Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.18
      1 /*	$NetBSD: sched_4bsd.c,v 1.18 2008/04/14 09:40:43 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.18 2008/04/14 09:40:43 yamt Exp $");
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_perfctrs.h"
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/cpu.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/resourcevar.h>
     92 #include <sys/sched.h>
     93 #include <sys/sysctl.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lockdebug.h>
     96 #include <sys/kmem.h>
     97 #include <sys/intr.h>
     98 
     99 #include <uvm/uvm_extern.h>
    100 
    101 static void updatepri(struct lwp *);
    102 static void resetpriority(struct lwp *);
    103 
    104 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    105 
    106 /* Number of hardclock ticks per sched_tick() */
    107 static int rrticks;
    108 
    109 /*
    110  * Force switch among equal priority processes every 100ms.
    111  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    112  *
    113  * There's no need to lock anywhere in this routine, as it's
    114  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    115  */
    116 /* ARGSUSED */
    117 void
    118 sched_tick(struct cpu_info *ci)
    119 {
    120 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    121 
    122 	spc->spc_ticks = rrticks;
    123 
    124 	if (CURCPU_IDLE_P()) {
    125 		cpu_need_resched(ci, 0);
    126 		return;
    127 	}
    128 
    129 	if (spc->spc_flags & SPCF_SEENRR) {
    130 		/*
    131 		 * The process has already been through a roundrobin
    132 		 * without switching and may be hogging the CPU.
    133 		 * Indicate that the process should yield.
    134 		 */
    135 		spc->spc_flags |= SPCF_SHOULDYIELD;
    136 		cpu_need_resched(ci, 0);
    137 	} else
    138 		spc->spc_flags |= SPCF_SEENRR;
    139 }
    140 
    141 /*
    142  * Why PRIO_MAX - 2? From setpriority(2):
    143  *
    144  *	prio is a value in the range -20 to 20.  The default priority is
    145  *	0; lower priorities cause more favorable scheduling.  A value of
    146  *	19 or 20 will schedule a process only when nothing at priority <=
    147  *	0 is runnable.
    148  *
    149  * This gives estcpu influence over 18 priority levels, and leaves nice
    150  * with 40 levels.  One way to think about it is that nice has 20 levels
    151  * either side of estcpu's 18.
    152  */
    153 #define	ESTCPU_SHIFT	11
    154 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    155 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    156 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    157 
    158 /*
    159  * Constants for digital decay and forget:
    160  *	90% of (l_estcpu) usage in 5 * loadav time
    161  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    162  *          Note that, as ps(1) mentions, this can let percentages
    163  *          total over 100% (I've seen 137.9% for 3 processes).
    164  *
    165  * Note that hardclock updates l_estcpu and l_cpticks independently.
    166  *
    167  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    168  * That is, the system wants to compute a value of decay such
    169  * that the following for loop:
    170  * 	for (i = 0; i < (5 * loadavg); i++)
    171  * 		l_estcpu *= decay;
    172  * will compute
    173  * 	l_estcpu *= 0.1;
    174  * for all values of loadavg:
    175  *
    176  * Mathematically this loop can be expressed by saying:
    177  * 	decay ** (5 * loadavg) ~= .1
    178  *
    179  * The system computes decay as:
    180  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    181  *
    182  * We wish to prove that the system's computation of decay
    183  * will always fulfill the equation:
    184  * 	decay ** (5 * loadavg) ~= .1
    185  *
    186  * If we compute b as:
    187  * 	b = 2 * loadavg
    188  * then
    189  * 	decay = b / (b + 1)
    190  *
    191  * We now need to prove two things:
    192  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    193  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    194  *
    195  * Facts:
    196  *         For x close to zero, exp(x) =~ 1 + x, since
    197  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    198  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    199  *         For x close to zero, ln(1+x) =~ x, since
    200  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    201  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    202  *         ln(.1) =~ -2.30
    203  *
    204  * Proof of (1):
    205  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    206  *	solving for factor,
    207  *      ln(factor) =~ (-2.30/5*loadav), or
    208  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    209  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    210  *
    211  * Proof of (2):
    212  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    213  *	solving for power,
    214  *      power*ln(b/(b+1)) =~ -2.30, or
    215  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    216  *
    217  * Actual power values for the implemented algorithm are as follows:
    218  *      loadav: 1       2       3       4
    219  *      power:  5.68    10.32   14.94   19.55
    220  */
    221 
    222 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    223 #define	loadfactor(loadav)	(2 * (loadav))
    224 
    225 static fixpt_t
    226 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    227 {
    228 
    229 	if (estcpu == 0) {
    230 		return 0;
    231 	}
    232 
    233 #if !defined(_LP64)
    234 	/* avoid 64bit arithmetics. */
    235 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    236 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    237 		return estcpu * loadfac / (loadfac + FSCALE);
    238 	}
    239 #endif /* !defined(_LP64) */
    240 
    241 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    242 }
    243 
    244 /*
    245  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    246  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    247  * less than (1 << ESTCPU_SHIFT).
    248  *
    249  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    250  */
    251 static fixpt_t
    252 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    253 {
    254 
    255 	if ((n << FSHIFT) >= 7 * loadfac) {
    256 		return 0;
    257 	}
    258 
    259 	while (estcpu != 0 && n > 1) {
    260 		estcpu = decay_cpu(loadfac, estcpu);
    261 		n--;
    262 	}
    263 
    264 	return estcpu;
    265 }
    266 
    267 /*
    268  * sched_pstats_hook:
    269  *
    270  * Periodically called from sched_pstats(); used to recalculate priorities.
    271  */
    272 void
    273 sched_pstats_hook(struct lwp *l)
    274 {
    275 	fixpt_t loadfac;
    276 	int sleeptm;
    277 
    278 	/*
    279 	 * If the LWP has slept an entire second, stop recalculating
    280 	 * its priority until it wakes up.
    281 	 */
    282 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    283 	    l->l_stat == LSSUSPENDED) {
    284 		l->l_slptime++;
    285 		sleeptm = 1;
    286 	} else {
    287 		sleeptm = 0x7fffffff;
    288 	}
    289 
    290 	if (l->l_slptime <= sleeptm) {
    291 		loadfac = 2 * (averunnable.ldavg[0]);
    292 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    293 		resetpriority(l);
    294 	}
    295 }
    296 
    297 /*
    298  * Recalculate the priority of a process after it has slept for a while.
    299  */
    300 static void
    301 updatepri(struct lwp *l)
    302 {
    303 	fixpt_t loadfac;
    304 
    305 	KASSERT(lwp_locked(l, NULL));
    306 	KASSERT(l->l_slptime > 1);
    307 
    308 	loadfac = loadfactor(averunnable.ldavg[0]);
    309 
    310 	l->l_slptime--; /* the first time was done in sched_pstats */
    311 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    312 	resetpriority(l);
    313 }
    314 
    315 void
    316 sched_rqinit(void)
    317 {
    318 
    319 }
    320 
    321 void
    322 sched_setrunnable(struct lwp *l)
    323 {
    324 
    325  	if (l->l_slptime > 1)
    326  		updatepri(l);
    327 }
    328 
    329 void
    330 sched_nice(struct proc *p, int n)
    331 {
    332 	struct lwp *l;
    333 
    334 	KASSERT(mutex_owned(&p->p_smutex));
    335 
    336 	p->p_nice = n;
    337 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    338 		lwp_lock(l);
    339 		resetpriority(l);
    340 		lwp_unlock(l);
    341 	}
    342 }
    343 
    344 /*
    345  * Recompute the priority of an LWP.  Arrange to reschedule if
    346  * the resulting priority is better than that of the current LWP.
    347  */
    348 static void
    349 resetpriority(struct lwp *l)
    350 {
    351 	pri_t pri;
    352 	struct proc *p = l->l_proc;
    353 
    354 	KASSERT(lwp_locked(l, NULL));
    355 
    356 	if (l->l_class != SCHED_OTHER)
    357 		return;
    358 
    359 	/* See comments above ESTCPU_SHIFT definition. */
    360 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    361 	pri = imax(pri, 0);
    362 	if (pri != l->l_priority)
    363 		lwp_changepri(l, pri);
    364 }
    365 
    366 /*
    367  * We adjust the priority of the current process.  The priority of a process
    368  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    369  * is increased here.  The formula for computing priorities (in kern_synch.c)
    370  * will compute a different value each time l_estcpu increases. This can
    371  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    372  * queue will not change.  The CPU usage estimator ramps up quite quickly
    373  * when the process is running (linearly), and decays away exponentially, at
    374  * a rate which is proportionally slower when the system is busy.  The basic
    375  * principle is that the system will 90% forget that the process used a lot
    376  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    377  * processes which haven't run much recently, and to round-robin among other
    378  * processes.
    379  */
    380 
    381 void
    382 sched_schedclock(struct lwp *l)
    383 {
    384 
    385 	if (l->l_class != SCHED_OTHER)
    386 		return;
    387 
    388 	KASSERT(!CURCPU_IDLE_P());
    389 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    390 	lwp_lock(l);
    391 	resetpriority(l);
    392 	lwp_unlock(l);
    393 }
    394 
    395 /*
    396  * sched_proc_fork:
    397  *
    398  *	Inherit the parent's scheduler history.
    399  */
    400 void
    401 sched_proc_fork(struct proc *parent, struct proc *child)
    402 {
    403 	lwp_t *pl;
    404 
    405 	KASSERT(mutex_owned(&parent->p_smutex));
    406 
    407 	pl = LIST_FIRST(&parent->p_lwps);
    408 	child->p_estcpu_inherited = pl->l_estcpu;
    409 	child->p_forktime = sched_pstats_ticks;
    410 }
    411 
    412 /*
    413  * sched_proc_exit:
    414  *
    415  *	Chargeback parents for the sins of their children.
    416  */
    417 void
    418 sched_proc_exit(struct proc *parent, struct proc *child)
    419 {
    420 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    421 	fixpt_t estcpu;
    422 	lwp_t *pl, *cl;
    423 
    424 	/* XXX Only if parent != init?? */
    425 
    426 	mutex_enter(&parent->p_smutex);
    427 	pl = LIST_FIRST(&parent->p_lwps);
    428 	cl = LIST_FIRST(&child->p_lwps);
    429 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    430 	    sched_pstats_ticks - child->p_forktime);
    431 	if (cl->l_estcpu > estcpu) {
    432 		lwp_lock(pl);
    433 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    434 		lwp_unlock(pl);
    435 	}
    436 	mutex_exit(&parent->p_smutex);
    437 }
    438 
    439 void
    440 sched_wakeup(struct lwp *l)
    441 {
    442 
    443 	l->l_cpu = sched_takecpu(l);
    444 }
    445 
    446 void
    447 sched_slept(struct lwp *l)
    448 {
    449 
    450 }
    451 
    452 void
    453 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    454 {
    455 
    456 	l2->l_estcpu = l1->l_estcpu;
    457 }
    458 
    459 void
    460 sched_lwp_exit(struct lwp *l)
    461 {
    462 
    463 }
    464 
    465 void
    466 sched_lwp_collect(struct lwp *t)
    467 {
    468 	lwp_t *l;
    469 
    470 	/* Absorb estcpu value of collected LWP. */
    471 	l = curlwp;
    472 	lwp_lock(l);
    473 	l->l_estcpu += t->l_estcpu;
    474 	lwp_unlock(l);
    475 }
    476 
    477 void
    478 sched_oncpu(lwp_t *l)
    479 {
    480 
    481 }
    482 
    483 void
    484 sched_newts(lwp_t *l)
    485 {
    486 
    487 }
    488 
    489 /*
    490  * Sysctl nodes and initialization.
    491  */
    492 
    493 static int
    494 sysctl_sched_rtts(SYSCTLFN_ARGS)
    495 {
    496 	struct sysctlnode node;
    497 	int rttsms = hztoms(rrticks);
    498 
    499 	node = *rnode;
    500 	node.sysctl_data = &rttsms;
    501 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    502 }
    503 
    504 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    505 {
    506 	const struct sysctlnode *node = NULL;
    507 
    508 	sysctl_createv(clog, 0, NULL, NULL,
    509 		CTLFLAG_PERMANENT,
    510 		CTLTYPE_NODE, "kern", NULL,
    511 		NULL, 0, NULL, 0,
    512 		CTL_KERN, CTL_EOL);
    513 	sysctl_createv(clog, 0, NULL, &node,
    514 		CTLFLAG_PERMANENT,
    515 		CTLTYPE_NODE, "sched",
    516 		SYSCTL_DESCR("Scheduler options"),
    517 		NULL, 0, NULL, 0,
    518 		CTL_KERN, CTL_CREATE, CTL_EOL);
    519 
    520 	if (node == NULL)
    521 		return;
    522 
    523 	rrticks = hz / 10;
    524 
    525 	sysctl_createv(NULL, 0, &node, NULL,
    526 		CTLFLAG_PERMANENT,
    527 		CTLTYPE_STRING, "name", NULL,
    528 		NULL, 0, __UNCONST("4.4BSD"), 0,
    529 		CTL_CREATE, CTL_EOL);
    530 	sysctl_createv(NULL, 0, &node, NULL,
    531 		CTLFLAG_PERMANENT,
    532 		CTLTYPE_INT, "rtts",
    533 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    534 		sysctl_sched_rtts, 0, NULL, 0,
    535 		CTL_CREATE, CTL_EOL);
    536 }
    537