfac = loadfactor(averunnable.ldavg[0]);
311
312 l->l_slptime--; /* the first time was done in sched_pstats */
313 l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
314 resetpriority(l);
315 }
316
317 void
318 sched_rqinit(void)
319 {
320
321 }
322
323 void
324 sched_setrunnable(struct lwp *l)
325 {
326
327 if (l->l_slptime > 1)
328 updatepri(l);
329 }
330
331 void
332 sched_nice(struct proc *p, int n)
333 {
334 struct lwp *l;
335
336 KASSERT(mutex_owned(&p->p_smutex));
337
338 p->p_nice = n;
339 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
340 lwp_lock(l);
341 resetpriority(l);
342 lwp_unlock(l);
343 }
344 }
345
346 /*
347 * Recompute the priority of an LWP. Arrange to reschedule if
348 * the resulting priority is better than that of the current LWP.
349 */
350 static void
351 resetpriority(struct lwp *l)
352 {
353 pri_t pri;
354 struct proc *p = l->l_proc;
355
356 KASSERT(lwp_locked(l, NULL));
357
358 if (l->l_class != SCHED_OTHER)
359 return;
360
361 /* See comments above ESTCPU_SHIFT definition. */
362 pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
363 pri = imax(pri, 0);
364 if (pri != l->l_priority)
365 lwp_changepri(l, pri);
366 }
367
368 /*
369 * We adjust the priority of the current process. The priority of a process
370 * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
371 * is increased here. The formula for computing priorities (in kern_synch.c)
372 * will compute a different value each time l_estcpu increases. This can
373 * cause a switch, but unless the priority crosses a PPQ boundary the actual
374 * queue will not change. The CPU usage estimator ramps up quite quickly
375 * when the process is running (linearly), and decays away exponentially, at
376 * a rate which is proportionally slower when the system is busy. The basic
377 * principle is that the system will 90% forget that the process used a lot
378 * of CPU time in 5 * loadav seconds. This causes the system to favor
379 * processes which haven't run much recently, and to round-robin among other
380 * processes.
381 */
382
383 void
384 sched_schedclock(struct lwp *l)
385 {
386
387 if (l->l_class != SCHED_OTHER)
388 return;
389
390 KASSERT(!CURCPU_IDLE_P());
391 l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
392 lwp_lock(l);
393 resetpriority(l);
394 lwp_unlock(l);
395 }
396
397 /*
398 * sched_proc_fork:
399 *
400 * Inherit the parent's scheduler history.
401 */
402 void
403 sched_proc_fork(struct proc *parent, struct proc *child)
404 {
405 lwp_t *pl;
406
407 KASSERT(mutex_owned(&parent->p_smutex));
408
409 pl = LIST_FIRST(&parent->p_lwps);
410 child->p_estcpu_inherited = pl->l_estcpu;
411 child->p_forktime = sched_pstats_ticks;
412 }
413
414 /*
415 * sched_proc_exit:
416 *
417 * Chargeback parents for the sins of their children.
418 */
419 void
420 sched_proc_exit(struct proc *parent, struct proc *child)
421 {
422 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
423 fixpt_t estcpu;
424 lwp_t *pl, *cl;
425
426 /* XXX Only if parent != init?? */
427
428 mutex_enter(&parent->p_smutex);
429 pl = LIST_FIRST(&parent->p_lwps);
430 cl = LIST_FIRST(&child->p_lwps);
431 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
432 sched_pstats_ticks - child->p_forktime);
433 if (cl->l_estcpu > estcpu) {
434 lwp_lock(pl);
435 pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
436 lwp_unlock(pl);
437 }
438 mutex_exit(&parent->p_smutex);
439 }
440
441 void
442 sched_wakeup(struct lwp *l)
443 {
444
445 l->l_cpu = sched_takecpu(l);
446 }
447
448 void
449 sched_slept(struct lwp *l)
450 {
451
452 }
453
454 void
455 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
456 {
457
458 l2->l_estcpu = l1->l_estcpu;
459 }
460
461 void
462 sched_lwp_exit(struct lwp *l)
463 {
464
465 }
466
467 void
468 sched_lwp_collect(struct lwp *t)
469 {
470 lwp_t *l;
471
472 /* Absorb estcpu value of collected LWP. */
473 l = curlwp;
474 lwp_lock(l);
475 l->l_estcpu += t->l_estcpu;
476 lwp_unlock(l);
477 }
478
479 void
480 sched_oncpu(lwp_t *l)
481 {
482
483 }
484
485 void
486 sched_newts(lwp_t *l)
487 {
488
489 }
490
491 /*
492 * Sysctl nodes and initialization.
493 */
494
495 static int
496 sysctl_sched_rtts(SYSCTLFN_ARGS)
497 {
498 struct sysctlnode node;
499 int rttsms = hztoms(rrticks);
500
501 node = *rnode;
502 node.sysctl_data = &rttsms;
503 return sysctl_lookup(SYSCTLFN_CALL(&node));
504 }
505
506 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
507 {
508 const struct sysctlnode *node = NULL;
509
510 sysctl_createv(clog, 0, NULL, NULL,
511 CTLFLAG_PERMANENT,
512 CTLTYPE_NODE, "kern", NULL,
513 NULL, 0, NULL, 0,
514 CTL_KERN, CTL_EOL);
515 sysctl_createv(clog, 0, NULL, &node,
516 CTLFLAG_PERMANENT,
517 CTLTYPE_NODE, "sched",
518 SYSCTL_DESCR("Scheduler options"),
519 NULL, 0, NULL, 0,
520 CTL_KERN, CTL_CREATE, CTL_EOL);
521
522 if (node == NULL)
523 return;
524
525 rrticks = hz / 10;
526
527 sysctl_createv(NULL, 0, &node, NULL,
528 CTLFLAG_PERMANENT,
529 CTLTYPE_STRING, "name", NULL,
530 NULL, 0, __UNCONST("4.4BSD"), 0,
531 CTL_CREATE, CTL_EOL);
532 sysctl_createv(NULL, 0, &node, NULL,
533 CTLFLAG_PERMANENT,
534 CTLTYPE_INT, "rtts",
535 SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
536 sysctl_sched_rtts, 0, NULL, 0,
537 CTL_CREATE, CTL_EOL);
538 }
539