Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.22
      1 /*	$NetBSD: sched_4bsd.c,v 1.22 2008/05/19 12:48:54 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.22 2008/05/19 12:48:54 rmind Exp $");
     72 
     73 #include "opt_ddb.h"
     74 #include "opt_lockdebug.h"
     75 #include "opt_perfctrs.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/callout.h>
     80 #include <sys/cpu.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/sched.h>
     86 #include <sys/sysctl.h>
     87 #include <sys/kauth.h>
     88 #include <sys/lockdebug.h>
     89 #include <sys/kmem.h>
     90 #include <sys/intr.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 static void updatepri(struct lwp *);
     95 static void resetpriority(struct lwp *);
     96 
     97 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     98 
     99 /* Number of hardclock ticks per sched_tick() */
    100 static int rrticks;
    101 
    102 /*
    103  * Force switch among equal priority processes every 100ms.
    104  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    105  *
    106  * There's no need to lock anywhere in this routine, as it's
    107  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    108  */
    109 /* ARGSUSED */
    110 void
    111 sched_tick(struct cpu_info *ci)
    112 {
    113 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    114 
    115 	spc->spc_ticks = rrticks;
    116 
    117 	if (CURCPU_IDLE_P()) {
    118 		cpu_need_resched(ci, 0);
    119 		return;
    120 	}
    121 	if (curlwp->l_class == SCHED_FIFO) {
    122 		return;
    123 	}
    124 	if (spc->spc_flags & SPCF_SEENRR) {
    125 		/*
    126 		 * The process has already been through a roundrobin
    127 		 * without switching and may be hogging the CPU.
    128 		 * Indicate that the process should yield.
    129 		 */
    130 		spc->spc_flags |= SPCF_SHOULDYIELD;
    131 		cpu_need_resched(ci, 0);
    132 	} else
    133 		spc->spc_flags |= SPCF_SEENRR;
    134 }
    135 
    136 /*
    137  * Why PRIO_MAX - 2? From setpriority(2):
    138  *
    139  *	prio is a value in the range -20 to 20.  The default priority is
    140  *	0; lower priorities cause more favorable scheduling.  A value of
    141  *	19 or 20 will schedule a process only when nothing at priority <=
    142  *	0 is runnable.
    143  *
    144  * This gives estcpu influence over 18 priority levels, and leaves nice
    145  * with 40 levels.  One way to think about it is that nice has 20 levels
    146  * either side of estcpu's 18.
    147  */
    148 #define	ESTCPU_SHIFT	11
    149 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    150 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    151 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    152 
    153 /*
    154  * Constants for digital decay and forget:
    155  *	90% of (l_estcpu) usage in 5 * loadav time
    156  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    157  *          Note that, as ps(1) mentions, this can let percentages
    158  *          total over 100% (I've seen 137.9% for 3 processes).
    159  *
    160  * Note that hardclock updates l_estcpu and l_cpticks independently.
    161  *
    162  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    163  * That is, the system wants to compute a value of decay such
    164  * that the following for loop:
    165  * 	for (i = 0; i < (5 * loadavg); i++)
    166  * 		l_estcpu *= decay;
    167  * will compute
    168  * 	l_estcpu *= 0.1;
    169  * for all values of loadavg:
    170  *
    171  * Mathematically this loop can be expressed by saying:
    172  * 	decay ** (5 * loadavg) ~= .1
    173  *
    174  * The system computes decay as:
    175  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    176  *
    177  * We wish to prove that the system's computation of decay
    178  * will always fulfill the equation:
    179  * 	decay ** (5 * loadavg) ~= .1
    180  *
    181  * If we compute b as:
    182  * 	b = 2 * loadavg
    183  * then
    184  * 	decay = b / (b + 1)
    185  *
    186  * We now need to prove two things:
    187  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    188  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    189  *
    190  * Facts:
    191  *         For x close to zero, exp(x) =~ 1 + x, since
    192  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    193  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    194  *         For x close to zero, ln(1+x) =~ x, since
    195  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    196  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    197  *         ln(.1) =~ -2.30
    198  *
    199  * Proof of (1):
    200  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    201  *	solving for factor,
    202  *      ln(factor) =~ (-2.30/5*loadav), or
    203  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    204  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    205  *
    206  * Proof of (2):
    207  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    208  *	solving for power,
    209  *      power*ln(b/(b+1)) =~ -2.30, or
    210  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    211  *
    212  * Actual power values for the implemented algorithm are as follows:
    213  *      loadav: 1       2       3       4
    214  *      power:  5.68    10.32   14.94   19.55
    215  */
    216 
    217 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    218 #define	loadfactor(loadav)	(2 * (loadav))
    219 
    220 static fixpt_t
    221 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    222 {
    223 
    224 	if (estcpu == 0) {
    225 		return 0;
    226 	}
    227 
    228 #if !defined(_LP64)
    229 	/* avoid 64bit arithmetics. */
    230 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    231 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    232 		return estcpu * loadfac / (loadfac + FSCALE);
    233 	}
    234 #endif /* !defined(_LP64) */
    235 
    236 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    237 }
    238 
    239 /*
    240  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    241  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    242  * less than (1 << ESTCPU_SHIFT).
    243  *
    244  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    245  */
    246 static fixpt_t
    247 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    248 {
    249 
    250 	if ((n << FSHIFT) >= 7 * loadfac) {
    251 		return 0;
    252 	}
    253 
    254 	while (estcpu != 0 && n > 1) {
    255 		estcpu = decay_cpu(loadfac, estcpu);
    256 		n--;
    257 	}
    258 
    259 	return estcpu;
    260 }
    261 
    262 /*
    263  * sched_pstats_hook:
    264  *
    265  * Periodically called from sched_pstats(); used to recalculate priorities.
    266  */
    267 void
    268 sched_pstats_hook(struct lwp *l, int batch)
    269 {
    270 	fixpt_t loadfac;
    271 	int sleeptm;
    272 
    273 	/*
    274 	 * If the LWP has slept an entire second, stop recalculating
    275 	 * its priority until it wakes up.
    276 	 */
    277 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    278 	    l->l_stat == LSSUSPENDED) {
    279 		l->l_slptime++;
    280 		sleeptm = 1;
    281 	} else {
    282 		sleeptm = 0x7fffffff;
    283 	}
    284 
    285 	if (l->l_slptime <= sleeptm) {
    286 		loadfac = 2 * (averunnable.ldavg[0]);
    287 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    288 		resetpriority(l);
    289 	}
    290 }
    291 
    292 /*
    293  * Recalculate the priority of a process after it has slept for a while.
    294  */
    295 static void
    296 updatepri(struct lwp *l)
    297 {
    298 	fixpt_t loadfac;
    299 
    300 	KASSERT(lwp_locked(l, NULL));
    301 	KASSERT(l->l_slptime > 1);
    302 
    303 	loadfac = loadfactor(averunnable.ldavg[0]);
    304 
    305 	l->l_slptime--; /* the first time was done in sched_pstats */
    306 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    307 	resetpriority(l);
    308 }
    309 
    310 void
    311 sched_rqinit(void)
    312 {
    313 
    314 }
    315 
    316 void
    317 sched_setrunnable(struct lwp *l)
    318 {
    319 
    320  	if (l->l_slptime > 1)
    321  		updatepri(l);
    322 }
    323 
    324 void
    325 sched_nice(struct proc *p, int n)
    326 {
    327 	struct lwp *l;
    328 
    329 	KASSERT(mutex_owned(p->p_lock));
    330 
    331 	p->p_nice = n;
    332 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    333 		lwp_lock(l);
    334 		resetpriority(l);
    335 		lwp_unlock(l);
    336 	}
    337 }
    338 
    339 /*
    340  * Recompute the priority of an LWP.  Arrange to reschedule if
    341  * the resulting priority is better than that of the current LWP.
    342  */
    343 static void
    344 resetpriority(struct lwp *l)
    345 {
    346 	pri_t pri;
    347 	struct proc *p = l->l_proc;
    348 
    349 	KASSERT(lwp_locked(l, NULL));
    350 
    351 	if (l->l_class != SCHED_OTHER)
    352 		return;
    353 
    354 	/* See comments above ESTCPU_SHIFT definition. */
    355 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    356 	pri = imax(pri, 0);
    357 	if (pri != l->l_priority)
    358 		lwp_changepri(l, pri);
    359 }
    360 
    361 /*
    362  * We adjust the priority of the current process.  The priority of a process
    363  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    364  * is increased here.  The formula for computing priorities (in kern_synch.c)
    365  * will compute a different value each time l_estcpu increases. This can
    366  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    367  * queue will not change.  The CPU usage estimator ramps up quite quickly
    368  * when the process is running (linearly), and decays away exponentially, at
    369  * a rate which is proportionally slower when the system is busy.  The basic
    370  * principle is that the system will 90% forget that the process used a lot
    371  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    372  * processes which haven't run much recently, and to round-robin among other
    373  * processes.
    374  */
    375 
    376 void
    377 sched_schedclock(struct lwp *l)
    378 {
    379 
    380 	if (l->l_class != SCHED_OTHER)
    381 		return;
    382 
    383 	KASSERT(!CURCPU_IDLE_P());
    384 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    385 	lwp_lock(l);
    386 	resetpriority(l);
    387 	lwp_unlock(l);
    388 }
    389 
    390 /*
    391  * sched_proc_fork:
    392  *
    393  *	Inherit the parent's scheduler history.
    394  */
    395 void
    396 sched_proc_fork(struct proc *parent, struct proc *child)
    397 {
    398 	lwp_t *pl;
    399 
    400 	KASSERT(mutex_owned(parent->p_lock));
    401 
    402 	pl = LIST_FIRST(&parent->p_lwps);
    403 	child->p_estcpu_inherited = pl->l_estcpu;
    404 	child->p_forktime = sched_pstats_ticks;
    405 }
    406 
    407 /*
    408  * sched_proc_exit:
    409  *
    410  *	Chargeback parents for the sins of their children.
    411  */
    412 void
    413 sched_proc_exit(struct proc *parent, struct proc *child)
    414 {
    415 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    416 	fixpt_t estcpu;
    417 	lwp_t *pl, *cl;
    418 
    419 	/* XXX Only if parent != init?? */
    420 
    421 	mutex_enter(parent->p_lock);
    422 	pl = LIST_FIRST(&parent->p_lwps);
    423 	cl = LIST_FIRST(&child->p_lwps);
    424 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    425 	    sched_pstats_ticks - child->p_forktime);
    426 	if (cl->l_estcpu > estcpu) {
    427 		lwp_lock(pl);
    428 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    429 		lwp_unlock(pl);
    430 	}
    431 	mutex_exit(parent->p_lock);
    432 }
    433 
    434 void
    435 sched_wakeup(struct lwp *l)
    436 {
    437 
    438 }
    439 
    440 void
    441 sched_slept(struct lwp *l)
    442 {
    443 
    444 }
    445 
    446 void
    447 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    448 {
    449 
    450 	l2->l_estcpu = l1->l_estcpu;
    451 }
    452 
    453 void
    454 sched_lwp_exit(struct lwp *l)
    455 {
    456 
    457 }
    458 
    459 void
    460 sched_lwp_collect(struct lwp *t)
    461 {
    462 	lwp_t *l;
    463 
    464 	/* Absorb estcpu value of collected LWP. */
    465 	l = curlwp;
    466 	lwp_lock(l);
    467 	l->l_estcpu += t->l_estcpu;
    468 	lwp_unlock(l);
    469 }
    470 
    471 void
    472 sched_oncpu(lwp_t *l)
    473 {
    474 
    475 }
    476 
    477 void
    478 sched_newts(lwp_t *l)
    479 {
    480 
    481 }
    482 
    483 /*
    484  * Sysctl nodes and initialization.
    485  */
    486 
    487 static int
    488 sysctl_sched_rtts(SYSCTLFN_ARGS)
    489 {
    490 	struct sysctlnode node;
    491 	int rttsms = hztoms(rrticks);
    492 
    493 	node = *rnode;
    494 	node.sysctl_data = &rttsms;
    495 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    496 }
    497 
    498 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    499 {
    500 	const struct sysctlnode *node = NULL;
    501 
    502 	sysctl_createv(clog, 0, NULL, NULL,
    503 		CTLFLAG_PERMANENT,
    504 		CTLTYPE_NODE, "kern", NULL,
    505 		NULL, 0, NULL, 0,
    506 		CTL_KERN, CTL_EOL);
    507 	sysctl_createv(clog, 0, NULL, &node,
    508 		CTLFLAG_PERMANENT,
    509 		CTLTYPE_NODE, "sched",
    510 		SYSCTL_DESCR("Scheduler options"),
    511 		NULL, 0, NULL, 0,
    512 		CTL_KERN, CTL_CREATE, CTL_EOL);
    513 
    514 	if (node == NULL)
    515 		return;
    516 
    517 	rrticks = hz / 10;
    518 
    519 	sysctl_createv(NULL, 0, &node, NULL,
    520 		CTLFLAG_PERMANENT,
    521 		CTLTYPE_STRING, "name", NULL,
    522 		NULL, 0, __UNCONST("4.4BSD"), 0,
    523 		CTL_CREATE, CTL_EOL);
    524 	sysctl_createv(NULL, 0, &node, NULL,
    525 		CTLFLAG_PERMANENT,
    526 		CTLTYPE_INT, "rtts",
    527 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    528 		sysctl_sched_rtts, 0, NULL, 0,
    529 		CTL_CREATE, CTL_EOL);
    530 }
    531