Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.28.8.1
      1 /*	$NetBSD: sched_4bsd.c,v 1.28.8.1 2014/08/20 00:04:29 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.28.8.1 2014/08/20 00:04:29 tls Exp $");
     72 
     73 #include "opt_ddb.h"
     74 #include "opt_lockdebug.h"
     75 #include "opt_perfctrs.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/callout.h>
     80 #include <sys/cpu.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/sched.h>
     86 #include <sys/sysctl.h>
     87 #include <sys/kauth.h>
     88 #include <sys/lockdebug.h>
     89 #include <sys/kmem.h>
     90 #include <sys/intr.h>
     91 
     92 static void updatepri(struct lwp *);
     93 static void resetpriority(struct lwp *);
     94 
     95 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     96 
     97 /* Number of hardclock ticks per sched_tick() */
     98 static int rrticks;
     99 
    100 /*
    101  * Force switch among equal priority processes every 100ms.
    102  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    103  *
    104  * There's no need to lock anywhere in this routine, as it's
    105  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    106  */
    107 /* ARGSUSED */
    108 void
    109 sched_tick(struct cpu_info *ci)
    110 {
    111 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    112 	lwp_t *l;
    113 
    114 	spc->spc_ticks = rrticks;
    115 
    116 	if (CURCPU_IDLE_P()) {
    117 		cpu_need_resched(ci, 0);
    118 		return;
    119 	}
    120 	l = ci->ci_data.cpu_onproc;
    121 	if (l == NULL) {
    122 		return;
    123 	}
    124 	switch (l->l_class) {
    125 	case SCHED_FIFO:
    126 		/* No timeslicing for FIFO jobs. */
    127 		break;
    128 	case SCHED_RR:
    129 		/* Force it into mi_switch() to look for other jobs to run. */
    130 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    131 		break;
    132 	default:
    133 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    134 			/*
    135 			 * Process is stuck in kernel somewhere, probably
    136 			 * due to buggy or inefficient code.  Force a
    137 			 * kernel preemption.
    138 			 */
    139 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    140 		} else if (spc->spc_flags & SPCF_SEENRR) {
    141 			/*
    142 			 * The process has already been through a roundrobin
    143 			 * without switching and may be hogging the CPU.
    144 			 * Indicate that the process should yield.
    145 			 */
    146 			spc->spc_flags |= SPCF_SHOULDYIELD;
    147 			cpu_need_resched(ci, 0);
    148 		} else {
    149 			spc->spc_flags |= SPCF_SEENRR;
    150 		}
    151 		break;
    152 	}
    153 }
    154 
    155 /*
    156  * Why PRIO_MAX - 2? From setpriority(2):
    157  *
    158  *	prio is a value in the range -20 to 20.  The default priority is
    159  *	0; lower priorities cause more favorable scheduling.  A value of
    160  *	19 or 20 will schedule a process only when nothing at priority <=
    161  *	0 is runnable.
    162  *
    163  * This gives estcpu influence over 18 priority levels, and leaves nice
    164  * with 40 levels.  One way to think about it is that nice has 20 levels
    165  * either side of estcpu's 18.
    166  */
    167 #define	ESTCPU_SHIFT	11
    168 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    169 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    170 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    171 
    172 /*
    173  * Constants for digital decay and forget:
    174  *	90% of (l_estcpu) usage in 5 * loadav time
    175  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    176  *          Note that, as ps(1) mentions, this can let percentages
    177  *          total over 100% (I've seen 137.9% for 3 processes).
    178  *
    179  * Note that hardclock updates l_estcpu and l_cpticks independently.
    180  *
    181  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    182  * That is, the system wants to compute a value of decay such
    183  * that the following for loop:
    184  * 	for (i = 0; i < (5 * loadavg); i++)
    185  * 		l_estcpu *= decay;
    186  * will compute
    187  * 	l_estcpu *= 0.1;
    188  * for all values of loadavg:
    189  *
    190  * Mathematically this loop can be expressed by saying:
    191  * 	decay ** (5 * loadavg) ~= .1
    192  *
    193  * The system computes decay as:
    194  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    195  *
    196  * We wish to prove that the system's computation of decay
    197  * will always fulfill the equation:
    198  * 	decay ** (5 * loadavg) ~= .1
    199  *
    200  * If we compute b as:
    201  * 	b = 2 * loadavg
    202  * then
    203  * 	decay = b / (b + 1)
    204  *
    205  * We now need to prove two things:
    206  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    207  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    208  *
    209  * Facts:
    210  *         For x close to zero, exp(x) =~ 1 + x, since
    211  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    212  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    213  *         For x close to zero, ln(1+x) =~ x, since
    214  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    215  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    216  *         ln(.1) =~ -2.30
    217  *
    218  * Proof of (1):
    219  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    220  *	solving for factor,
    221  *      ln(factor) =~ (-2.30/5*loadav), or
    222  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    223  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    224  *
    225  * Proof of (2):
    226  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    227  *	solving for power,
    228  *      power*ln(b/(b+1)) =~ -2.30, or
    229  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    230  *
    231  * Actual power values for the implemented algorithm are as follows:
    232  *      loadav: 1       2       3       4
    233  *      power:  5.68    10.32   14.94   19.55
    234  */
    235 
    236 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    237 #define	loadfactor(loadav)	(2 * (loadav) / ncpu)
    238 
    239 static fixpt_t
    240 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    241 {
    242 
    243 	if (estcpu == 0) {
    244 		return 0;
    245 	}
    246 
    247 #if !defined(_LP64)
    248 	/* avoid 64bit arithmetics. */
    249 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    250 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    251 		return estcpu * loadfac / (loadfac + FSCALE);
    252 	}
    253 #endif /* !defined(_LP64) */
    254 
    255 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    256 }
    257 
    258 /*
    259  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    260  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    261  * less than (1 << ESTCPU_SHIFT).
    262  *
    263  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    264  */
    265 static fixpt_t
    266 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    267 {
    268 
    269 	if ((n << FSHIFT) >= 7 * loadfac) {
    270 		return 0;
    271 	}
    272 
    273 	while (estcpu != 0 && n > 1) {
    274 		estcpu = decay_cpu(loadfac, estcpu);
    275 		n--;
    276 	}
    277 
    278 	return estcpu;
    279 }
    280 
    281 /*
    282  * sched_pstats_hook:
    283  *
    284  * Periodically called from sched_pstats(); used to recalculate priorities.
    285  */
    286 void
    287 sched_pstats_hook(struct lwp *l, int batch)
    288 {
    289 	fixpt_t loadfac;
    290 
    291 	/*
    292 	 * If the LWP has slept an entire second, stop recalculating
    293 	 * its priority until it wakes up.
    294 	 */
    295 	KASSERT(lwp_locked(l, NULL));
    296 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    297 	    l->l_stat == LSSUSPENDED) {
    298 		if (l->l_slptime > 1) {
    299 			return;
    300 		}
    301 	}
    302 	loadfac = 2 * (averunnable.ldavg[0]);
    303 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    304 	resetpriority(l);
    305 }
    306 
    307 /*
    308  * Recalculate the priority of a process after it has slept for a while.
    309  */
    310 static void
    311 updatepri(struct lwp *l)
    312 {
    313 	fixpt_t loadfac;
    314 
    315 	KASSERT(lwp_locked(l, NULL));
    316 	KASSERT(l->l_slptime > 1);
    317 
    318 	loadfac = loadfactor(averunnable.ldavg[0]);
    319 
    320 	l->l_slptime--; /* the first time was done in sched_pstats */
    321 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    322 	resetpriority(l);
    323 }
    324 
    325 void
    326 sched_rqinit(void)
    327 {
    328 
    329 }
    330 
    331 void
    332 sched_setrunnable(struct lwp *l)
    333 {
    334 
    335  	if (l->l_slptime > 1)
    336  		updatepri(l);
    337 }
    338 
    339 void
    340 sched_nice(struct proc *p, int n)
    341 {
    342 	struct lwp *l;
    343 
    344 	KASSERT(mutex_owned(p->p_lock));
    345 
    346 	p->p_nice = n;
    347 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    348 		lwp_lock(l);
    349 		resetpriority(l);
    350 		lwp_unlock(l);
    351 	}
    352 }
    353 
    354 /*
    355  * Recompute the priority of an LWP.  Arrange to reschedule if
    356  * the resulting priority is better than that of the current LWP.
    357  */
    358 static void
    359 resetpriority(struct lwp *l)
    360 {
    361 	pri_t pri;
    362 	struct proc *p = l->l_proc;
    363 
    364 	KASSERT(lwp_locked(l, NULL));
    365 
    366 	if (l->l_class != SCHED_OTHER)
    367 		return;
    368 
    369 	/* See comments above ESTCPU_SHIFT definition. */
    370 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    371 	pri = imax(pri, 0);
    372 	if (pri != l->l_priority)
    373 		lwp_changepri(l, pri);
    374 }
    375 
    376 /*
    377  * We adjust the priority of the current LWP.  The priority of a LWP
    378  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    379  * is increased here.  The formula for computing priorities will compute a
    380  * different value each time l_estcpu increases. This can cause a switch,
    381  * but unless the priority crosses a PPQ boundary the actual queue will not
    382  * change.  The CPU usage estimator ramps up quite quickly when the process
    383  * is running (linearly), and decays away exponentially, at a rate which is
    384  * proportionally slower when the system is busy.  The basic principle is
    385  * that the system will 90% forget that the process used a lot of CPU time
    386  * in 5 * loadav seconds.  This causes the system to favor processes which
    387  * haven't run much recently, and to round-robin among other processes.
    388  */
    389 
    390 void
    391 sched_schedclock(struct lwp *l)
    392 {
    393 
    394 	if (l->l_class != SCHED_OTHER)
    395 		return;
    396 
    397 	KASSERT(!CURCPU_IDLE_P());
    398 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    399 	lwp_lock(l);
    400 	resetpriority(l);
    401 	lwp_unlock(l);
    402 }
    403 
    404 /*
    405  * sched_proc_fork:
    406  *
    407  *	Inherit the parent's scheduler history.
    408  */
    409 void
    410 sched_proc_fork(struct proc *parent, struct proc *child)
    411 {
    412 	lwp_t *pl;
    413 
    414 	KASSERT(mutex_owned(parent->p_lock));
    415 
    416 	pl = LIST_FIRST(&parent->p_lwps);
    417 	child->p_estcpu_inherited = pl->l_estcpu;
    418 	child->p_forktime = sched_pstats_ticks;
    419 }
    420 
    421 /*
    422  * sched_proc_exit:
    423  *
    424  *	Chargeback parents for the sins of their children.
    425  */
    426 void
    427 sched_proc_exit(struct proc *parent, struct proc *child)
    428 {
    429 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    430 	fixpt_t estcpu;
    431 	lwp_t *pl, *cl;
    432 
    433 	/* XXX Only if parent != init?? */
    434 
    435 	mutex_enter(parent->p_lock);
    436 	pl = LIST_FIRST(&parent->p_lwps);
    437 	cl = LIST_FIRST(&child->p_lwps);
    438 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    439 	    sched_pstats_ticks - child->p_forktime);
    440 	if (cl->l_estcpu > estcpu) {
    441 		lwp_lock(pl);
    442 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    443 		lwp_unlock(pl);
    444 	}
    445 	mutex_exit(parent->p_lock);
    446 }
    447 
    448 void
    449 sched_wakeup(struct lwp *l)
    450 {
    451 
    452 }
    453 
    454 void
    455 sched_slept(struct lwp *l)
    456 {
    457 
    458 }
    459 
    460 void
    461 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    462 {
    463 
    464 	l2->l_estcpu = l1->l_estcpu;
    465 }
    466 
    467 void
    468 sched_lwp_collect(struct lwp *t)
    469 {
    470 	lwp_t *l;
    471 
    472 	/* Absorb estcpu value of collected LWP. */
    473 	l = curlwp;
    474 	lwp_lock(l);
    475 	l->l_estcpu += t->l_estcpu;
    476 	lwp_unlock(l);
    477 }
    478 
    479 void
    480 sched_oncpu(lwp_t *l)
    481 {
    482 
    483 }
    484 
    485 void
    486 sched_newts(lwp_t *l)
    487 {
    488 
    489 }
    490 
    491 /*
    492  * Sysctl nodes and initialization.
    493  */
    494 
    495 static int
    496 sysctl_sched_rtts(SYSCTLFN_ARGS)
    497 {
    498 	struct sysctlnode node;
    499 	int rttsms = hztoms(rrticks);
    500 
    501 	node = *rnode;
    502 	node.sysctl_data = &rttsms;
    503 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    504 }
    505 
    506 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    507 {
    508 	const struct sysctlnode *node = NULL;
    509 
    510 	sysctl_createv(clog, 0, NULL, &node,
    511 		CTLFLAG_PERMANENT,
    512 		CTLTYPE_NODE, "sched",
    513 		SYSCTL_DESCR("Scheduler options"),
    514 		NULL, 0, NULL, 0,
    515 		CTL_KERN, CTL_CREATE, CTL_EOL);
    516 
    517 	if (node == NULL)
    518 		return;
    519 
    520 	rrticks = hz / 10;
    521 
    522 	sysctl_createv(NULL, 0, &node, NULL,
    523 		CTLFLAG_PERMANENT,
    524 		CTLTYPE_STRING, "name", NULL,
    525 		NULL, 0, __UNCONST("4.4BSD"), 0,
    526 		CTL_CREATE, CTL_EOL);
    527 	sysctl_createv(NULL, 0, &node, NULL,
    528 		CTLFLAG_PERMANENT,
    529 		CTLTYPE_INT, "rtts",
    530 		SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
    531 		sysctl_sched_rtts, 0, NULL, 0,
    532 		CTL_CREATE, CTL_EOL);
    533 }
    534