sched_4bsd.c revision 1.33.4.1 1 /* $NetBSD: sched_4bsd.c,v 1.33.4.1 2018/07/28 04:38:08 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.33.4.1 2018/07/28 04:38:08 pgoyette Exp $");
72
73 #include "opt_ddb.h"
74 #include "opt_lockdebug.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/cpu.h>
80 #include <sys/proc.h>
81 #include <sys/kernel.h>
82 #include <sys/resourcevar.h>
83 #include <sys/sched.h>
84 #include <sys/sysctl.h>
85 #include <sys/lockdebug.h>
86 #include <sys/intr.h>
87
88 static void updatepri(struct lwp *);
89 static void resetpriority(struct lwp *);
90
91 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
92
93 /* Number of hardclock ticks per sched_tick() */
94 static int rrticks __read_mostly;
95
96 /*
97 * Force switch among equal priority processes every 100ms.
98 * Called from hardclock every hz/10 == rrticks hardclock ticks.
99 *
100 * There's no need to lock anywhere in this routine, as it's
101 * CPU-local and runs at IPL_SCHED (called from clock interrupt).
102 */
103 /* ARGSUSED */
104 void
105 sched_tick(struct cpu_info *ci)
106 {
107 struct schedstate_percpu *spc = &ci->ci_schedstate;
108 lwp_t *l;
109
110 spc->spc_ticks = rrticks;
111
112 if (CURCPU_IDLE_P()) {
113 cpu_need_resched(ci, 0);
114 return;
115 }
116 l = ci->ci_data.cpu_onproc;
117 if (l == NULL) {
118 return;
119 }
120 switch (l->l_class) {
121 case SCHED_FIFO:
122 /* No timeslicing for FIFO jobs. */
123 break;
124 case SCHED_RR:
125 /* Force it into mi_switch() to look for other jobs to run. */
126 cpu_need_resched(ci, RESCHED_KPREEMPT);
127 break;
128 default:
129 if (spc->spc_flags & SPCF_SHOULDYIELD) {
130 /*
131 * Process is stuck in kernel somewhere, probably
132 * due to buggy or inefficient code. Force a
133 * kernel preemption.
134 */
135 cpu_need_resched(ci, RESCHED_KPREEMPT);
136 } else if (spc->spc_flags & SPCF_SEENRR) {
137 /*
138 * The process has already been through a roundrobin
139 * without switching and may be hogging the CPU.
140 * Indicate that the process should yield.
141 */
142 spc->spc_flags |= SPCF_SHOULDYIELD;
143 cpu_need_resched(ci, 0);
144 } else {
145 spc->spc_flags |= SPCF_SEENRR;
146 }
147 break;
148 }
149 }
150
151 /*
152 * Why PRIO_MAX - 2? From setpriority(2):
153 *
154 * prio is a value in the range -20 to 20. The default priority is
155 * 0; lower priorities cause more favorable scheduling. A value of
156 * 19 or 20 will schedule a process only when nothing at priority <=
157 * 0 is runnable.
158 *
159 * This gives estcpu influence over 18 priority levels, and leaves nice
160 * with 40 levels. One way to think about it is that nice has 20 levels
161 * either side of estcpu's 18.
162 */
163 #define ESTCPU_SHIFT 11
164 #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
165 #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
166 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
167
168 /*
169 * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
170 * of the recent CPU utilization of the thread.
171 *
172 * l_estcpu is:
173 * - increased each time the hardclock ticks and the thread is found to
174 * be executing, in sched_schedclock() called from hardclock()
175 * - decreased (filtered) on each sched tick, in sched_pstats_hook()
176 * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
177 * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
178 * (ie, we decrease it n times).
179 *
180 * Note that hardclock updates l_estcpu and l_cpticks independently.
181 *
182 * -----------------------------------------------------------------------------
183 *
184 * Here we describe how l_estcpu is decreased.
185 *
186 * Constants for digital decay (filter):
187 * 90% of l_estcpu usage in (5 * loadavg) seconds
188 *
189 * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
190 * want to compute a value of decay such that the following loop:
191 * for (i = 0; i < (5 * loadavg); i++)
192 * l_estcpu *= decay;
193 * will result in
194 * l_estcpu *= 0.1;
195 * for all values of loadavg.
196 *
197 * Mathematically this loop can be expressed by saying:
198 * decay ** (5 * loadavg) ~= .1
199 *
200 * And finally, the corresponding value of decay we're using is:
201 * decay = (2 * loadavg) / (2 * loadavg + 1)
202 *
203 * -----------------------------------------------------------------------------
204 *
205 * Now, let's prove that the value of decay stated above will always fulfill
206 * the equation:
207 * decay ** (5 * loadavg) ~= .1
208 *
209 * If we compute b as:
210 * b = 2 * loadavg
211 * then
212 * decay = b / (b + 1)
213 *
214 * We now need to prove two things:
215 * 1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
216 * 2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
217 *
218 * Facts:
219 * * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
220 * Therefore, for x close to zero, exp(x) =~ 1 + x.
221 * In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
222 *
223 * * For b large enough, (b-1)/b =~ b/(b+1).
224 *
225 * * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
226 * Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
227 *
228 * * ln(0.1) =~ -2.30
229 *
230 * Proof of (1):
231 * factor ** (5 * loadavg) =~ 0.1
232 * => ln(factor) =~ -2.30 / (5 * loadavg)
233 * => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
234 * =~ exp(-1 / (2 * loadavg))
235 * =~ exp(-1 / b)
236 * =~ (b - 1) / b
237 * =~ b / (b + 1)
238 * =~ (2 * loadavg) / ((2 * loadavg) + 1)
239 *
240 * Proof of (2):
241 * (b / (b + 1)) ** power =~ .1
242 * => power * ln(b / (b + 1)) =~ -2.30
243 * => power * (-1 / (b + 1)) =~ -2.30
244 * => power =~ 2.30 * (b + 1)
245 * => power =~ 4.60 * loadavg + 2.30
246 * => power =~ 5 * loadavg
247 *
248 * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
249 */
250
251 /* See calculations above */
252 #define loadfactor(loadavg) (2 * (loadavg))
253
254 static fixpt_t
255 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
256 {
257
258 if (estcpu == 0) {
259 return 0;
260 }
261
262 #if !defined(_LP64)
263 /* avoid 64bit arithmetics. */
264 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
265 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
266 return estcpu * loadfac / (loadfac + FSCALE);
267 }
268 #endif
269
270 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
271 }
272
273 static fixpt_t
274 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
275 {
276
277 /*
278 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
279 * if we slept for at least seven times the loadfactor, we will decay
280 * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
281 * return zero directly.
282 *
283 * Note that our ESTCPU_MAX is actually much smaller than
284 * (255 << ESTCPU_SHIFT).
285 */
286 if ((n << FSHIFT) >= 7 * loadfac) {
287 return 0;
288 }
289
290 while (estcpu != 0 && n > 1) {
291 estcpu = decay_cpu(loadfac, estcpu);
292 n--;
293 }
294
295 return estcpu;
296 }
297
298 /*
299 * sched_pstats_hook:
300 *
301 * Periodically called from sched_pstats(); used to recalculate priorities.
302 */
303 void
304 sched_pstats_hook(struct lwp *l, int batch)
305 {
306 fixpt_t loadfac;
307
308 /*
309 * If the LWP has slept an entire second, stop recalculating
310 * its priority until it wakes up.
311 */
312 KASSERT(lwp_locked(l, NULL));
313 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
314 l->l_stat == LSSUSPENDED) {
315 if (l->l_slptime > 1) {
316 return;
317 }
318 }
319
320 loadfac = loadfactor(averunnable.ldavg[0]);
321 l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
322 resetpriority(l);
323 }
324
325 /*
326 * Recalculate the priority of an LWP after it has slept for a while.
327 */
328 static void
329 updatepri(struct lwp *l)
330 {
331 fixpt_t loadfac;
332
333 KASSERT(lwp_locked(l, NULL));
334 KASSERT(l->l_slptime > 1);
335
336 loadfac = loadfactor(averunnable.ldavg[0]);
337
338 l->l_slptime--; /* the first time was done in sched_pstats */
339 l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
340 resetpriority(l);
341 }
342
343 void
344 sched_rqinit(void)
345 {
346
347 }
348
349 void
350 sched_setrunnable(struct lwp *l)
351 {
352
353 if (l->l_slptime > 1)
354 updatepri(l);
355 }
356
357 void
358 sched_nice(struct proc *p, int n)
359 {
360 struct lwp *l;
361
362 KASSERT(mutex_owned(p->p_lock));
363
364 p->p_nice = n;
365 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
366 lwp_lock(l);
367 resetpriority(l);
368 lwp_unlock(l);
369 }
370 }
371
372 /*
373 * Recompute the priority of an LWP. Arrange to reschedule if
374 * the resulting priority is better than that of the current LWP.
375 */
376 static void
377 resetpriority(struct lwp *l)
378 {
379 pri_t pri;
380 struct proc *p = l->l_proc;
381
382 KASSERT(lwp_locked(l, NULL));
383
384 if (l->l_class != SCHED_OTHER)
385 return;
386
387 /* See comments above ESTCPU_SHIFT definition. */
388 pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
389 pri = imax(pri, 0);
390 if (pri != l->l_priority)
391 lwp_changepri(l, pri);
392 }
393
394 /*
395 * We adjust the priority of the current LWP. The priority of a LWP
396 * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
397 * is increased here. The formula for computing priorities will compute a
398 * different value each time l_estcpu increases. This can cause a switch,
399 * but unless the priority crosses a PPQ boundary the actual queue will not
400 * change. The CPU usage estimator ramps up quite quickly when the process
401 * is running (linearly), and decays away exponentially, at a rate which is
402 * proportionally slower when the system is busy. The basic principle is
403 * that the system will 90% forget that the process used a lot of CPU time
404 * in (5 * loadavg) seconds. This causes the system to favor processes which
405 * haven't run much recently, and to round-robin among other processes.
406 */
407 void
408 sched_schedclock(struct lwp *l)
409 {
410
411 if (l->l_class != SCHED_OTHER)
412 return;
413
414 KASSERT(!CURCPU_IDLE_P());
415 l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
416 lwp_lock(l);
417 resetpriority(l);
418 lwp_unlock(l);
419 }
420
421 /*
422 * sched_proc_fork:
423 *
424 * Inherit the parent's scheduler history.
425 */
426 void
427 sched_proc_fork(struct proc *parent, struct proc *child)
428 {
429 lwp_t *pl;
430
431 KASSERT(mutex_owned(parent->p_lock));
432
433 pl = LIST_FIRST(&parent->p_lwps);
434 child->p_estcpu_inherited = pl->l_estcpu;
435 child->p_forktime = sched_pstats_ticks;
436 }
437
438 /*
439 * sched_proc_exit:
440 *
441 * Chargeback parents for the sins of their children.
442 */
443 void
444 sched_proc_exit(struct proc *parent, struct proc *child)
445 {
446 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
447 fixpt_t estcpu;
448 lwp_t *pl, *cl;
449
450 /* XXX Only if parent != init?? */
451
452 mutex_enter(parent->p_lock);
453 pl = LIST_FIRST(&parent->p_lwps);
454 cl = LIST_FIRST(&child->p_lwps);
455 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
456 sched_pstats_ticks - child->p_forktime);
457 if (cl->l_estcpu > estcpu) {
458 lwp_lock(pl);
459 pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
460 lwp_unlock(pl);
461 }
462 mutex_exit(parent->p_lock);
463 }
464
465 void
466 sched_wakeup(struct lwp *l)
467 {
468
469 }
470
471 void
472 sched_slept(struct lwp *l)
473 {
474
475 }
476
477 void
478 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
479 {
480
481 l2->l_estcpu = l1->l_estcpu;
482 }
483
484 void
485 sched_lwp_collect(struct lwp *t)
486 {
487 lwp_t *l;
488
489 /* Absorb estcpu value of collected LWP. */
490 l = curlwp;
491 lwp_lock(l);
492 l->l_estcpu += t->l_estcpu;
493 lwp_unlock(l);
494 }
495
496 void
497 sched_oncpu(lwp_t *l)
498 {
499
500 }
501
502 void
503 sched_newts(lwp_t *l)
504 {
505
506 }
507
508 /*
509 * Sysctl nodes and initialization.
510 */
511
512 static int
513 sysctl_sched_rtts(SYSCTLFN_ARGS)
514 {
515 struct sysctlnode node;
516 int rttsms = hztoms(rrticks);
517
518 node = *rnode;
519 node.sysctl_data = &rttsms;
520 return sysctl_lookup(SYSCTLFN_CALL(&node));
521 }
522
523 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
524 {
525 const struct sysctlnode *node = NULL;
526
527 sysctl_createv(clog, 0, NULL, &node,
528 CTLFLAG_PERMANENT,
529 CTLTYPE_NODE, "sched",
530 SYSCTL_DESCR("Scheduler options"),
531 NULL, 0, NULL, 0,
532 CTL_KERN, CTL_CREATE, CTL_EOL);
533
534 if (node == NULL)
535 return;
536
537 rrticks = hz / 10;
538
539 sysctl_createv(NULL, 0, &node, NULL,
540 CTLFLAG_PERMANENT,
541 CTLTYPE_STRING, "name", NULL,
542 NULL, 0, __UNCONST("4.4BSD"), 0,
543 CTL_CREATE, CTL_EOL);
544 sysctl_createv(NULL, 0, &node, NULL,
545 CTLFLAG_PERMANENT,
546 CTLTYPE_INT, "rtts",
547 SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
548 sysctl_sched_rtts, 0, NULL, 0,
549 CTL_CREATE, CTL_EOL);
550 }
551