Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.20.2.3
      1 /*	$NetBSD: sched_4bsd.c,v 1.20.2.3 2009/06/20 07:20:31 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.20.2.3 2009/06/20 07:20:31 yamt Exp $");
     72 
     73 #include "opt_ddb.h"
     74 #include "opt_lockdebug.h"
     75 #include "opt_perfctrs.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/callout.h>
     80 #include <sys/cpu.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/sched.h>
     86 #include <sys/sysctl.h>
     87 #include <sys/kauth.h>
     88 #include <sys/lockdebug.h>
     89 #include <sys/kmem.h>
     90 #include <sys/intr.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 static void updatepri(struct lwp *);
     95 static void resetpriority(struct lwp *);
     96 
     97 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     98 
     99 /* Number of hardclock ticks per sched_tick() */
    100 static int rrticks;
    101 
    102 /*
    103  * Force switch among equal priority processes every 100ms.
    104  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    105  *
    106  * There's no need to lock anywhere in this routine, as it's
    107  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    108  */
    109 /* ARGSUSED */
    110 void
    111 sched_tick(struct cpu_info *ci)
    112 {
    113 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    114 	lwp_t *l;
    115 
    116 	spc->spc_ticks = rrticks;
    117 
    118 	if (CURCPU_IDLE_P()) {
    119 		cpu_need_resched(ci, 0);
    120 		return;
    121 	}
    122 	l = ci->ci_data.cpu_onproc;
    123 	if (l == NULL) {
    124 		return;
    125 	}
    126 	switch (l->l_class) {
    127 	case SCHED_FIFO:
    128 		/* No timeslicing for FIFO jobs. */
    129 		break;
    130 	case SCHED_RR:
    131 		/* Force it into mi_switch() to look for other jobs to run. */
    132 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    133 		break;
    134 	default:
    135 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    136 			/*
    137 			 * Process is stuck in kernel somewhere, probably
    138 			 * due to buggy or inefficient code.  Force a
    139 			 * kernel preemption.
    140 			 */
    141 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    142 		} else if (spc->spc_flags & SPCF_SEENRR) {
    143 			/*
    144 			 * The process has already been through a roundrobin
    145 			 * without switching and may be hogging the CPU.
    146 			 * Indicate that the process should yield.
    147 			 */
    148 			spc->spc_flags |= SPCF_SHOULDYIELD;
    149 			cpu_need_resched(ci, 0);
    150 		} else {
    151 			spc->spc_flags |= SPCF_SEENRR;
    152 		}
    153 		break;
    154 	}
    155 }
    156 
    157 /*
    158  * Why PRIO_MAX - 2? From setpriority(2):
    159  *
    160  *	prio is a value in the range -20 to 20.  The default priority is
    161  *	0; lower priorities cause more favorable scheduling.  A value of
    162  *	19 or 20 will schedule a process only when nothing at priority <=
    163  *	0 is runnable.
    164  *
    165  * This gives estcpu influence over 18 priority levels, and leaves nice
    166  * with 40 levels.  One way to think about it is that nice has 20 levels
    167  * either side of estcpu's 18.
    168  */
    169 #define	ESTCPU_SHIFT	11
    170 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    171 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    172 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    173 
    174 /*
    175  * Constants for digital decay and forget:
    176  *	90% of (l_estcpu) usage in 5 * loadav time
    177  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    178  *          Note that, as ps(1) mentions, this can let percentages
    179  *          total over 100% (I've seen 137.9% for 3 processes).
    180  *
    181  * Note that hardclock updates l_estcpu and l_cpticks independently.
    182  *
    183  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    184  * That is, the system wants to compute a value of decay such
    185  * that the following for loop:
    186  * 	for (i = 0; i < (5 * loadavg); i++)
    187  * 		l_estcpu *= decay;
    188  * will compute
    189  * 	l_estcpu *= 0.1;
    190  * for all values of loadavg:
    191  *
    192  * Mathematically this loop can be expressed by saying:
    193  * 	decay ** (5 * loadavg) ~= .1
    194  *
    195  * The system computes decay as:
    196  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    197  *
    198  * We wish to prove that the system's computation of decay
    199  * will always fulfill the equation:
    200  * 	decay ** (5 * loadavg) ~= .1
    201  *
    202  * If we compute b as:
    203  * 	b = 2 * loadavg
    204  * then
    205  * 	decay = b / (b + 1)
    206  *
    207  * We now need to prove two things:
    208  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    209  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    210  *
    211  * Facts:
    212  *         For x close to zero, exp(x) =~ 1 + x, since
    213  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    214  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    215  *         For x close to zero, ln(1+x) =~ x, since
    216  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    217  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    218  *         ln(.1) =~ -2.30
    219  *
    220  * Proof of (1):
    221  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    222  *	solving for factor,
    223  *      ln(factor) =~ (-2.30/5*loadav), or
    224  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    225  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    226  *
    227  * Proof of (2):
    228  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    229  *	solving for power,
    230  *      power*ln(b/(b+1)) =~ -2.30, or
    231  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    232  *
    233  * Actual power values for the implemented algorithm are as follows:
    234  *      loadav: 1       2       3       4
    235  *      power:  5.68    10.32   14.94   19.55
    236  */
    237 
    238 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    239 #define	loadfactor(loadav)	(2 * (loadav))
    240 
    241 static fixpt_t
    242 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    243 {
    244 
    245 	if (estcpu == 0) {
    246 		return 0;
    247 	}
    248 
    249 #if !defined(_LP64)
    250 	/* avoid 64bit arithmetics. */
    251 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    252 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    253 		return estcpu * loadfac / (loadfac + FSCALE);
    254 	}
    255 #endif /* !defined(_LP64) */
    256 
    257 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    258 }
    259 
    260 /*
    261  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    262  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    263  * less than (1 << ESTCPU_SHIFT).
    264  *
    265  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    266  */
    267 static fixpt_t
    268 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    269 {
    270 
    271 	if ((n << FSHIFT) >= 7 * loadfac) {
    272 		return 0;
    273 	}
    274 
    275 	while (estcpu != 0 && n > 1) {
    276 		estcpu = decay_cpu(loadfac, estcpu);
    277 		n--;
    278 	}
    279 
    280 	return estcpu;
    281 }
    282 
    283 /*
    284  * sched_pstats_hook:
    285  *
    286  * Periodically called from sched_pstats(); used to recalculate priorities.
    287  */
    288 void
    289 sched_pstats_hook(struct lwp *l, int batch)
    290 {
    291 	fixpt_t loadfac;
    292 
    293 	/*
    294 	 * If the LWP has slept an entire second, stop recalculating
    295 	 * its priority until it wakes up.
    296 	 */
    297 	KASSERT(lwp_locked(l, NULL));
    298 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    299 	    l->l_stat == LSSUSPENDED) {
    300 		if (l->l_slptime > 1) {
    301 			return;
    302 		}
    303 	}
    304 	loadfac = 2 * (averunnable.ldavg[0]);
    305 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    306 	resetpriority(l);
    307 }
    308 
    309 /*
    310  * Recalculate the priority of a process after it has slept for a while.
    311  */
    312 static void
    313 updatepri(struct lwp *l)
    314 {
    315 	fixpt_t loadfac;
    316 
    317 	KASSERT(lwp_locked(l, NULL));
    318 	KASSERT(l->l_slptime > 1);
    319 
    320 	loadfac = loadfactor(averunnable.ldavg[0]);
    321 
    322 	l->l_slptime--; /* the first time was done in sched_pstats */
    323 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    324 	resetpriority(l);
    325 }
    326 
    327 void
    328 sched_rqinit(void)
    329 {
    330 
    331 }
    332 
    333 void
    334 sched_setrunnable(struct lwp *l)
    335 {
    336 
    337  	if (l->l_slptime > 1)
    338  		updatepri(l);
    339 }
    340 
    341 void
    342 sched_nice(struct proc *p, int n)
    343 {
    344 	struct lwp *l;
    345 
    346 	KASSERT(mutex_owned(p->p_lock));
    347 
    348 	p->p_nice = n;
    349 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    350 		lwp_lock(l);
    351 		resetpriority(l);
    352 		lwp_unlock(l);
    353 	}
    354 }
    355 
    356 /*
    357  * Recompute the priority of an LWP.  Arrange to reschedule if
    358  * the resulting priority is better than that of the current LWP.
    359  */
    360 static void
    361 resetpriority(struct lwp *l)
    362 {
    363 	pri_t pri;
    364 	struct proc *p = l->l_proc;
    365 
    366 	KASSERT(lwp_locked(l, NULL));
    367 
    368 	if (l->l_class != SCHED_OTHER)
    369 		return;
    370 
    371 	/* See comments above ESTCPU_SHIFT definition. */
    372 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    373 	pri = imax(pri, 0);
    374 	if (pri != l->l_priority)
    375 		lwp_changepri(l, pri);
    376 }
    377 
    378 /*
    379  * We adjust the priority of the current process.  The priority of a process
    380  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    381  * is increased here.  The formula for computing priorities (in kern_synch.c)
    382  * will compute a different value each time l_estcpu increases. This can
    383  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    384  * queue will not change.  The CPU usage estimator ramps up quite quickly
    385  * when the process is running (linearly), and decays away exponentially, at
    386  * a rate which is proportionally slower when the system is busy.  The basic
    387  * principle is that the system will 90% forget that the process used a lot
    388  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    389  * processes which haven't run much recently, and to round-robin among other
    390  * processes.
    391  */
    392 
    393 void
    394 sched_schedclock(struct lwp *l)
    395 {
    396 
    397 	if (l->l_class != SCHED_OTHER)
    398 		return;
    399 
    400 	KASSERT(!CURCPU_IDLE_P());
    401 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    402 	lwp_lock(l);
    403 	resetpriority(l);
    404 	lwp_unlock(l);
    405 }
    406 
    407 /*
    408  * sched_proc_fork:
    409  *
    410  *	Inherit the parent's scheduler history.
    411  */
    412 void
    413 sched_proc_fork(struct proc *parent, struct proc *child)
    414 {
    415 	lwp_t *pl;
    416 
    417 	KASSERT(mutex_owned(parent->p_lock));
    418 
    419 	pl = LIST_FIRST(&parent->p_lwps);
    420 	child->p_estcpu_inherited = pl->l_estcpu;
    421 	child->p_forktime = sched_pstats_ticks;
    422 }
    423 
    424 /*
    425  * sched_proc_exit:
    426  *
    427  *	Chargeback parents for the sins of their children.
    428  */
    429 void
    430 sched_proc_exit(struct proc *parent, struct proc *child)
    431 {
    432 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    433 	fixpt_t estcpu;
    434 	lwp_t *pl, *cl;
    435 
    436 	/* XXX Only if parent != init?? */
    437 
    438 	mutex_enter(parent->p_lock);
    439 	pl = LIST_FIRST(&parent->p_lwps);
    440 	cl = LIST_FIRST(&child->p_lwps);
    441 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    442 	    sched_pstats_ticks - child->p_forktime);
    443 	if (cl->l_estcpu > estcpu) {
    444 		lwp_lock(pl);
    445 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    446 		lwp_unlock(pl);
    447 	}
    448 	mutex_exit(parent->p_lock);
    449 }
    450 
    451 void
    452 sched_wakeup(struct lwp *l)
    453 {
    454 
    455 }
    456 
    457 void
    458 sched_slept(struct lwp *l)
    459 {
    460 
    461 }
    462 
    463 void
    464 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    465 {
    466 
    467 	l2->l_estcpu = l1->l_estcpu;
    468 }
    469 
    470 void
    471 sched_lwp_collect(struct lwp *t)
    472 {
    473 	lwp_t *l;
    474 
    475 	/* Absorb estcpu value of collected LWP. */
    476 	l = curlwp;
    477 	lwp_lock(l);
    478 	l->l_estcpu += t->l_estcpu;
    479 	lwp_unlock(l);
    480 }
    481 
    482 void
    483 sched_oncpu(lwp_t *l)
    484 {
    485 
    486 }
    487 
    488 void
    489 sched_newts(lwp_t *l)
    490 {
    491 
    492 }
    493 
    494 /*
    495  * Sysctl nodes and initialization.
    496  */
    497 
    498 static int
    499 sysctl_sched_rtts(SYSCTLFN_ARGS)
    500 {
    501 	struct sysctlnode node;
    502 	int rttsms = hztoms(rrticks);
    503 
    504 	node = *rnode;
    505 	node.sysctl_data = &rttsms;
    506 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    507 }
    508 
    509 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    510 {
    511 	const struct sysctlnode *node = NULL;
    512 
    513 	sysctl_createv(clog, 0, NULL, NULL,
    514 		CTLFLAG_PERMANENT,
    515 		CTLTYPE_NODE, "kern", NULL,
    516 		NULL, 0, NULL, 0,
    517 		CTL_KERN, CTL_EOL);
    518 	sysctl_createv(clog, 0, NULL, &node,
    519 		CTLFLAG_PERMANENT,
    520 		CTLTYPE_NODE, "sched",
    521 		SYSCTL_DESCR("Scheduler options"),
    522 		NULL, 0, NULL, 0,
    523 		CTL_KERN, CTL_CREATE, CTL_EOL);
    524 
    525 	if (node == NULL)
    526 		return;
    527 
    528 	rrticks = hz / 10;
    529 
    530 	sysctl_createv(NULL, 0, &node, NULL,
    531 		CTLFLAG_PERMANENT,
    532 		CTLTYPE_STRING, "name", NULL,
    533 		NULL, 0, __UNCONST("4.4BSD"), 0,
    534 		CTL_CREATE, CTL_EOL);
    535 	sysctl_createv(NULL, 0, &node, NULL,
    536 		CTLFLAG_PERMANENT,
    537 		CTLTYPE_INT, "rtts",
    538 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    539 		sysctl_sched_rtts, 0, NULL, 0,
    540 		CTL_CREATE, CTL_EOL);
    541 }
    542