Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.34
      1 /*	$NetBSD: sched_4bsd.c,v 1.34 2018/07/12 10:46:48 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.34 2018/07/12 10:46:48 maxv Exp $");
     72 
     73 #include "opt_ddb.h"
     74 #include "opt_lockdebug.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/callout.h>
     79 #include <sys/cpu.h>
     80 #include <sys/proc.h>
     81 #include <sys/kernel.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/sched.h>
     84 #include <sys/sysctl.h>
     85 #include <sys/lockdebug.h>
     86 #include <sys/intr.h>
     87 
     88 static void updatepri(struct lwp *);
     89 static void resetpriority(struct lwp *);
     90 
     91 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     92 
     93 /* Number of hardclock ticks per sched_tick() */
     94 static int rrticks __read_mostly;
     95 
     96 /*
     97  * Force switch among equal priority processes every 100ms.
     98  * Called from hardclock every hz/10 == rrticks hardclock ticks.
     99  *
    100  * There's no need to lock anywhere in this routine, as it's
    101  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    102  */
    103 /* ARGSUSED */
    104 void
    105 sched_tick(struct cpu_info *ci)
    106 {
    107 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    108 	lwp_t *l;
    109 
    110 	spc->spc_ticks = rrticks;
    111 
    112 	if (CURCPU_IDLE_P()) {
    113 		cpu_need_resched(ci, 0);
    114 		return;
    115 	}
    116 	l = ci->ci_data.cpu_onproc;
    117 	if (l == NULL) {
    118 		return;
    119 	}
    120 	switch (l->l_class) {
    121 	case SCHED_FIFO:
    122 		/* No timeslicing for FIFO jobs. */
    123 		break;
    124 	case SCHED_RR:
    125 		/* Force it into mi_switch() to look for other jobs to run. */
    126 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    127 		break;
    128 	default:
    129 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    130 			/*
    131 			 * Process is stuck in kernel somewhere, probably
    132 			 * due to buggy or inefficient code.  Force a
    133 			 * kernel preemption.
    134 			 */
    135 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    136 		} else if (spc->spc_flags & SPCF_SEENRR) {
    137 			/*
    138 			 * The process has already been through a roundrobin
    139 			 * without switching and may be hogging the CPU.
    140 			 * Indicate that the process should yield.
    141 			 */
    142 			spc->spc_flags |= SPCF_SHOULDYIELD;
    143 			cpu_need_resched(ci, 0);
    144 		} else {
    145 			spc->spc_flags |= SPCF_SEENRR;
    146 		}
    147 		break;
    148 	}
    149 }
    150 
    151 /*
    152  * Why PRIO_MAX - 2? From setpriority(2):
    153  *
    154  *	prio is a value in the range -20 to 20.  The default priority is
    155  *	0; lower priorities cause more favorable scheduling.  A value of
    156  *	19 or 20 will schedule a process only when nothing at priority <=
    157  *	0 is runnable.
    158  *
    159  * This gives estcpu influence over 18 priority levels, and leaves nice
    160  * with 40 levels.  One way to think about it is that nice has 20 levels
    161  * either side of estcpu's 18.
    162  */
    163 #define	ESTCPU_SHIFT	11
    164 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    165 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    166 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    167 
    168 /*
    169  * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
    170  * of the recent CPU utilization of the thread.
    171  *
    172  * l_estcpu is:
    173  *  - increased each time the hardclock ticks and the thread is found to
    174  *    be executing, in sched_schedclock() called from hardclock()
    175  *  - decreased (filtered) on each sched tick, in sched_pstats_hook()
    176  * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
    177  * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
    178  * (ie, we decrease it n times).
    179  *
    180  * Note that hardclock updates l_estcpu and l_cpticks independently.
    181  *
    182  * -----------------------------------------------------------------------------
    183  *
    184  * Here we describe how l_estcpu is decreased.
    185  *
    186  * Constants for digital decay (filter):
    187  *     90% of l_estcpu usage in (5 * loadavg) seconds
    188  *
    189  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
    190  * want to compute a value of decay such that the following loop:
    191  *     for (i = 0; i < (5 * loadavg); i++)
    192  *         l_estcpu *= decay;
    193  * will result in
    194  *     l_estcpu *= 0.1;
    195  * for all values of loadavg.
    196  *
    197  * Mathematically this loop can be expressed by saying:
    198  *     decay ** (5 * loadavg) ~= .1
    199  *
    200  * And finally, the corresponding value of decay we're using is:
    201  *     decay = (2 * loadavg) / (2 * loadavg + 1)
    202  *
    203  * -----------------------------------------------------------------------------
    204  *
    205  * Now, let's prove that the value of decay stated above will always fulfill
    206  * the equation:
    207  *     decay ** (5 * loadavg) ~= .1
    208  *
    209  * If we compute b as:
    210  *     b = 2 * loadavg
    211  * then
    212  *     decay = b / (b + 1)
    213  *
    214  * We now need to prove two things:
    215  *     1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
    216  *     2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
    217  *
    218  * Facts:
    219  *   * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
    220  *     Therefore, for x close to zero, exp(x) =~ 1 + x.
    221  *     In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    222  *
    223  *   * For b large enough, (b-1)/b =~ b/(b+1).
    224  *
    225  *   * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
    226  *     Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    227  *
    228  *   * ln(0.1) =~ -2.30
    229  *
    230  * Proof of (1):
    231  *     factor ** (5 * loadavg) =~ 0.1
    232  *  => ln(factor) =~ -2.30 / (5 * loadavg)
    233  *  => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
    234  *            =~ exp(-1 / (2 * loadavg))
    235  *            =~ exp(-1 / b)
    236  *            =~ (b - 1) / b
    237  *            =~ b / (b + 1)
    238  *            =~ (2 * loadavg) / ((2 * loadavg) + 1)
    239  *
    240  * Proof of (2):
    241  *     (b / (b + 1)) ** power =~ .1
    242  *  => power * ln(b / (b + 1)) =~ -2.30
    243  *  => power * (-1 / (b + 1)) =~ -2.30
    244  *  => power =~ 2.30 * (b + 1)
    245  *  => power =~ 4.60 * loadavg + 2.30
    246  *  => power =~ 5 * loadavg
    247  *
    248  * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
    249  */
    250 
    251 /* See calculations above */
    252 #define	loadfactor(loadavg)  (2 * (loadavg))
    253 
    254 static fixpt_t
    255 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    256 {
    257 
    258 	if (estcpu == 0) {
    259 		return 0;
    260 	}
    261 
    262 #if !defined(_LP64)
    263 	/* avoid 64bit arithmetics. */
    264 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    265 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    266 		return estcpu * loadfac / (loadfac + FSCALE);
    267 	}
    268 #endif
    269 
    270 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    271 }
    272 
    273 static fixpt_t
    274 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    275 {
    276 
    277 	/*
    278 	 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    279 	 * if we slept for at least seven times the loadfactor, we will decay
    280 	 * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
    281 	 * return zero directly.
    282 	 *
    283 	 * Note that our ESTCPU_MAX is actually much smaller than
    284 	 * (255 << ESTCPU_SHIFT).
    285 	 */
    286 	if ((n << FSHIFT) >= 7 * loadfac) {
    287 		return 0;
    288 	}
    289 
    290 	while (estcpu != 0 && n > 1) {
    291 		estcpu = decay_cpu(loadfac, estcpu);
    292 		n--;
    293 	}
    294 
    295 	return estcpu;
    296 }
    297 
    298 /*
    299  * sched_pstats_hook:
    300  *
    301  * Periodically called from sched_pstats(); used to recalculate priorities.
    302  */
    303 void
    304 sched_pstats_hook(struct lwp *l, int batch)
    305 {
    306 	fixpt_t loadfac;
    307 
    308 	/*
    309 	 * If the LWP has slept an entire second, stop recalculating
    310 	 * its priority until it wakes up.
    311 	 */
    312 	KASSERT(lwp_locked(l, NULL));
    313 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    314 	    l->l_stat == LSSUSPENDED) {
    315 		if (l->l_slptime > 1) {
    316 			return;
    317 		}
    318 	}
    319 
    320 	loadfac = loadfactor(averunnable.ldavg[0]);
    321 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    322 	resetpriority(l);
    323 }
    324 
    325 /*
    326  * Recalculate the priority of an LWP after it has slept for a while.
    327  */
    328 static void
    329 updatepri(struct lwp *l)
    330 {
    331 	fixpt_t loadfac;
    332 
    333 	KASSERT(lwp_locked(l, NULL));
    334 	KASSERT(l->l_slptime > 1);
    335 
    336 	loadfac = loadfactor(averunnable.ldavg[0]);
    337 
    338 	l->l_slptime--; /* the first time was done in sched_pstats */
    339 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    340 	resetpriority(l);
    341 }
    342 
    343 void
    344 sched_rqinit(void)
    345 {
    346 
    347 }
    348 
    349 void
    350 sched_setrunnable(struct lwp *l)
    351 {
    352 
    353  	if (l->l_slptime > 1)
    354  		updatepri(l);
    355 }
    356 
    357 void
    358 sched_nice(struct proc *p, int n)
    359 {
    360 	struct lwp *l;
    361 
    362 	KASSERT(mutex_owned(p->p_lock));
    363 
    364 	p->p_nice = n;
    365 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    366 		lwp_lock(l);
    367 		resetpriority(l);
    368 		lwp_unlock(l);
    369 	}
    370 }
    371 
    372 /*
    373  * Recompute the priority of an LWP.  Arrange to reschedule if
    374  * the resulting priority is better than that of the current LWP.
    375  */
    376 static void
    377 resetpriority(struct lwp *l)
    378 {
    379 	pri_t pri;
    380 	struct proc *p = l->l_proc;
    381 
    382 	KASSERT(lwp_locked(l, NULL));
    383 
    384 	if (l->l_class != SCHED_OTHER)
    385 		return;
    386 
    387 	/* See comments above ESTCPU_SHIFT definition. */
    388 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    389 	pri = imax(pri, 0);
    390 	if (pri != l->l_priority)
    391 		lwp_changepri(l, pri);
    392 }
    393 
    394 /*
    395  * We adjust the priority of the current LWP.  The priority of a LWP
    396  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    397  * is increased here.  The formula for computing priorities will compute a
    398  * different value each time l_estcpu increases. This can cause a switch,
    399  * but unless the priority crosses a PPQ boundary the actual queue will not
    400  * change.  The CPU usage estimator ramps up quite quickly when the process
    401  * is running (linearly), and decays away exponentially, at a rate which is
    402  * proportionally slower when the system is busy.  The basic principle is
    403  * that the system will 90% forget that the process used a lot of CPU time
    404  * in (5 * loadavg) seconds.  This causes the system to favor processes which
    405  * haven't run much recently, and to round-robin among other processes.
    406  */
    407 void
    408 sched_schedclock(struct lwp *l)
    409 {
    410 
    411 	if (l->l_class != SCHED_OTHER)
    412 		return;
    413 
    414 	KASSERT(!CURCPU_IDLE_P());
    415 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    416 	lwp_lock(l);
    417 	resetpriority(l);
    418 	lwp_unlock(l);
    419 }
    420 
    421 /*
    422  * sched_proc_fork:
    423  *
    424  *	Inherit the parent's scheduler history.
    425  */
    426 void
    427 sched_proc_fork(struct proc *parent, struct proc *child)
    428 {
    429 	lwp_t *pl;
    430 
    431 	KASSERT(mutex_owned(parent->p_lock));
    432 
    433 	pl = LIST_FIRST(&parent->p_lwps);
    434 	child->p_estcpu_inherited = pl->l_estcpu;
    435 	child->p_forktime = sched_pstats_ticks;
    436 }
    437 
    438 /*
    439  * sched_proc_exit:
    440  *
    441  *	Chargeback parents for the sins of their children.
    442  */
    443 void
    444 sched_proc_exit(struct proc *parent, struct proc *child)
    445 {
    446 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    447 	fixpt_t estcpu;
    448 	lwp_t *pl, *cl;
    449 
    450 	/* XXX Only if parent != init?? */
    451 
    452 	mutex_enter(parent->p_lock);
    453 	pl = LIST_FIRST(&parent->p_lwps);
    454 	cl = LIST_FIRST(&child->p_lwps);
    455 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    456 	    sched_pstats_ticks - child->p_forktime);
    457 	if (cl->l_estcpu > estcpu) {
    458 		lwp_lock(pl);
    459 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    460 		lwp_unlock(pl);
    461 	}
    462 	mutex_exit(parent->p_lock);
    463 }
    464 
    465 void
    466 sched_wakeup(struct lwp *l)
    467 {
    468 
    469 }
    470 
    471 void
    472 sched_slept(struct lwp *l)
    473 {
    474 
    475 }
    476 
    477 void
    478 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    479 {
    480 
    481 	l2->l_estcpu = l1->l_estcpu;
    482 }
    483 
    484 void
    485 sched_lwp_collect(struct lwp *t)
    486 {
    487 	lwp_t *l;
    488 
    489 	/* Absorb estcpu value of collected LWP. */
    490 	l = curlwp;
    491 	lwp_lock(l);
    492 	l->l_estcpu += t->l_estcpu;
    493 	lwp_unlock(l);
    494 }
    495 
    496 void
    497 sched_oncpu(lwp_t *l)
    498 {
    499 
    500 }
    501 
    502 void
    503 sched_newts(lwp_t *l)
    504 {
    505 
    506 }
    507 
    508 /*
    509  * Sysctl nodes and initialization.
    510  */
    511 
    512 static int
    513 sysctl_sched_rtts(SYSCTLFN_ARGS)
    514 {
    515 	struct sysctlnode node;
    516 	int rttsms = hztoms(rrticks);
    517 
    518 	node = *rnode;
    519 	node.sysctl_data = &rttsms;
    520 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    521 }
    522 
    523 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    524 {
    525 	const struct sysctlnode *node = NULL;
    526 
    527 	sysctl_createv(clog, 0, NULL, &node,
    528 		CTLFLAG_PERMANENT,
    529 		CTLTYPE_NODE, "sched",
    530 		SYSCTL_DESCR("Scheduler options"),
    531 		NULL, 0, NULL, 0,
    532 		CTL_KERN, CTL_CREATE, CTL_EOL);
    533 
    534 	if (node == NULL)
    535 		return;
    536 
    537 	rrticks = hz / 10;
    538 
    539 	sysctl_createv(NULL, 0, &node, NULL,
    540 		CTLFLAG_PERMANENT,
    541 		CTLTYPE_STRING, "name", NULL,
    542 		NULL, 0, __UNCONST("4.4BSD"), 0,
    543 		CTL_CREATE, CTL_EOL);
    544 	sysctl_createv(NULL, 0, &node, NULL,
    545 		CTLFLAG_PERMANENT,
    546 		CTLTYPE_INT, "rtts",
    547 		SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
    548 		sysctl_sched_rtts, 0, NULL, 0,
    549 		CTL_CREATE, CTL_EOL);
    550 }
    551