Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.33.6.2
      1 /*	$NetBSD: sched_4bsd.c,v 1.33.6.2 2020/04/08 14:08:51 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2019, 2020
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.33.6.2 2020/04/08 14:08:51 martin Exp $");
     73 
     74 #include "opt_ddb.h"
     75 #include "opt_lockdebug.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/callout.h>
     80 #include <sys/cpu.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/sched.h>
     85 #include <sys/sysctl.h>
     86 #include <sys/lockdebug.h>
     87 #include <sys/intr.h>
     88 #include <sys/atomic.h>
     89 
     90 static void updatepri(struct lwp *);
     91 static void resetpriority(struct lwp *);
     92 
     93 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     94 
     95 /* Number of hardclock ticks per sched_tick() */
     96 static int rrticks __read_mostly;
     97 
     98 /*
     99  * Force switch among equal priority processes every 100ms.
    100  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    101  */
    102 /* ARGSUSED */
    103 void
    104 sched_tick(struct cpu_info *ci)
    105 {
    106 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    107 	pri_t pri = PRI_NONE;
    108 	lwp_t *l;
    109 
    110 	spc->spc_ticks = rrticks;
    111 
    112 	if (CURCPU_IDLE_P()) {
    113 		spc_lock(ci);
    114 		sched_resched_cpu(ci, MAXPRI_KTHREAD, true);
    115 		/* spc now unlocked */
    116 		return;
    117 	}
    118 	l = ci->ci_onproc;
    119 	if (l == NULL) {
    120 		return;
    121 	}
    122 	/*
    123 	 * Can only be spc_lwplock or a turnstile lock at this point
    124 	 * (if we interrupted priority inheritance trylock dance).
    125 	 */
    126 	KASSERT(l->l_mutex != spc->spc_mutex);
    127 	switch (l->l_class) {
    128 	case SCHED_FIFO:
    129 		/* No timeslicing for FIFO jobs. */
    130 		break;
    131 	case SCHED_RR:
    132 		/* Force it into mi_switch() to look for other jobs to run. */
    133 		pri = MAXPRI_KERNEL_RT;
    134 		break;
    135 	default:
    136 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    137 			/*
    138 			 * Process is stuck in kernel somewhere, probably
    139 			 * due to buggy or inefficient code.  Force a
    140 			 * kernel preemption.
    141 			 */
    142 			pri = MAXPRI_KERNEL_RT;
    143 		} else if (spc->spc_flags & SPCF_SEENRR) {
    144 			/*
    145 			 * The process has already been through a roundrobin
    146 			 * without switching and may be hogging the CPU.
    147 			 * Indicate that the process should yield.
    148 			 */
    149 			pri = MAXPRI_KTHREAD;
    150 			spc->spc_flags |= SPCF_SHOULDYIELD;
    151 		} else if ((spc->spc_flags & SPCF_1STCLASS) == 0) {
    152 			/*
    153 			 * For SMT or assymetric systems push a little
    154 			 * harder: if this is not a 1st class CPU, try to
    155 			 * find a better one to run this LWP.
    156 			 */
    157 			pri = MAXPRI_KTHREAD;
    158 			spc->spc_flags |= SPCF_SHOULDYIELD;
    159 		} else {
    160 			spc->spc_flags |= SPCF_SEENRR;
    161 		}
    162 		break;
    163 	}
    164 
    165 	if (pri != PRI_NONE) {
    166 		spc_lock(ci);
    167 		sched_resched_cpu(ci, pri, true);
    168 		/* spc now unlocked */
    169 	}
    170 }
    171 
    172 /*
    173  * Why PRIO_MAX - 2? From setpriority(2):
    174  *
    175  *	prio is a value in the range -20 to 20.  The default priority is
    176  *	0; lower priorities cause more favorable scheduling.  A value of
    177  *	19 or 20 will schedule a process only when nothing at priority <=
    178  *	0 is runnable.
    179  *
    180  * This gives estcpu influence over 18 priority levels, and leaves nice
    181  * with 40 levels.  One way to think about it is that nice has 20 levels
    182  * either side of estcpu's 18.
    183  */
    184 #define	ESTCPU_SHIFT	11
    185 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    186 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    187 #define	ESTCPULIM(e)	uimin((e), ESTCPU_MAX)
    188 
    189 /*
    190  * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
    191  * of the recent CPU utilization of the thread.
    192  *
    193  * l_estcpu is:
    194  *  - increased each time the hardclock ticks and the thread is found to
    195  *    be executing, in sched_schedclock() called from hardclock()
    196  *  - decreased (filtered) on each sched tick, in sched_pstats_hook()
    197  * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
    198  * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
    199  * (ie, we decrease it n times).
    200  *
    201  * Note that hardclock updates l_estcpu and l_cpticks independently.
    202  *
    203  * -----------------------------------------------------------------------------
    204  *
    205  * Here we describe how l_estcpu is decreased.
    206  *
    207  * Constants for digital decay (filter):
    208  *     90% of l_estcpu usage in (5 * loadavg) seconds
    209  *
    210  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
    211  * want to compute a value of decay such that the following loop:
    212  *     for (i = 0; i < (5 * loadavg); i++)
    213  *         l_estcpu *= decay;
    214  * will result in
    215  *     l_estcpu *= 0.1;
    216  * for all values of loadavg.
    217  *
    218  * Mathematically this loop can be expressed by saying:
    219  *     decay ** (5 * loadavg) ~= .1
    220  *
    221  * And finally, the corresponding value of decay we're using is:
    222  *     decay = (2 * loadavg) / (2 * loadavg + 1)
    223  *
    224  * -----------------------------------------------------------------------------
    225  *
    226  * Now, let's prove that the value of decay stated above will always fulfill
    227  * the equation:
    228  *     decay ** (5 * loadavg) ~= .1
    229  *
    230  * If we compute b as:
    231  *     b = 2 * loadavg
    232  * then
    233  *     decay = b / (b + 1)
    234  *
    235  * We now need to prove two things:
    236  *     1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
    237  *     2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
    238  *
    239  * Facts:
    240  *   * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
    241  *     Therefore, for x close to zero, exp(x) =~ 1 + x.
    242  *     In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    243  *
    244  *   * For b large enough, (b-1)/b =~ b/(b+1).
    245  *
    246  *   * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
    247  *     Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    248  *
    249  *   * ln(0.1) =~ -2.30
    250  *
    251  * Proof of (1):
    252  *     factor ** (5 * loadavg) =~ 0.1
    253  *  => ln(factor) =~ -2.30 / (5 * loadavg)
    254  *  => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
    255  *            =~ exp(-1 / (2 * loadavg))
    256  *            =~ exp(-1 / b)
    257  *            =~ (b - 1) / b
    258  *            =~ b / (b + 1)
    259  *            =~ (2 * loadavg) / ((2 * loadavg) + 1)
    260  *
    261  * Proof of (2):
    262  *     (b / (b + 1)) ** power =~ .1
    263  *  => power * ln(b / (b + 1)) =~ -2.30
    264  *  => power * (-1 / (b + 1)) =~ -2.30
    265  *  => power =~ 2.30 * (b + 1)
    266  *  => power =~ 4.60 * loadavg + 2.30
    267  *  => power =~ 5 * loadavg
    268  *
    269  * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
    270  */
    271 
    272 /* See calculations above */
    273 #define	loadfactor(loadavg)  (2 * (loadavg))
    274 
    275 static fixpt_t
    276 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    277 {
    278 
    279 	if (estcpu == 0) {
    280 		return 0;
    281 	}
    282 
    283 #if !defined(_LP64)
    284 	/* avoid 64bit arithmetics. */
    285 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    286 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    287 		return estcpu * loadfac / (loadfac + FSCALE);
    288 	}
    289 #endif
    290 
    291 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    292 }
    293 
    294 static fixpt_t
    295 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    296 {
    297 
    298 	/*
    299 	 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    300 	 * if we slept for at least seven times the loadfactor, we will decay
    301 	 * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
    302 	 * return zero directly.
    303 	 *
    304 	 * Note that our ESTCPU_MAX is actually much smaller than
    305 	 * (255 << ESTCPU_SHIFT).
    306 	 */
    307 	if ((n << FSHIFT) >= 7 * loadfac) {
    308 		return 0;
    309 	}
    310 
    311 	while (estcpu != 0 && n > 1) {
    312 		estcpu = decay_cpu(loadfac, estcpu);
    313 		n--;
    314 	}
    315 
    316 	return estcpu;
    317 }
    318 
    319 /*
    320  * sched_pstats_hook:
    321  *
    322  * Periodically called from sched_pstats(); used to recalculate priorities.
    323  */
    324 void
    325 sched_pstats_hook(struct lwp *l, int batch)
    326 {
    327 	fixpt_t loadfac;
    328 
    329 	/*
    330 	 * If the LWP has slept an entire second, stop recalculating
    331 	 * its priority until it wakes up.
    332 	 */
    333 	KASSERT(lwp_locked(l, NULL));
    334 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    335 	    l->l_stat == LSSUSPENDED) {
    336 		if (l->l_slptime > 1) {
    337 			return;
    338 		}
    339 	}
    340 
    341 	loadfac = loadfactor(averunnable.ldavg[0]);
    342 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    343 	resetpriority(l);
    344 }
    345 
    346 /*
    347  * Recalculate the priority of an LWP after it has slept for a while.
    348  */
    349 static void
    350 updatepri(struct lwp *l)
    351 {
    352 	fixpt_t loadfac;
    353 
    354 	KASSERT(lwp_locked(l, NULL));
    355 	KASSERT(l->l_slptime > 1);
    356 
    357 	loadfac = loadfactor(averunnable.ldavg[0]);
    358 
    359 	l->l_slptime--; /* the first time was done in sched_pstats */
    360 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    361 	resetpriority(l);
    362 }
    363 
    364 void
    365 sched_rqinit(void)
    366 {
    367 
    368 }
    369 
    370 void
    371 sched_setrunnable(struct lwp *l)
    372 {
    373 
    374  	if (l->l_slptime > 1)
    375  		updatepri(l);
    376 }
    377 
    378 void
    379 sched_nice(struct proc *p, int n)
    380 {
    381 	struct lwp *l;
    382 
    383 	KASSERT(mutex_owned(p->p_lock));
    384 
    385 	p->p_nice = n;
    386 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    387 		lwp_lock(l);
    388 		resetpriority(l);
    389 		lwp_unlock(l);
    390 	}
    391 }
    392 
    393 /*
    394  * Recompute the priority of an LWP.  Arrange to reschedule if
    395  * the resulting priority is better than that of the current LWP.
    396  */
    397 static void
    398 resetpriority(struct lwp *l)
    399 {
    400 	pri_t pri;
    401 	struct proc *p = l->l_proc;
    402 
    403 	KASSERT(lwp_locked(l, NULL));
    404 
    405 	if (l->l_class != SCHED_OTHER)
    406 		return;
    407 
    408 	/* See comments above ESTCPU_SHIFT definition. */
    409 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    410 	pri = imax(pri, 0);
    411 	if (pri != l->l_priority)
    412 		lwp_changepri(l, pri);
    413 }
    414 
    415 /*
    416  * We adjust the priority of the current LWP.  The priority of a LWP
    417  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    418  * is increased here.  The formula for computing priorities will compute a
    419  * different value each time l_estcpu increases. This can cause a switch,
    420  * but unless the priority crosses a PPQ boundary the actual queue will not
    421  * change.  The CPU usage estimator ramps up quite quickly when the process
    422  * is running (linearly), and decays away exponentially, at a rate which is
    423  * proportionally slower when the system is busy.  The basic principle is
    424  * that the system will 90% forget that the process used a lot of CPU time
    425  * in (5 * loadavg) seconds.  This causes the system to favor processes which
    426  * haven't run much recently, and to round-robin among other processes.
    427  */
    428 void
    429 sched_schedclock(struct lwp *l)
    430 {
    431 
    432 	if (l->l_class != SCHED_OTHER)
    433 		return;
    434 
    435 	KASSERT(!CURCPU_IDLE_P());
    436 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    437 	lwp_lock(l);
    438 	resetpriority(l);
    439 	lwp_unlock(l);
    440 }
    441 
    442 /*
    443  * sched_proc_fork:
    444  *
    445  *	Inherit the parent's scheduler history.
    446  */
    447 void
    448 sched_proc_fork(struct proc *parent, struct proc *child)
    449 {
    450 	lwp_t *pl;
    451 
    452 	KASSERT(mutex_owned(parent->p_lock));
    453 
    454 	pl = LIST_FIRST(&parent->p_lwps);
    455 	child->p_estcpu_inherited = pl->l_estcpu;
    456 	child->p_forktime = sched_pstats_ticks;
    457 }
    458 
    459 /*
    460  * sched_proc_exit:
    461  *
    462  *	Chargeback parents for the sins of their children.
    463  */
    464 void
    465 sched_proc_exit(struct proc *parent, struct proc *child)
    466 {
    467 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    468 	fixpt_t estcpu;
    469 	lwp_t *pl, *cl;
    470 
    471 	/* XXX Only if parent != init?? */
    472 
    473 	mutex_enter(parent->p_lock);
    474 	pl = LIST_FIRST(&parent->p_lwps);
    475 	cl = LIST_FIRST(&child->p_lwps);
    476 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    477 	    sched_pstats_ticks - child->p_forktime);
    478 	if (cl->l_estcpu > estcpu) {
    479 		lwp_lock(pl);
    480 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    481 		lwp_unlock(pl);
    482 	}
    483 	mutex_exit(parent->p_lock);
    484 }
    485 
    486 void
    487 sched_wakeup(struct lwp *l)
    488 {
    489 
    490 }
    491 
    492 void
    493 sched_slept(struct lwp *l)
    494 {
    495 
    496 }
    497 
    498 void
    499 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    500 {
    501 
    502 	l2->l_estcpu = l1->l_estcpu;
    503 }
    504 
    505 void
    506 sched_lwp_collect(struct lwp *t)
    507 {
    508 	lwp_t *l;
    509 
    510 	/* Absorb estcpu value of collected LWP. */
    511 	l = curlwp;
    512 	lwp_lock(l);
    513 	l->l_estcpu += t->l_estcpu;
    514 	lwp_unlock(l);
    515 }
    516 
    517 void
    518 sched_oncpu(lwp_t *l)
    519 {
    520 
    521 }
    522 
    523 void
    524 sched_newts(lwp_t *l)
    525 {
    526 
    527 }
    528 
    529 /*
    530  * Sysctl nodes and initialization.
    531  */
    532 
    533 static int
    534 sysctl_sched_rtts(SYSCTLFN_ARGS)
    535 {
    536 	struct sysctlnode node;
    537 	int rttsms = hztoms(rrticks);
    538 
    539 	node = *rnode;
    540 	node.sysctl_data = &rttsms;
    541 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    542 }
    543 
    544 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    545 {
    546 	const struct sysctlnode *node = NULL;
    547 
    548 	sysctl_createv(clog, 0, NULL, &node,
    549 		CTLFLAG_PERMANENT,
    550 		CTLTYPE_NODE, "sched",
    551 		SYSCTL_DESCR("Scheduler options"),
    552 		NULL, 0, NULL, 0,
    553 		CTL_KERN, CTL_CREATE, CTL_EOL);
    554 
    555 	if (node == NULL)
    556 		return;
    557 
    558 	rrticks = hz / 10;
    559 
    560 	sysctl_createv(NULL, 0, &node, NULL,
    561 		CTLFLAG_PERMANENT,
    562 		CTLTYPE_STRING, "name", NULL,
    563 		NULL, 0, __UNCONST("4.4BSD"), 0,
    564 		CTL_CREATE, CTL_EOL);
    565 	sysctl_createv(NULL, 0, &node, NULL,
    566 		CTLFLAG_PERMANENT,
    567 		CTLTYPE_INT, "rtts",
    568 		SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
    569 		sysctl_sched_rtts, 0, NULL, 0,
    570 		CTL_CREATE, CTL_EOL);
    571 }
    572