sched_4bsd.c revision 1.6 1 /* $NetBSD: sched_4bsd.c,v 1.6 2007/10/09 19:00:15 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.6 2007/10/09 19:00:15 rmind Exp $");
79
80 #include "opt_ddb.h"
81 #include "opt_lockdebug.h"
82 #include "opt_perfctrs.h"
83
84 #define __MUTEX_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/cpu.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sysctl.h>
96 #include <sys/kauth.h>
97 #include <sys/lockdebug.h>
98 #include <sys/kmem.h>
99 #include <sys/intr.h>
100
101 #include <uvm/uvm_extern.h>
102
103 /*
104 * Run queues.
105 *
106 * We have 32 run queues in descending priority of 0..31. We maintain
107 * a bitmask of non-empty queues in order speed up finding the first
108 * runnable process. The bitmask is maintained only by machine-dependent
109 * code, allowing the most efficient instructions to be used to find the
110 * first non-empty queue.
111 */
112
113 #define RUNQUE_NQS 32 /* number of runqueues */
114 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
115
116 typedef struct subqueue {
117 TAILQ_HEAD(, lwp) sq_queue;
118 } subqueue_t;
119 typedef struct runqueue {
120 subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
121 uint32_t rq_bitmap; /* bitmap of non-empty queues */
122 } runqueue_t;
123 static runqueue_t global_queue;
124
125 static void updatepri(struct lwp *);
126 static void resetpriority(struct lwp *);
127 static void resetprocpriority(struct proc *);
128
129 fixpt_t decay_cpu(fixpt_t, fixpt_t);
130
131 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
132
133 /* The global scheduler state */
134 kmutex_t sched_mutex;
135
136 /* Number of hardclock ticks per sched_tick() */
137 int rrticks;
138
139 /*
140 * Force switch among equal priority processes every 100ms.
141 * Called from hardclock every hz/10 == rrticks hardclock ticks.
142 *
143 * There's no need to lock anywhere in this routine, as it's
144 * CPU-local and runs at IPL_SCHED (called from clock interrupt).
145 */
146 /* ARGSUSED */
147 void
148 sched_tick(struct cpu_info *ci)
149 {
150 struct schedstate_percpu *spc = &ci->ci_schedstate;
151
152 spc->spc_ticks = rrticks;
153
154 if (!CURCPU_IDLE_P()) {
155 if (spc->spc_flags & SPCF_SEENRR) {
156 /*
157 * The process has already been through a roundrobin
158 * without switching and may be hogging the CPU.
159 * Indicate that the process should yield.
160 */
161 spc->spc_flags |= SPCF_SHOULDYIELD;
162 } else
163 spc->spc_flags |= SPCF_SEENRR;
164 }
165 cpu_need_resched(curcpu(), 0);
166 }
167
168 #define NICE_WEIGHT 2 /* priorities per nice level */
169
170 #define ESTCPU_SHIFT 11
171 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
172 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
173
174 /*
175 * Constants for digital decay and forget:
176 * 90% of (p_estcpu) usage in 5 * loadav time
177 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
178 * Note that, as ps(1) mentions, this can let percentages
179 * total over 100% (I've seen 137.9% for 3 processes).
180 *
181 * Note that hardclock updates p_estcpu and p_cpticks independently.
182 *
183 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
184 * That is, the system wants to compute a value of decay such
185 * that the following for loop:
186 * for (i = 0; i < (5 * loadavg); i++)
187 * p_estcpu *= decay;
188 * will compute
189 * p_estcpu *= 0.1;
190 * for all values of loadavg:
191 *
192 * Mathematically this loop can be expressed by saying:
193 * decay ** (5 * loadavg) ~= .1
194 *
195 * The system computes decay as:
196 * decay = (2 * loadavg) / (2 * loadavg + 1)
197 *
198 * We wish to prove that the system's computation of decay
199 * will always fulfill the equation:
200 * decay ** (5 * loadavg) ~= .1
201 *
202 * If we compute b as:
203 * b = 2 * loadavg
204 * then
205 * decay = b / (b + 1)
206 *
207 * We now need to prove two things:
208 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
209 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
210 *
211 * Facts:
212 * For x close to zero, exp(x) =~ 1 + x, since
213 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
214 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
215 * For x close to zero, ln(1+x) =~ x, since
216 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
217 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
218 * ln(.1) =~ -2.30
219 *
220 * Proof of (1):
221 * Solve (factor)**(power) =~ .1 given power (5*loadav):
222 * solving for factor,
223 * ln(factor) =~ (-2.30/5*loadav), or
224 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
225 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
226 *
227 * Proof of (2):
228 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
229 * solving for power,
230 * power*ln(b/(b+1)) =~ -2.30, or
231 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
232 *
233 * Actual power values for the implemented algorithm are as follows:
234 * loadav: 1 2 3 4
235 * power: 5.68 10.32 14.94 19.55
236 */
237
238 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
239 #define loadfactor(loadav) (2 * (loadav))
240
241 fixpt_t
242 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
243 {
244
245 if (estcpu == 0) {
246 return 0;
247 }
248
249 #if !defined(_LP64)
250 /* avoid 64bit arithmetics. */
251 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
252 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
253 return estcpu * loadfac / (loadfac + FSCALE);
254 }
255 #endif /* !defined(_LP64) */
256
257 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
258 }
259
260 /*
261 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
262 * sleeping for at least seven times the loadfactor will decay p_estcpu to
263 * less than (1 << ESTCPU_SHIFT).
264 *
265 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
266 */
267 static fixpt_t
268 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
269 {
270
271 if ((n << FSHIFT) >= 7 * loadfac) {
272 return 0;
273 }
274
275 while (estcpu != 0 && n > 1) {
276 estcpu = decay_cpu(loadfac, estcpu);
277 n--;
278 }
279
280 return estcpu;
281 }
282
283 /*
284 * sched_pstats_hook:
285 *
286 * Periodically called from sched_pstats(); used to recalculate priorities.
287 */
288 void
289 sched_pstats_hook(struct lwp *l)
290 {
291
292 if (l->l_slptime <= 1 && l->l_priority >= PUSER)
293 resetpriority(l);
294 }
295
296 /*
297 * Recalculate the priority of a process after it has slept for a while.
298 */
299 static void
300 updatepri(struct lwp *l)
301 {
302 struct proc *p = l->l_proc;
303 fixpt_t loadfac;
304
305 KASSERT(lwp_locked(l, NULL));
306 KASSERT(l->l_slptime > 1);
307
308 loadfac = loadfactor(averunnable.ldavg[0]);
309
310 l->l_slptime--; /* the first time was done in sched_pstats */
311 /* XXX NJWLWP */
312 /* XXXSMP occasionally unlocked, should be per-LWP */
313 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
314 resetpriority(l);
315 }
316
317 /*
318 * On some architectures, it's faster to use a MSB ordering for the priorites
319 * than the traditional LSB ordering.
320 */
321 #define RQMASK(n) (0x00000001 << (n))
322
323 /*
324 * The primitives that manipulate the run queues. whichqs tells which
325 * of the 32 queues qs have processes in them. sched_enqueue() puts processes
326 * into queues, sched_dequeue removes them from queues. The running process is
327 * on no queue, other processes are on a queue related to p->p_priority,
328 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
329 * available queues.
330 */
331 #ifdef RQDEBUG
332 static void
333 runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
334 {
335 const subqueue_t * const sq = &rq->rq_subqueues[whichq];
336 const uint32_t bitmap = rq->rq_bitmap;
337 struct lwp *l2;
338 int found = 0;
339 int die = 0;
340 int empty = 1;
341
342 TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
343 if (l2->l_stat != LSRUN) {
344 printf("runqueue_check[%d]: lwp %p state (%d) "
345 " != LSRUN\n", whichq, l2, l2->l_stat);
346 }
347 if (l2 == l)
348 found = 1;
349 empty = 0;
350 }
351 if (empty && (bitmap & RQMASK(whichq)) != 0) {
352 printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
353 whichq, rq);
354 die = 1;
355 } else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
356 printf("runqueue_check[%d]: bit clear for non-empty "
357 "run-queue %p\n", whichq, rq);
358 die = 1;
359 }
360 if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
361 printf("runqueue_check[%d]: bit clear for active lwp %p\n",
362 whichq, l);
363 die = 1;
364 }
365 if (l != NULL && empty) {
366 printf("runqueue_check[%d]: empty run-queue %p with "
367 "active lwp %p\n", whichq, rq, l);
368 die = 1;
369 }
370 if (l != NULL && !found) {
371 printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
372 whichq, l, rq);
373 die = 1;
374 }
375 if (die)
376 panic("runqueue_check: inconsistency found");
377 }
378 #else /* RQDEBUG */
379 #define runqueue_check(a, b, c) /* nothing */
380 #endif /* RQDEBUG */
381
382 static void
383 runqueue_init(runqueue_t *rq)
384 {
385 int i;
386
387 for (i = 0; i < RUNQUE_NQS; i++)
388 TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
389 }
390
391 static void
392 runqueue_enqueue(runqueue_t *rq, struct lwp *l)
393 {
394 subqueue_t *sq;
395 const int whichq = lwp_eprio(l) / PPQ;
396
397 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
398
399 runqueue_check(rq, whichq, NULL);
400 rq->rq_bitmap |= RQMASK(whichq);
401 sq = &rq->rq_subqueues[whichq];
402 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
403 runqueue_check(rq, whichq, l);
404 }
405
406 static void
407 runqueue_dequeue(runqueue_t *rq, struct lwp *l)
408 {
409 subqueue_t *sq;
410 const int whichq = lwp_eprio(l) / PPQ;
411
412 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
413
414 runqueue_check(rq, whichq, l);
415 KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
416 sq = &rq->rq_subqueues[whichq];
417 TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
418 if (TAILQ_EMPTY(&sq->sq_queue))
419 rq->rq_bitmap &= ~RQMASK(whichq);
420 runqueue_check(rq, whichq, NULL);
421 }
422
423 static struct lwp *
424 runqueue_nextlwp(runqueue_t *rq)
425 {
426 const uint32_t bitmap = rq->rq_bitmap;
427 int whichq;
428
429 if (bitmap == 0) {
430 return NULL;
431 }
432 whichq = ffs(bitmap) - 1;
433 return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
434 }
435
436 #if defined(DDB)
437 static void
438 runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
439 {
440 const uint32_t bitmap = rq->rq_bitmap;
441 struct lwp *l;
442 int i, first;
443
444 for (i = 0; i < RUNQUE_NQS; i++) {
445 const subqueue_t *sq;
446 first = 1;
447 sq = &rq->rq_subqueues[i];
448 TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
449 if (first) {
450 (*pr)("%c%d",
451 (bitmap & RQMASK(i)) ? ' ' : '!', i);
452 first = 0;
453 }
454 (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
455 l->l_proc->p_pid,
456 l->l_lid, l->l_proc->p_comm,
457 (int)l->l_priority, (int)l->l_usrpri);
458 }
459 }
460 }
461 #endif /* defined(DDB) */
462 #undef RQMASK
463
464 /*
465 * Initialize the (doubly-linked) run queues
466 * to be empty.
467 */
468 void
469 sched_rqinit()
470 {
471
472 runqueue_init(&global_queue);
473 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
474 /* Initialize the lock pointer for lwp0 */
475 lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
476 }
477
478 void
479 sched_cpuattach(struct cpu_info *ci)
480 {
481 runqueue_t *rq;
482
483 ci->ci_schedstate.spc_mutex = &sched_mutex;
484 rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
485 runqueue_init(rq);
486 ci->ci_schedstate.spc_sched_info = rq;
487 }
488
489 void
490 sched_setup()
491 {
492
493 rrticks = hz / 10;
494 }
495
496 void
497 sched_setrunnable(struct lwp *l)
498 {
499
500 if (l->l_slptime > 1)
501 updatepri(l);
502 }
503
504 bool
505 sched_curcpu_runnable_p(void)
506 {
507 struct schedstate_percpu *spc;
508 runqueue_t *rq;
509
510 spc = &curcpu()->ci_schedstate;
511 rq = spc->spc_sched_info;
512
513 if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
514 return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
515 return rq->rq_bitmap != 0;
516 }
517
518 void
519 sched_nice(struct proc *chgp, int n)
520 {
521
522 chgp->p_nice = n;
523 (void)resetprocpriority(chgp);
524 }
525
526 /*
527 * Compute the priority of a process when running in user mode.
528 * Arrange to reschedule if the resulting priority is better
529 * than that of the current process.
530 */
531 static void
532 resetpriority(struct lwp *l)
533 {
534 unsigned int newpriority;
535 struct proc *p = l->l_proc;
536
537 /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
538 LOCK_ASSERT(lwp_locked(l, NULL));
539
540 if ((l->l_flag & LW_SYSTEM) != 0)
541 return;
542
543 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
544 NICE_WEIGHT * (p->p_nice - NZERO);
545 newpriority = min(newpriority, MAXPRI);
546 lwp_changepri(l, newpriority);
547 }
548
549 /*
550 * Recompute priority for all LWPs in a process.
551 */
552 static void
553 resetprocpriority(struct proc *p)
554 {
555 struct lwp *l;
556
557 KASSERT(mutex_owned(&p->p_stmutex));
558
559 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
560 lwp_lock(l);
561 resetpriority(l);
562 lwp_unlock(l);
563 }
564 }
565
566 /*
567 * We adjust the priority of the current process. The priority of a process
568 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
569 * is increased here. The formula for computing priorities (in kern_synch.c)
570 * will compute a different value each time p_estcpu increases. This can
571 * cause a switch, but unless the priority crosses a PPQ boundary the actual
572 * queue will not change. The CPU usage estimator ramps up quite quickly
573 * when the process is running (linearly), and decays away exponentially, at
574 * a rate which is proportionally slower when the system is busy. The basic
575 * principle is that the system will 90% forget that the process used a lot
576 * of CPU time in 5 * loadav seconds. This causes the system to favor
577 * processes which haven't run much recently, and to round-robin among other
578 * processes.
579 */
580
581 void
582 sched_schedclock(struct lwp *l)
583 {
584 struct proc *p = l->l_proc;
585
586 KASSERT(!CURCPU_IDLE_P());
587 mutex_spin_enter(&p->p_stmutex);
588 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
589 lwp_lock(l);
590 resetpriority(l);
591 mutex_spin_exit(&p->p_stmutex);
592 if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
593 l->l_priority = l->l_usrpri;
594 lwp_unlock(l);
595 }
596
597 /*
598 * sched_proc_fork:
599 *
600 * Inherit the parent's scheduler history.
601 */
602 void
603 sched_proc_fork(struct proc *parent, struct proc *child)
604 {
605
606 KASSERT(mutex_owned(&parent->p_smutex));
607
608 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
609 child->p_forktime = sched_pstats_ticks;
610 }
611
612 /*
613 * sched_proc_exit:
614 *
615 * Chargeback parents for the sins of their children.
616 */
617 void
618 sched_proc_exit(struct proc *parent, struct proc *child)
619 {
620 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
621 fixpt_t estcpu;
622
623 /* XXX Only if parent != init?? */
624
625 mutex_spin_enter(&parent->p_stmutex);
626 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
627 sched_pstats_ticks - child->p_forktime);
628 if (child->p_estcpu > estcpu)
629 parent->p_estcpu =
630 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
631 mutex_spin_exit(&parent->p_stmutex);
632 }
633
634 void
635 sched_enqueue(struct lwp *l, bool ctxswitch)
636 {
637
638 if ((l->l_flag & LW_BOUND) != 0)
639 runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
640 else
641 runqueue_enqueue(&global_queue, l);
642 }
643
644 /*
645 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
646 * drop of the effective priority level from kernel to user needs to be
647 * moved here from userret(). The assignment in userret() is currently
648 * done unlocked.
649 */
650 void
651 sched_dequeue(struct lwp *l)
652 {
653
654 if ((l->l_flag & LW_BOUND) != 0)
655 runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
656 else
657 runqueue_dequeue(&global_queue, l);
658 }
659
660 struct lwp *
661 sched_nextlwp(void)
662 {
663 struct schedstate_percpu *spc;
664 lwp_t *l1, *l2;
665
666 spc = &curcpu()->ci_schedstate;
667
668 /* For now, just pick the highest priority LWP. */
669 l1 = runqueue_nextlwp(spc->spc_sched_info);
670 if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0))
671 return l1;
672 l2 = runqueue_nextlwp(&global_queue);
673
674 if (l1 == NULL)
675 return l2;
676 if (l2 == NULL)
677 return l1;
678 if (lwp_eprio(l2) < lwp_eprio(l1))
679 return l2;
680 else
681 return l1;
682 }
683
684 /*
685 * Dummy.
686 */
687
688 struct cpu_info *
689 sched_takecpu(struct lwp *l)
690 {
691
692 return l->l_cpu;
693 }
694
695 void
696 sched_wakeup(struct lwp *l)
697 {
698
699 }
700
701 void
702 sched_slept(struct lwp *l)
703 {
704
705 }
706
707 void
708 sched_lwp_fork(struct lwp *l)
709 {
710
711 }
712
713 void
714 sched_lwp_exit(struct lwp *l)
715 {
716
717 }
718
719 /*
720 * sysctl setup. XXX This should be split with kern_synch.c.
721 */
722 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
723 {
724 const struct sysctlnode *node = NULL;
725
726 sysctl_createv(clog, 0, NULL, NULL,
727 CTLFLAG_PERMANENT,
728 CTLTYPE_NODE, "kern", NULL,
729 NULL, 0, NULL, 0,
730 CTL_KERN, CTL_EOL);
731 sysctl_createv(clog, 0, NULL, &node,
732 CTLFLAG_PERMANENT,
733 CTLTYPE_NODE, "sched",
734 SYSCTL_DESCR("Scheduler options"),
735 NULL, 0, NULL, 0,
736 CTL_KERN, CTL_CREATE, CTL_EOL);
737
738 KASSERT(node != NULL);
739
740 sysctl_createv(clog, 0, &node, NULL,
741 CTLFLAG_PERMANENT,
742 CTLTYPE_STRING, "name", NULL,
743 NULL, 0, __UNCONST("4.4BSD"), 0,
744 CTL_CREATE, CTL_EOL);
745 sysctl_createv(clog, 0, &node, NULL,
746 CTLFLAG_READWRITE,
747 CTLTYPE_INT, "timesoftints",
748 SYSCTL_DESCR("Track CPU time for soft interrupts"),
749 NULL, 0, &softint_timing, 0,
750 CTL_CREATE, CTL_EOL);
751 }
752
753 #if defined(DDB)
754 void
755 sched_print_runqueue(void (*pr)(const char *, ...))
756 {
757
758 runqueue_print(&global_queue, pr);
759 }
760 #endif /* defined(DDB) */
761