Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.36
      1 /*	$NetBSD: sched_4bsd.c,v 1.36 2019/11/23 19:42:52 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2019
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.36 2019/11/23 19:42:52 ad Exp $");
     73 
     74 #include "opt_ddb.h"
     75 #include "opt_lockdebug.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/callout.h>
     80 #include <sys/cpu.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/sched.h>
     85 #include <sys/sysctl.h>
     86 #include <sys/lockdebug.h>
     87 #include <sys/intr.h>
     88 
     89 static void updatepri(struct lwp *);
     90 static void resetpriority(struct lwp *);
     91 
     92 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     93 
     94 /* Number of hardclock ticks per sched_tick() */
     95 static int rrticks __read_mostly;
     96 
     97 /*
     98  * Force switch among equal priority processes every 100ms.
     99  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    100  */
    101 /* ARGSUSED */
    102 void
    103 sched_tick(struct cpu_info *ci)
    104 {
    105 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    106 	lwp_t *l;
    107 
    108 	spc->spc_ticks = rrticks;
    109 
    110 	if (CURCPU_IDLE_P()) {
    111 		atomic_or_uint(&ci->ci_want_resched,
    112 		    RESCHED_IDLE | RESCHED_UPREEMPT);
    113 		return;
    114 	}
    115 	l = ci->ci_data.cpu_onproc;
    116 	if (l == NULL) {
    117 		return;
    118 	}
    119 	/*
    120 	 * Can only be spc_lwplock or a turnstile lock at this point
    121 	 * (if we interrupted priority inheritance trylock dance).
    122 	 */
    123 	KASSERT(l->l_mutex != spc->spc_mutex);
    124 	switch (l->l_class) {
    125 	case SCHED_FIFO:
    126 		/* No timeslicing for FIFO jobs. */
    127 		break;
    128 	case SCHED_RR:
    129 		/* Force it into mi_switch() to look for other jobs to run. */
    130 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_ACTIVE);
    131 		cpu_need_resched(ci, l, RESCHED_KPREEMPT);
    132 		break;
    133 	default:
    134 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    135 			/*
    136 			 * Process is stuck in kernel somewhere, probably
    137 			 * due to buggy or inefficient code.  Force a
    138 			 * kernel preemption.
    139 			 */
    140 			atomic_or_uint(&l->l_dopreempt, DOPREEMPT_ACTIVE);
    141 			cpu_need_resched(ci, l, RESCHED_KPREEMPT);
    142 		} else if (spc->spc_flags & SPCF_SEENRR) {
    143 			/*
    144 			 * The process has already been through a roundrobin
    145 			 * without switching and may be hogging the CPU.
    146 			 * Indicate that the process should yield.
    147 			 */
    148 			spc->spc_flags |= SPCF_SHOULDYIELD;
    149 			cpu_need_resched(ci, l, RESCHED_UPREEMPT);
    150 		} else {
    151 			spc->spc_flags |= SPCF_SEENRR;
    152 		}
    153 		break;
    154 	}
    155 }
    156 
    157 /*
    158  * Why PRIO_MAX - 2? From setpriority(2):
    159  *
    160  *	prio is a value in the range -20 to 20.  The default priority is
    161  *	0; lower priorities cause more favorable scheduling.  A value of
    162  *	19 or 20 will schedule a process only when nothing at priority <=
    163  *	0 is runnable.
    164  *
    165  * This gives estcpu influence over 18 priority levels, and leaves nice
    166  * with 40 levels.  One way to think about it is that nice has 20 levels
    167  * either side of estcpu's 18.
    168  */
    169 #define	ESTCPU_SHIFT	11
    170 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    171 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    172 #define	ESTCPULIM(e)	uimin((e), ESTCPU_MAX)
    173 
    174 /*
    175  * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
    176  * of the recent CPU utilization of the thread.
    177  *
    178  * l_estcpu is:
    179  *  - increased each time the hardclock ticks and the thread is found to
    180  *    be executing, in sched_schedclock() called from hardclock()
    181  *  - decreased (filtered) on each sched tick, in sched_pstats_hook()
    182  * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
    183  * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
    184  * (ie, we decrease it n times).
    185  *
    186  * Note that hardclock updates l_estcpu and l_cpticks independently.
    187  *
    188  * -----------------------------------------------------------------------------
    189  *
    190  * Here we describe how l_estcpu is decreased.
    191  *
    192  * Constants for digital decay (filter):
    193  *     90% of l_estcpu usage in (5 * loadavg) seconds
    194  *
    195  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
    196  * want to compute a value of decay such that the following loop:
    197  *     for (i = 0; i < (5 * loadavg); i++)
    198  *         l_estcpu *= decay;
    199  * will result in
    200  *     l_estcpu *= 0.1;
    201  * for all values of loadavg.
    202  *
    203  * Mathematically this loop can be expressed by saying:
    204  *     decay ** (5 * loadavg) ~= .1
    205  *
    206  * And finally, the corresponding value of decay we're using is:
    207  *     decay = (2 * loadavg) / (2 * loadavg + 1)
    208  *
    209  * -----------------------------------------------------------------------------
    210  *
    211  * Now, let's prove that the value of decay stated above will always fulfill
    212  * the equation:
    213  *     decay ** (5 * loadavg) ~= .1
    214  *
    215  * If we compute b as:
    216  *     b = 2 * loadavg
    217  * then
    218  *     decay = b / (b + 1)
    219  *
    220  * We now need to prove two things:
    221  *     1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
    222  *     2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
    223  *
    224  * Facts:
    225  *   * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
    226  *     Therefore, for x close to zero, exp(x) =~ 1 + x.
    227  *     In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    228  *
    229  *   * For b large enough, (b-1)/b =~ b/(b+1).
    230  *
    231  *   * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
    232  *     Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    233  *
    234  *   * ln(0.1) =~ -2.30
    235  *
    236  * Proof of (1):
    237  *     factor ** (5 * loadavg) =~ 0.1
    238  *  => ln(factor) =~ -2.30 / (5 * loadavg)
    239  *  => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
    240  *            =~ exp(-1 / (2 * loadavg))
    241  *            =~ exp(-1 / b)
    242  *            =~ (b - 1) / b
    243  *            =~ b / (b + 1)
    244  *            =~ (2 * loadavg) / ((2 * loadavg) + 1)
    245  *
    246  * Proof of (2):
    247  *     (b / (b + 1)) ** power =~ .1
    248  *  => power * ln(b / (b + 1)) =~ -2.30
    249  *  => power * (-1 / (b + 1)) =~ -2.30
    250  *  => power =~ 2.30 * (b + 1)
    251  *  => power =~ 4.60 * loadavg + 2.30
    252  *  => power =~ 5 * loadavg
    253  *
    254  * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
    255  */
    256 
    257 /* See calculations above */
    258 #define	loadfactor(loadavg)  (2 * (loadavg))
    259 
    260 static fixpt_t
    261 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    262 {
    263 
    264 	if (estcpu == 0) {
    265 		return 0;
    266 	}
    267 
    268 #if !defined(_LP64)
    269 	/* avoid 64bit arithmetics. */
    270 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    271 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    272 		return estcpu * loadfac / (loadfac + FSCALE);
    273 	}
    274 #endif
    275 
    276 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    277 }
    278 
    279 static fixpt_t
    280 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    281 {
    282 
    283 	/*
    284 	 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    285 	 * if we slept for at least seven times the loadfactor, we will decay
    286 	 * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
    287 	 * return zero directly.
    288 	 *
    289 	 * Note that our ESTCPU_MAX is actually much smaller than
    290 	 * (255 << ESTCPU_SHIFT).
    291 	 */
    292 	if ((n << FSHIFT) >= 7 * loadfac) {
    293 		return 0;
    294 	}
    295 
    296 	while (estcpu != 0 && n > 1) {
    297 		estcpu = decay_cpu(loadfac, estcpu);
    298 		n--;
    299 	}
    300 
    301 	return estcpu;
    302 }
    303 
    304 /*
    305  * sched_pstats_hook:
    306  *
    307  * Periodically called from sched_pstats(); used to recalculate priorities.
    308  */
    309 void
    310 sched_pstats_hook(struct lwp *l, int batch)
    311 {
    312 	fixpt_t loadfac;
    313 
    314 	/*
    315 	 * If the LWP has slept an entire second, stop recalculating
    316 	 * its priority until it wakes up.
    317 	 */
    318 	KASSERT(lwp_locked(l, NULL));
    319 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    320 	    l->l_stat == LSSUSPENDED) {
    321 		if (l->l_slptime > 1) {
    322 			return;
    323 		}
    324 	}
    325 
    326 	loadfac = loadfactor(averunnable.ldavg[0]);
    327 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    328 	resetpriority(l);
    329 }
    330 
    331 /*
    332  * Recalculate the priority of an LWP after it has slept for a while.
    333  */
    334 static void
    335 updatepri(struct lwp *l)
    336 {
    337 	fixpt_t loadfac;
    338 
    339 	KASSERT(lwp_locked(l, NULL));
    340 	KASSERT(l->l_slptime > 1);
    341 
    342 	loadfac = loadfactor(averunnable.ldavg[0]);
    343 
    344 	l->l_slptime--; /* the first time was done in sched_pstats */
    345 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    346 	resetpriority(l);
    347 }
    348 
    349 void
    350 sched_rqinit(void)
    351 {
    352 
    353 }
    354 
    355 void
    356 sched_setrunnable(struct lwp *l)
    357 {
    358 
    359  	if (l->l_slptime > 1)
    360  		updatepri(l);
    361 }
    362 
    363 void
    364 sched_nice(struct proc *p, int n)
    365 {
    366 	struct lwp *l;
    367 
    368 	KASSERT(mutex_owned(p->p_lock));
    369 
    370 	p->p_nice = n;
    371 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    372 		lwp_lock(l);
    373 		resetpriority(l);
    374 		lwp_unlock(l);
    375 	}
    376 }
    377 
    378 /*
    379  * Recompute the priority of an LWP.  Arrange to reschedule if
    380  * the resulting priority is better than that of the current LWP.
    381  */
    382 static void
    383 resetpriority(struct lwp *l)
    384 {
    385 	pri_t pri;
    386 	struct proc *p = l->l_proc;
    387 
    388 	KASSERT(lwp_locked(l, NULL));
    389 
    390 	if (l->l_class != SCHED_OTHER)
    391 		return;
    392 
    393 	/* See comments above ESTCPU_SHIFT definition. */
    394 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    395 	pri = imax(pri, 0);
    396 	if (pri != l->l_priority)
    397 		lwp_changepri(l, pri);
    398 }
    399 
    400 /*
    401  * We adjust the priority of the current LWP.  The priority of a LWP
    402  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    403  * is increased here.  The formula for computing priorities will compute a
    404  * different value each time l_estcpu increases. This can cause a switch,
    405  * but unless the priority crosses a PPQ boundary the actual queue will not
    406  * change.  The CPU usage estimator ramps up quite quickly when the process
    407  * is running (linearly), and decays away exponentially, at a rate which is
    408  * proportionally slower when the system is busy.  The basic principle is
    409  * that the system will 90% forget that the process used a lot of CPU time
    410  * in (5 * loadavg) seconds.  This causes the system to favor processes which
    411  * haven't run much recently, and to round-robin among other processes.
    412  */
    413 void
    414 sched_schedclock(struct lwp *l)
    415 {
    416 
    417 	if (l->l_class != SCHED_OTHER)
    418 		return;
    419 
    420 	KASSERT(!CURCPU_IDLE_P());
    421 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    422 	lwp_lock(l);
    423 	resetpriority(l);
    424 	lwp_unlock(l);
    425 }
    426 
    427 /*
    428  * sched_proc_fork:
    429  *
    430  *	Inherit the parent's scheduler history.
    431  */
    432 void
    433 sched_proc_fork(struct proc *parent, struct proc *child)
    434 {
    435 	lwp_t *pl;
    436 
    437 	KASSERT(mutex_owned(parent->p_lock));
    438 
    439 	pl = LIST_FIRST(&parent->p_lwps);
    440 	child->p_estcpu_inherited = pl->l_estcpu;
    441 	child->p_forktime = sched_pstats_ticks;
    442 }
    443 
    444 /*
    445  * sched_proc_exit:
    446  *
    447  *	Chargeback parents for the sins of their children.
    448  */
    449 void
    450 sched_proc_exit(struct proc *parent, struct proc *child)
    451 {
    452 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    453 	fixpt_t estcpu;
    454 	lwp_t *pl, *cl;
    455 
    456 	/* XXX Only if parent != init?? */
    457 
    458 	mutex_enter(parent->p_lock);
    459 	pl = LIST_FIRST(&parent->p_lwps);
    460 	cl = LIST_FIRST(&child->p_lwps);
    461 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    462 	    sched_pstats_ticks - child->p_forktime);
    463 	if (cl->l_estcpu > estcpu) {
    464 		lwp_lock(pl);
    465 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    466 		lwp_unlock(pl);
    467 	}
    468 	mutex_exit(parent->p_lock);
    469 }
    470 
    471 void
    472 sched_wakeup(struct lwp *l)
    473 {
    474 
    475 }
    476 
    477 void
    478 sched_slept(struct lwp *l)
    479 {
    480 
    481 }
    482 
    483 void
    484 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    485 {
    486 
    487 	l2->l_estcpu = l1->l_estcpu;
    488 }
    489 
    490 void
    491 sched_lwp_collect(struct lwp *t)
    492 {
    493 	lwp_t *l;
    494 
    495 	/* Absorb estcpu value of collected LWP. */
    496 	l = curlwp;
    497 	lwp_lock(l);
    498 	l->l_estcpu += t->l_estcpu;
    499 	lwp_unlock(l);
    500 }
    501 
    502 void
    503 sched_oncpu(lwp_t *l)
    504 {
    505 
    506 }
    507 
    508 void
    509 sched_newts(lwp_t *l)
    510 {
    511 
    512 }
    513 
    514 /*
    515  * Sysctl nodes and initialization.
    516  */
    517 
    518 static int
    519 sysctl_sched_rtts(SYSCTLFN_ARGS)
    520 {
    521 	struct sysctlnode node;
    522 	int rttsms = hztoms(rrticks);
    523 
    524 	node = *rnode;
    525 	node.sysctl_data = &rttsms;
    526 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    527 }
    528 
    529 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    530 {
    531 	const struct sysctlnode *node = NULL;
    532 
    533 	sysctl_createv(clog, 0, NULL, &node,
    534 		CTLFLAG_PERMANENT,
    535 		CTLTYPE_NODE, "sched",
    536 		SYSCTL_DESCR("Scheduler options"),
    537 		NULL, 0, NULL, 0,
    538 		CTL_KERN, CTL_CREATE, CTL_EOL);
    539 
    540 	if (node == NULL)
    541 		return;
    542 
    543 	rrticks = hz / 10;
    544 
    545 	sysctl_createv(NULL, 0, &node, NULL,
    546 		CTLFLAG_PERMANENT,
    547 		CTLTYPE_STRING, "name", NULL,
    548 		NULL, 0, __UNCONST("4.4BSD"), 0,
    549 		CTL_CREATE, CTL_EOL);
    550 	sysctl_createv(NULL, 0, &node, NULL,
    551 		CTLFLAG_PERMANENT,
    552 		CTLTYPE_INT, "rtts",
    553 		SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
    554 		sysctl_sched_rtts, 0, NULL, 0,
    555 		CTL_CREATE, CTL_EOL);
    556 }
    557