sched_4bsd.c revision 1.22 1 /* $NetBSD: sched_4bsd.c,v 1.22 2008/05/19 12:48:54 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*-
35 * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.22 2008/05/19 12:48:54 rmind Exp $");
72
73 #include "opt_ddb.h"
74 #include "opt_lockdebug.h"
75 #include "opt_perfctrs.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/callout.h>
80 #include <sys/cpu.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/signalvar.h>
84 #include <sys/resourcevar.h>
85 #include <sys/sched.h>
86 #include <sys/sysctl.h>
87 #include <sys/kauth.h>
88 #include <sys/lockdebug.h>
89 #include <sys/kmem.h>
90 #include <sys/intr.h>
91
92 #include <uvm/uvm_extern.h>
93
94 static void updatepri(struct lwp *);
95 static void resetpriority(struct lwp *);
96
97 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
98
99 /* Number of hardclock ticks per sched_tick() */
100 static int rrticks;
101
102 /*
103 * Force switch among equal priority processes every 100ms.
104 * Called from hardclock every hz/10 == rrticks hardclock ticks.
105 *
106 * There's no need to lock anywhere in this routine, as it's
107 * CPU-local and runs at IPL_SCHED (called from clock interrupt).
108 */
109 /* ARGSUSED */
110 void
111 sched_tick(struct cpu_info *ci)
112 {
113 struct schedstate_percpu *spc = &ci->ci_schedstate;
114
115 spc->spc_ticks = rrticks;
116
117 if (CURCPU_IDLE_P()) {
118 cpu_need_resched(ci, 0);
119 return;
120 }
121 if (curlwp->l_class == SCHED_FIFO) {
122 return;
123 }
124 if (spc->spc_flags & SPCF_SEENRR) {
125 /*
126 * The process has already been through a roundrobin
127 * without switching and may be hogging the CPU.
128 * Indicate that the process should yield.
129 */
130 spc->spc_flags |= SPCF_SHOULDYIELD;
131 cpu_need_resched(ci, 0);
132 } else
133 spc->spc_flags |= SPCF_SEENRR;
134 }
135
136 /*
137 * Why PRIO_MAX - 2? From setpriority(2):
138 *
139 * prio is a value in the range -20 to 20. The default priority is
140 * 0; lower priorities cause more favorable scheduling. A value of
141 * 19 or 20 will schedule a process only when nothing at priority <=
142 * 0 is runnable.
143 *
144 * This gives estcpu influence over 18 priority levels, and leaves nice
145 * with 40 levels. One way to think about it is that nice has 20 levels
146 * either side of estcpu's 18.
147 */
148 #define ESTCPU_SHIFT 11
149 #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
150 #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
151 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
152
153 /*
154 * Constants for digital decay and forget:
155 * 90% of (l_estcpu) usage in 5 * loadav time
156 * 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
157 * Note that, as ps(1) mentions, this can let percentages
158 * total over 100% (I've seen 137.9% for 3 processes).
159 *
160 * Note that hardclock updates l_estcpu and l_cpticks independently.
161 *
162 * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
163 * That is, the system wants to compute a value of decay such
164 * that the following for loop:
165 * for (i = 0; i < (5 * loadavg); i++)
166 * l_estcpu *= decay;
167 * will compute
168 * l_estcpu *= 0.1;
169 * for all values of loadavg:
170 *
171 * Mathematically this loop can be expressed by saying:
172 * decay ** (5 * loadavg) ~= .1
173 *
174 * The system computes decay as:
175 * decay = (2 * loadavg) / (2 * loadavg + 1)
176 *
177 * We wish to prove that the system's computation of decay
178 * will always fulfill the equation:
179 * decay ** (5 * loadavg) ~= .1
180 *
181 * If we compute b as:
182 * b = 2 * loadavg
183 * then
184 * decay = b / (b + 1)
185 *
186 * We now need to prove two things:
187 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
188 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
189 *
190 * Facts:
191 * For x close to zero, exp(x) =~ 1 + x, since
192 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
193 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
194 * For x close to zero, ln(1+x) =~ x, since
195 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
196 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
197 * ln(.1) =~ -2.30
198 *
199 * Proof of (1):
200 * Solve (factor)**(power) =~ .1 given power (5*loadav):
201 * solving for factor,
202 * ln(factor) =~ (-2.30/5*loadav), or
203 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
204 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
205 *
206 * Proof of (2):
207 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
208 * solving for power,
209 * power*ln(b/(b+1)) =~ -2.30, or
210 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
211 *
212 * Actual power values for the implemented algorithm are as follows:
213 * loadav: 1 2 3 4
214 * power: 5.68 10.32 14.94 19.55
215 */
216
217 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
218 #define loadfactor(loadav) (2 * (loadav))
219
220 static fixpt_t
221 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
222 {
223
224 if (estcpu == 0) {
225 return 0;
226 }
227
228 #if !defined(_LP64)
229 /* avoid 64bit arithmetics. */
230 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
231 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
232 return estcpu * loadfac / (loadfac + FSCALE);
233 }
234 #endif /* !defined(_LP64) */
235
236 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
237 }
238
239 /*
240 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
241 * sleeping for at least seven times the loadfactor will decay l_estcpu to
242 * less than (1 << ESTCPU_SHIFT).
243 *
244 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
245 */
246 static fixpt_t
247 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
248 {
249
250 if ((n << FSHIFT) >= 7 * loadfac) {
251 return 0;
252 }
253
254 while (estcpu != 0 && n > 1) {
255 estcpu = decay_cpu(loadfac, estcpu);
256 n--;
257 }
258
259 return estcpu;
260 }
261
262 /*
263 * sched_pstats_hook:
264 *
265 * Periodically called from sched_pstats(); used to recalculate priorities.
266 */
267 void
268 sched_pstats_hook(struct lwp *l, int batch)
269 {
270 fixpt_t loadfac;
271 int sleeptm;
272
273 /*
274 * If the LWP has slept an entire second, stop recalculating
275 * its priority until it wakes up.
276 */
277 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
278 l->l_stat == LSSUSPENDED) {
279 l->l_slptime++;
280 sleeptm = 1;
281 } else {
282 sleeptm = 0x7fffffff;
283 }
284
285 if (l->l_slptime <= sleeptm) {
286 loadfac = 2 * (averunnable.ldavg[0]);
287 l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
288 resetpriority(l);
289 }
290 }
291
292 /*
293 * Recalculate the priority of a process after it has slept for a while.
294 */
295 static void
296 updatepri(struct lwp *l)
297 {
298 fixpt_t loadfac;
299
300 KASSERT(lwp_locked(l, NULL));
301 KASSERT(l->l_slptime > 1);
302
303 loadfac = loadfactor(averunnable.ldavg[0]);
304
305 l->l_slptime--; /* the first time was done in sched_pstats */
306 l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
307 resetpriority(l);
308 }
309
310 void
311 sched_rqinit(void)
312 {
313
314 }
315
316 void
317 sched_setrunnable(struct lwp *l)
318 {
319
320 if (l->l_slptime > 1)
321 updatepri(l);
322 }
323
324 void
325 sched_nice(struct proc *p, int n)
326 {
327 struct lwp *l;
328
329 KASSERT(mutex_owned(p->p_lock));
330
331 p->p_nice = n;
332 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
333 lwp_lock(l);
334 resetpriority(l);
335 lwp_unlock(l);
336 }
337 }
338
339 /*
340 * Recompute the priority of an LWP. Arrange to reschedule if
341 * the resulting priority is better than that of the current LWP.
342 */
343 static void
344 resetpriority(struct lwp *l)
345 {
346 pri_t pri;
347 struct proc *p = l->l_proc;
348
349 KASSERT(lwp_locked(l, NULL));
350
351 if (l->l_class != SCHED_OTHER)
352 return;
353
354 /* See comments above ESTCPU_SHIFT definition. */
355 pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
356 pri = imax(pri, 0);
357 if (pri != l->l_priority)
358 lwp_changepri(l, pri);
359 }
360
361 /*
362 * We adjust the priority of the current process. The priority of a process
363 * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
364 * is increased here. The formula for computing priorities (in kern_synch.c)
365 * will compute a different value each time l_estcpu increases. This can
366 * cause a switch, but unless the priority crosses a PPQ boundary the actual
367 * queue will not change. The CPU usage estimator ramps up quite quickly
368 * when the process is running (linearly), and decays away exponentially, at
369 * a rate which is proportionally slower when the system is busy. The basic
370 * principle is that the system will 90% forget that the process used a lot
371 * of CPU time in 5 * loadav seconds. This causes the system to favor
372 * processes which haven't run much recently, and to round-robin among other
373 * processes.
374 */
375
376 void
377 sched_schedclock(struct lwp *l)
378 {
379
380 if (l->l_class != SCHED_OTHER)
381 return;
382
383 KASSERT(!CURCPU_IDLE_P());
384 l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
385 lwp_lock(l);
386 resetpriority(l);
387 lwp_unlock(l);
388 }
389
390 /*
391 * sched_proc_fork:
392 *
393 * Inherit the parent's scheduler history.
394 */
395 void
396 sched_proc_fork(struct proc *parent, struct proc *child)
397 {
398 lwp_t *pl;
399
400 KASSERT(mutex_owned(parent->p_lock));
401
402 pl = LIST_FIRST(&parent->p_lwps);
403 child->p_estcpu_inherited = pl->l_estcpu;
404 child->p_forktime = sched_pstats_ticks;
405 }
406
407 /*
408 * sched_proc_exit:
409 *
410 * Chargeback parents for the sins of their children.
411 */
412 void
413 sched_proc_exit(struct proc *parent, struct proc *child)
414 {
415 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
416 fixpt_t estcpu;
417 lwp_t *pl, *cl;
418
419 /* XXX Only if parent != init?? */
420
421 mutex_enter(parent->p_lock);
422 pl = LIST_FIRST(&parent->p_lwps);
423 cl = LIST_FIRST(&child->p_lwps);
424 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
425 sched_pstats_ticks - child->p_forktime);
426 if (cl->l_estcpu > estcpu) {
427 lwp_lock(pl);
428 pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
429 lwp_unlock(pl);
430 }
431 mutex_exit(parent->p_lock);
432 }
433
434 void
435 sched_wakeup(struct lwp *l)
436 {
437
438 }
439
440 void
441 sched_slept(struct lwp *l)
442 {
443
444 }
445
446 void
447 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
448 {
449
450 l2->l_estcpu = l1->l_estcpu;
451 }
452
453 void
454 sched_lwp_exit(struct lwp *l)
455 {
456
457 }
458
459 void
460 sched_lwp_collect(struct lwp *t)
461 {
462 lwp_t *l;
463
464 /* Absorb estcpu value of collected LWP. */
465 l = curlwp;
466 lwp_lock(l);
467 l->l_estcpu += t->l_estcpu;
468 lwp_unlock(l);
469 }
470
471 void
472 sched_oncpu(lwp_t *l)
473 {
474
475 }
476
477 void
478 sched_newts(lwp_t *l)
479 {
480
481 }
482
483 /*
484 * Sysctl nodes and initialization.
485 */
486
487 static int
488 sysctl_sched_rtts(SYSCTLFN_ARGS)
489 {
490 struct sysctlnode node;
491 int rttsms = hztoms(rrticks);
492
493 node = *rnode;
494 node.sysctl_data = &rttsms;
495 return sysctl_lookup(SYSCTLFN_CALL(&node));
496 }
497
498 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
499 {
500 const struct sysctlnode *node = NULL;
501
502 sysctl_createv(clog, 0, NULL, NULL,
503 CTLFLAG_PERMANENT,
504 CTLTYPE_NODE, "kern", NULL,
505 NULL, 0, NULL, 0,
506 CTL_KERN, CTL_EOL);
507 sysctl_createv(clog, 0, NULL, &node,
508 CTLFLAG_PERMANENT,
509 CTLTYPE_NODE, "sched",
510 SYSCTL_DESCR("Scheduler options"),
511 NULL, 0, NULL, 0,
512 CTL_KERN, CTL_CREATE, CTL_EOL);
513
514 if (node == NULL)
515 return;
516
517 rrticks = hz / 10;
518
519 sysctl_createv(NULL, 0, &node, NULL,
520 CTLFLAG_PERMANENT,
521 CTLTYPE_STRING, "name", NULL,
522 NULL, 0, __UNCONST("4.4BSD"), 0,
523 CTL_CREATE, CTL_EOL);
524 sysctl_createv(NULL, 0, &node, NULL,
525 CTLFLAG_PERMANENT,
526 CTLTYPE_INT, "rtts",
527 SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
528 sysctl_sched_rtts, 0, NULL, 0,
529 CTL_CREATE, CTL_EOL);
530 }
531