sched_m2.c revision 1.1 1 1.1 rmind /* $NetBSD: sched_m2.c,v 1.1 2007/10/09 19:00:15 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*
4 1.1 rmind * Copyright (c) 2007, Mindaugas Rasiukevicius
5 1.1 rmind *
6 1.1 rmind * Redistribution and use in source and binary forms, with or without
7 1.1 rmind * modification, are permitted provided that the following conditions
8 1.1 rmind * are met:
9 1.1 rmind * 1. Redistributions of source code must retain the above copyright
10 1.1 rmind * notice, this list of conditions and the following disclaimer.
11 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 rmind * notice, this list of conditions and the following disclaimer in the
13 1.1 rmind * documentation and/or other materials provided with the distribution.
14 1.1 rmind *
15 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
19 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
26 1.1 rmind */
27 1.1 rmind
28 1.1 rmind /*
29 1.1 rmind * TODO:
30 1.1 rmind * - Implementation of fair share queue;
31 1.1 rmind * - Support for NUMA;
32 1.1 rmind */
33 1.1 rmind
34 1.1 rmind #include <sys/cdefs.h>
35 1.1 rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.1 2007/10/09 19:00:15 rmind Exp $");
36 1.1 rmind
37 1.1 rmind #include <sys/param.h>
38 1.1 rmind
39 1.1 rmind #include <sys/cpu.h>
40 1.1 rmind #include <sys/callout.h>
41 1.1 rmind #include <sys/errno.h>
42 1.1 rmind #include <sys/kernel.h>
43 1.1 rmind #include <sys/kmem.h>
44 1.1 rmind #include <sys/lwp.h>
45 1.1 rmind #include <sys/mutex.h>
46 1.1 rmind #include <sys/pool.h>
47 1.1 rmind #include <sys/proc.h>
48 1.1 rmind #include <sys/resource.h>
49 1.1 rmind #include <sys/resourcevar.h>
50 1.1 rmind #include <sys/sched.h>
51 1.1 rmind #include <sys/syscallargs.h>
52 1.1 rmind #include <sys/sysctl.h>
53 1.1 rmind #include <sys/types.h>
54 1.1 rmind
55 1.1 rmind #include <machine/cpu.h>
56 1.1 rmind
57 1.1 rmind /*
58 1.1 rmind * XXX: Some defintions below will dissapear
59 1.1 rmind * XXX: with the merge of vmlocking branch.
60 1.1 rmind */
61 1.1 rmind #define PRI_MAX MAXPRI
62 1.1 rmind #define PRI_COUNT (PRI_MAX + 1) /* 0 .. 127 -> 128 */
63 1.1 rmind #define PRI_RT_COUNT (50) /* 0 .. 49 -> 50 */
64 1.1 rmind #define PRI_TS_COUNT (PRI_COUNT - PRI_RT_COUNT) /* 50 .. 127 -> 78 */
65 1.1 rmind
66 1.1 rmind #define PRI_DEFAULT 70 /* 70 */
67 1.1 rmind #define PRI_REALTIME 50 /* 50 */
68 1.1 rmind #define PRI_HTS_RANGE 10 /* 50 .. 60 -> 10 */
69 1.1 rmind
70 1.1 rmind /*
71 1.1 rmind * Bits per map.
72 1.1 rmind */
73 1.1 rmind #define BITMAP_SHIFT 5 /* 32 bits */
74 1.1 rmind #define BITMAP_SIZE PRI_COUNT >> BITMAP_SHIFT
75 1.1 rmind
76 1.1 rmind /*
77 1.1 rmind * Time-slices and priorities.
78 1.1 rmind */
79 1.1 rmind static u_int min_ts; /* Minimal time-slice */
80 1.1 rmind static u_int max_ts; /* Maximal time-slice */
81 1.1 rmind static u_int rt_ts; /* Real-time time-slice */
82 1.1 rmind static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
83 1.1 rmind static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
84 1.1 rmind
85 1.1 rmind /*
86 1.1 rmind * Migration and balancing.
87 1.1 rmind */
88 1.1 rmind #ifdef MULTIPROCESSOR
89 1.1 rmind static u_int cacheht_time; /* Cache hotness time */
90 1.1 rmind static u_int min_catch; /* Minimal LWP count for catching */
91 1.1 rmind
92 1.1 rmind static u_int balance_period; /* Balance period */
93 1.1 rmind static struct callout balance_ch; /* Callout of balancer */
94 1.1 rmind
95 1.1 rmind static struct cpu_info * volatile worker_ci;
96 1.1 rmind
97 1.1 rmind #define CACHE_HOT(sil) (sil->sl_lrtime && \
98 1.1 rmind (hardclock_ticks - sil->sl_lrtime < cacheht_time))
99 1.1 rmind
100 1.1 rmind #endif
101 1.1 rmind
102 1.1 rmind /*
103 1.1 rmind * Structures, runqueue.
104 1.1 rmind */
105 1.1 rmind
106 1.1 rmind typedef struct {
107 1.1 rmind TAILQ_HEAD(, lwp) q_head;
108 1.1 rmind } queue_t;
109 1.1 rmind
110 1.1 rmind typedef struct {
111 1.1 rmind /* Lock and bitmap */
112 1.1 rmind kmutex_t r_rq_mutex;
113 1.1 rmind uint32_t r_bitmap[BITMAP_SIZE];
114 1.1 rmind /* Counters */
115 1.1 rmind u_int r_count; /* Count of the threads */
116 1.1 rmind pri_t r_highest_pri; /* Highest priority */
117 1.1 rmind u_int r_avgcount; /* Average count of threads */
118 1.1 rmind u_int r_mcount; /* Count of migratable threads */
119 1.1 rmind /* Runqueues */
120 1.1 rmind queue_t r_rt_queue[PRI_RT_COUNT];
121 1.1 rmind queue_t r_ts_queue[PRI_TS_COUNT];
122 1.1 rmind } runqueue_t;
123 1.1 rmind
124 1.1 rmind typedef struct {
125 1.1 rmind u_int sl_flags;
126 1.1 rmind u_int sl_timeslice; /* Time-slice of thread */
127 1.1 rmind u_int sl_slept; /* Saved sleep time for sleep sum */
128 1.1 rmind u_int sl_slpsum; /* Sum of sleep time */
129 1.1 rmind u_int sl_rtime; /* Saved start time of run */
130 1.1 rmind u_int sl_rtsum; /* Sum of the run time */
131 1.1 rmind u_int sl_lrtime; /* Last run time */
132 1.1 rmind } sched_info_lwp_t;
133 1.1 rmind
134 1.1 rmind /* Flags */
135 1.1 rmind #define SL_BATCH 0x01
136 1.1 rmind
137 1.1 rmind /* Pool of the scheduler-specific structures for threads */
138 1.1 rmind static struct pool sil_pool;
139 1.1 rmind
140 1.1 rmind /*
141 1.1 rmind * Prototypes.
142 1.1 rmind */
143 1.1 rmind
144 1.1 rmind static inline void * sched_getrq(runqueue_t *, const pri_t);
145 1.1 rmind static inline void sched_newts(struct lwp *);
146 1.1 rmind static void sched_precalcts(void);
147 1.1 rmind
148 1.1 rmind #ifdef MULTIPROCESSOR
149 1.1 rmind static struct lwp * sched_catchlwp(void);
150 1.1 rmind static void sched_balance(void *);
151 1.1 rmind #endif
152 1.1 rmind
153 1.1 rmind /*
154 1.1 rmind * Initialization and setup.
155 1.1 rmind */
156 1.1 rmind
157 1.1 rmind void
158 1.1 rmind sched_rqinit(void)
159 1.1 rmind {
160 1.1 rmind struct cpu_info *ci = curcpu();
161 1.1 rmind
162 1.1 rmind if (hz < 100) {
163 1.1 rmind panic("sched_rqinit: value of HZ is too low\n");
164 1.1 rmind }
165 1.1 rmind
166 1.1 rmind /* Default timing ranges */
167 1.1 rmind min_ts = mstohz(50); /* ~50ms */
168 1.1 rmind max_ts = mstohz(150); /* ~150ms */
169 1.1 rmind rt_ts = mstohz(100); /* ~100ms */
170 1.1 rmind sched_precalcts();
171 1.1 rmind
172 1.1 rmind #ifdef MULTIPROCESSOR
173 1.1 rmind /* Balancing */
174 1.1 rmind worker_ci = ci;
175 1.1 rmind cacheht_time = mstohz(5); /* ~5 ms */
176 1.1 rmind balance_period = mstohz(300); /* ~300ms */
177 1.1 rmind min_catch = ~0;
178 1.1 rmind #endif
179 1.1 rmind
180 1.1 rmind /* Pool of the scheduler-specific structures */
181 1.1 rmind pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
182 1.1 rmind "lwpsd", &pool_allocator_nointr, IPL_NONE);
183 1.1 rmind
184 1.1 rmind /* Attach the primary CPU here */
185 1.1 rmind sched_cpuattach(ci);
186 1.1 rmind
187 1.1 rmind /* Initialize the scheduler structure of the primary LWP */
188 1.1 rmind lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
189 1.1 rmind sched_lwp_fork(&lwp0);
190 1.1 rmind sched_newts(&lwp0);
191 1.1 rmind }
192 1.1 rmind
193 1.1 rmind void
194 1.1 rmind sched_setup(void)
195 1.1 rmind {
196 1.1 rmind
197 1.1 rmind #ifdef MULTIPROCESSOR
198 1.1 rmind /* Minimal count of LWPs for catching: log2(count of CPUs) */
199 1.1 rmind min_catch = min(ffs(ncpu) - 1, 4);
200 1.1 rmind
201 1.1 rmind /* Initialize balancing callout and run it */
202 1.1 rmind callout_init(&balance_ch, CALLOUT_MPSAFE);
203 1.1 rmind callout_setfunc(&balance_ch, sched_balance, NULL);
204 1.1 rmind callout_schedule(&balance_ch, balance_period);
205 1.1 rmind #endif
206 1.1 rmind }
207 1.1 rmind
208 1.1 rmind void
209 1.1 rmind sched_cpuattach(struct cpu_info *ci)
210 1.1 rmind {
211 1.1 rmind runqueue_t *ci_rq;
212 1.1 rmind void *rq_ptr;
213 1.1 rmind u_int i, size;
214 1.1 rmind
215 1.1 rmind /*
216 1.1 rmind * Allocate the run queue.
217 1.1 rmind * XXX: Estimate cache behaviour more..
218 1.1 rmind */
219 1.1 rmind size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
220 1.1 rmind rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
221 1.1 rmind if (rq_ptr == NULL) {
222 1.1 rmind panic("scheduler: could not allocate the runqueue");
223 1.1 rmind }
224 1.1 rmind /* XXX: Save the original pointer for future.. */
225 1.1 rmind ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
226 1.1 rmind
227 1.1 rmind /* Initialize run queues */
228 1.1 rmind mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
229 1.1 rmind for (i = 0; i < PRI_RT_COUNT; i++)
230 1.1 rmind TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
231 1.1 rmind for (i = 0; i < PRI_TS_COUNT; i++)
232 1.1 rmind TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
233 1.1 rmind ci_rq->r_highest_pri = PRI_MAX;
234 1.1 rmind
235 1.1 rmind ci->ci_schedstate.spc_sched_info = ci_rq;
236 1.1 rmind ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
237 1.1 rmind }
238 1.1 rmind
239 1.1 rmind /* Pre-calculate the time-slices for the priorities */
240 1.1 rmind static void
241 1.1 rmind sched_precalcts(void)
242 1.1 rmind {
243 1.1 rmind pri_t p;
244 1.1 rmind u_int i;
245 1.1 rmind
246 1.1 rmind for (p = 0; p < PRI_REALTIME; p++) {
247 1.1 rmind ts_map[p] = rt_ts;
248 1.1 rmind high_pri[p] = p;
249 1.1 rmind }
250 1.1 rmind
251 1.1 rmind for (p = PRI_REALTIME, i = 0; p < PRI_COUNT; p++, i++) {
252 1.1 rmind ts_map[p] = min_ts +
253 1.1 rmind (i * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
254 1.1 rmind high_pri[p] = PRI_REALTIME + (i * PRI_HTS_RANGE /
255 1.1 rmind (PRI_MAX - PRI_REALTIME));
256 1.1 rmind }
257 1.1 rmind }
258 1.1 rmind
259 1.1 rmind /*
260 1.1 rmind * Hooks.
261 1.1 rmind */
262 1.1 rmind
263 1.1 rmind void
264 1.1 rmind sched_proc_fork(struct proc *parent, struct proc *child)
265 1.1 rmind {
266 1.1 rmind struct lwp *l;
267 1.1 rmind
268 1.1 rmind LIST_FOREACH(l, &child->p_lwps, l_sibling) {
269 1.1 rmind lwp_lock(l);
270 1.1 rmind sched_newts(l);
271 1.1 rmind lwp_unlock(l);
272 1.1 rmind }
273 1.1 rmind }
274 1.1 rmind
275 1.1 rmind void
276 1.1 rmind sched_proc_exit(struct proc *child, struct proc *parent)
277 1.1 rmind {
278 1.1 rmind
279 1.1 rmind /* Dummy */
280 1.1 rmind }
281 1.1 rmind
282 1.1 rmind void
283 1.1 rmind sched_lwp_fork(struct lwp *l)
284 1.1 rmind {
285 1.1 rmind
286 1.1 rmind KASSERT(l->l_sched_info == NULL);
287 1.1 rmind l->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
288 1.1 rmind memset(l->l_sched_info, 0, sizeof(sched_info_lwp_t));
289 1.1 rmind if (l->l_usrpri >= PRI_REALTIME) /* XXX: For now only.. */
290 1.1 rmind l->l_usrpri = l->l_priority = PRI_DEFAULT;
291 1.1 rmind }
292 1.1 rmind
293 1.1 rmind void
294 1.1 rmind sched_lwp_exit(struct lwp *l)
295 1.1 rmind {
296 1.1 rmind
297 1.1 rmind KASSERT(l->l_sched_info != NULL);
298 1.1 rmind pool_put(&sil_pool, l->l_sched_info);
299 1.1 rmind l->l_sched_info = NULL;
300 1.1 rmind }
301 1.1 rmind
302 1.1 rmind void
303 1.1 rmind sched_setrunnable(struct lwp *l)
304 1.1 rmind {
305 1.1 rmind
306 1.1 rmind /* Dummy */
307 1.1 rmind }
308 1.1 rmind
309 1.1 rmind void
310 1.1 rmind sched_schedclock(struct lwp *l)
311 1.1 rmind {
312 1.1 rmind
313 1.1 rmind /* Dummy */
314 1.1 rmind }
315 1.1 rmind
316 1.1 rmind /*
317 1.1 rmind * Priorities and time-slice.
318 1.1 rmind */
319 1.1 rmind
320 1.1 rmind void
321 1.1 rmind sched_nice(struct proc *p, int prio)
322 1.1 rmind {
323 1.1 rmind int nprio;
324 1.1 rmind struct lwp *l;
325 1.1 rmind
326 1.1 rmind KASSERT(mutex_owned(&p->p_stmutex));
327 1.1 rmind
328 1.1 rmind p->p_nice = prio;
329 1.1 rmind nprio = max(PRI_DEFAULT + p->p_nice, PRI_REALTIME);
330 1.1 rmind
331 1.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
332 1.1 rmind lwp_lock(l);
333 1.1 rmind lwp_changepri(l, nprio);
334 1.1 rmind lwp_unlock(l);
335 1.1 rmind }
336 1.1 rmind }
337 1.1 rmind
338 1.1 rmind /* Recalculate the time-slice */
339 1.1 rmind static inline void
340 1.1 rmind sched_newts(struct lwp *l)
341 1.1 rmind {
342 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
343 1.1 rmind
344 1.1 rmind sil->sl_timeslice = ts_map[lwp_eprio(l)];
345 1.1 rmind }
346 1.1 rmind
347 1.1 rmind /*
348 1.1 rmind * Control of the runqueue.
349 1.1 rmind */
350 1.1 rmind
351 1.1 rmind static inline void *
352 1.1 rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
353 1.1 rmind {
354 1.1 rmind
355 1.1 rmind KASSERT(prio < PRI_COUNT);
356 1.1 rmind return (prio < PRI_REALTIME) ?
357 1.1 rmind &ci_rq->r_rt_queue[prio].q_head :
358 1.1 rmind &ci_rq->r_ts_queue[prio - PRI_REALTIME].q_head;
359 1.1 rmind }
360 1.1 rmind
361 1.1 rmind void
362 1.1 rmind sched_enqueue(struct lwp *l, bool swtch)
363 1.1 rmind {
364 1.1 rmind runqueue_t *ci_rq;
365 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
366 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
367 1.1 rmind const pri_t eprio = lwp_eprio(l);
368 1.1 rmind
369 1.1 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
370 1.1 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
371 1.1 rmind
372 1.1 rmind /* Update the last run time on switch */
373 1.1 rmind if (swtch == true) {
374 1.1 rmind sil->sl_lrtime = hardclock_ticks;
375 1.1 rmind sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
376 1.1 rmind } else
377 1.1 rmind sil->sl_lrtime = 0;
378 1.1 rmind
379 1.1 rmind /* Enqueue the thread */
380 1.1 rmind q_head = sched_getrq(ci_rq, eprio);
381 1.1 rmind if (TAILQ_EMPTY(q_head)) {
382 1.1 rmind u_int i;
383 1.1 rmind uint32_t q;
384 1.1 rmind
385 1.1 rmind /* Mark bit */
386 1.1 rmind i = eprio >> BITMAP_SHIFT;
387 1.1 rmind q = eprio - (i << BITMAP_SHIFT);
388 1.1 rmind KASSERT((ci_rq->r_bitmap[i] & (1 << q)) == 0);
389 1.1 rmind ci_rq->r_bitmap[i] |= 1 << q;
390 1.1 rmind }
391 1.1 rmind TAILQ_INSERT_TAIL(q_head, l, l_runq);
392 1.1 rmind ci_rq->r_count++;
393 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
394 1.1 rmind ci_rq->r_mcount++;
395 1.1 rmind
396 1.1 rmind /*
397 1.1 rmind * Update the value of highest priority in the runqueue,
398 1.1 rmind * if priority of this thread is higher.
399 1.1 rmind */
400 1.1 rmind if (eprio < ci_rq->r_highest_pri)
401 1.1 rmind ci_rq->r_highest_pri = eprio;
402 1.1 rmind
403 1.1 rmind sched_newts(l);
404 1.1 rmind }
405 1.1 rmind
406 1.1 rmind void
407 1.1 rmind sched_dequeue(struct lwp *l)
408 1.1 rmind {
409 1.1 rmind runqueue_t *ci_rq;
410 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
411 1.1 rmind const pri_t eprio = lwp_eprio(l);
412 1.1 rmind
413 1.1 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
414 1.1 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
415 1.1 rmind KASSERT(ci_rq->r_highest_pri <= eprio);
416 1.1 rmind KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
417 1.1 rmind KASSERT(ci_rq->r_count > 0);
418 1.1 rmind
419 1.1 rmind ci_rq->r_count--;
420 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
421 1.1 rmind ci_rq->r_mcount--;
422 1.1 rmind
423 1.1 rmind q_head = sched_getrq(ci_rq, eprio);
424 1.1 rmind TAILQ_REMOVE(q_head, l, l_runq);
425 1.1 rmind if (TAILQ_EMPTY(q_head)) {
426 1.1 rmind u_int i;
427 1.1 rmind uint32_t q;
428 1.1 rmind
429 1.1 rmind /* Unmark bit */
430 1.1 rmind i = eprio >> BITMAP_SHIFT;
431 1.1 rmind q = eprio - (i << BITMAP_SHIFT);
432 1.1 rmind KASSERT((ci_rq->r_bitmap[i] & (1 << q)) != 0);
433 1.1 rmind ci_rq->r_bitmap[i] &= ~(1 << q);
434 1.1 rmind
435 1.1 rmind /*
436 1.1 rmind * Update the value of highest priority in the runqueue, in a
437 1.1 rmind * case it was a last thread in the queue of highest priority.
438 1.1 rmind */
439 1.1 rmind if (eprio != ci_rq->r_highest_pri)
440 1.1 rmind return;
441 1.1 rmind
442 1.1 rmind do {
443 1.1 rmind q = ffs(ci_rq->r_bitmap[i]);
444 1.1 rmind if (q) {
445 1.1 rmind ci_rq->r_highest_pri =
446 1.1 rmind (i << BITMAP_SHIFT) + q - 1;
447 1.1 rmind return;
448 1.1 rmind }
449 1.1 rmind } while (++i < BITMAP_SIZE);
450 1.1 rmind
451 1.1 rmind /* If not found - set the maximal value */
452 1.1 rmind ci_rq->r_highest_pri = PRI_MAX;
453 1.1 rmind }
454 1.1 rmind }
455 1.1 rmind
456 1.1 rmind void
457 1.1 rmind sched_slept(struct lwp *l)
458 1.1 rmind {
459 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
460 1.1 rmind
461 1.1 rmind /* Save the time when thread has slept */
462 1.1 rmind sil->sl_slept = hardclock_ticks;
463 1.1 rmind
464 1.1 rmind /*
465 1.1 rmind * If thread is not a real-time and batch flag is not marked,
466 1.1 rmind * increase the the priority, and run with lower time-quantum.
467 1.1 rmind */
468 1.1 rmind if (l->l_usrpri > PRI_REALTIME && (sil->sl_flags & SL_BATCH) == 0)
469 1.1 rmind l->l_usrpri--;
470 1.1 rmind }
471 1.1 rmind
472 1.1 rmind void
473 1.1 rmind sched_wakeup(struct lwp *l)
474 1.1 rmind {
475 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
476 1.1 rmind
477 1.1 rmind /* Update sleep time delta */
478 1.1 rmind sil->sl_slpsum += (l->l_slptime == 0) ?
479 1.1 rmind (hardclock_ticks - sil->sl_slept) : hz;
480 1.1 rmind
481 1.1 rmind /* If thread was sleeping a second or more - set a high priority */
482 1.1 rmind if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
483 1.1 rmind l->l_usrpri = l->l_priority = high_pri[l->l_usrpri];
484 1.1 rmind KASSERT(sil->sl_slept > 0);
485 1.1 rmind
486 1.1 rmind /* Also, consider looking for a better CPU to wake up */
487 1.1 rmind if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
488 1.1 rmind l->l_cpu = sched_takecpu(l);
489 1.1 rmind }
490 1.1 rmind
491 1.1 rmind void
492 1.1 rmind sched_pstats_hook(struct lwp *l)
493 1.1 rmind {
494 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
495 1.1 rmind
496 1.1 rmind /*
497 1.1 rmind * Set that thread is more CPU-bound, if sum of run time exceeds the
498 1.1 rmind * sum of sleep time. If it is CPU-bound not a first time - decrease
499 1.1 rmind * the priority.
500 1.1 rmind */
501 1.1 rmind if (sil->sl_rtsum > sil->sl_slpsum) {
502 1.1 rmind if ((sil->sl_flags & SL_BATCH) && (l->l_usrpri < PRI_MAX))
503 1.1 rmind l->l_usrpri++;
504 1.1 rmind sil->sl_flags |= SL_BATCH;
505 1.1 rmind } else {
506 1.1 rmind sil->sl_flags &= ~SL_BATCH;
507 1.1 rmind }
508 1.1 rmind sil->sl_slpsum = 0;
509 1.1 rmind sil->sl_rtsum = 0;
510 1.1 rmind
511 1.1 rmind /*
512 1.1 rmind * Estimate only threads on time-sharing run queue, also,
513 1.1 rmind * ignore the highest time-sharing priority.
514 1.1 rmind */
515 1.1 rmind if (l->l_stat != LSRUN || l->l_usrpri <= PRI_REALTIME)
516 1.1 rmind return;
517 1.1 rmind
518 1.1 rmind /* If thread was not ran a second or more - set a high priority */
519 1.1 rmind if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
520 1.1 rmind lwp_changepri(l, high_pri[l->l_usrpri]);
521 1.1 rmind }
522 1.1 rmind
523 1.1 rmind /*
524 1.1 rmind * Migration and balancing.
525 1.1 rmind */
526 1.1 rmind
527 1.1 rmind #ifdef MULTIPROCESSOR
528 1.1 rmind
529 1.1 rmind /* Check if LWP can migrate to the chosen CPU */
530 1.1 rmind static inline bool
531 1.1 rmind sched_migratable(const struct lwp *l, const struct cpu_info *ci)
532 1.1 rmind {
533 1.1 rmind
534 1.1 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
535 1.1 rmind return false;
536 1.1 rmind
537 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
538 1.1 rmind return true;
539 1.1 rmind #if 0
540 1.1 rmind return cpu_in_pset(ci, l->l_psid);
541 1.1 rmind #else
542 1.1 rmind return false;
543 1.1 rmind #endif
544 1.1 rmind }
545 1.1 rmind
546 1.1 rmind /*
547 1.1 rmind * Estimate the migration of LWP to the other CPU.
548 1.1 rmind * Take and return the CPU, if migration is needed.
549 1.1 rmind */
550 1.1 rmind struct cpu_info *
551 1.1 rmind sched_takecpu(struct lwp *l)
552 1.1 rmind {
553 1.1 rmind struct cpu_info *ci, *tci = NULL;
554 1.1 rmind struct schedstate_percpu *spc;
555 1.1 rmind runqueue_t *ci_rq;
556 1.1 rmind sched_info_lwp_t *sil;
557 1.1 rmind CPU_INFO_ITERATOR cii;
558 1.1 rmind pri_t eprio, lpri;
559 1.1 rmind
560 1.1 rmind ci = l->l_cpu;
561 1.1 rmind spc = &ci->ci_schedstate;
562 1.1 rmind ci_rq = spc->spc_sched_info;
563 1.1 rmind
564 1.1 rmind /* CPU of this thread is idling - run there */
565 1.1 rmind if (ci_rq->r_count == 0)
566 1.1 rmind return ci;
567 1.1 rmind
568 1.1 rmind eprio = lwp_eprio(l);
569 1.1 rmind sil = l->l_sched_info;
570 1.1 rmind
571 1.1 rmind /* Stay if thread is cache-hot */
572 1.1 rmind if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
573 1.1 rmind CACHE_HOT(sil) && eprio <= spc->spc_curpriority)
574 1.1 rmind return ci;
575 1.1 rmind
576 1.1 rmind /* Run on current CPU if priority of thread is higher */
577 1.1 rmind ci = curcpu();
578 1.1 rmind spc = &ci->ci_schedstate;
579 1.1 rmind if (eprio < spc->spc_curpriority && sched_migratable(l, ci))
580 1.1 rmind return ci;
581 1.1 rmind
582 1.1 rmind /*
583 1.1 rmind * Look for the CPU with the lowest priority thread. In case of
584 1.1 rmind * equal the priority - check the lower count of the threads.
585 1.1 rmind */
586 1.1 rmind lpri = 0;
587 1.1 rmind ci_rq = NULL;
588 1.1 rmind tci = l->l_cpu;
589 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
590 1.1 rmind runqueue_t *ici_rq;
591 1.1 rmind pri_t pri;
592 1.1 rmind
593 1.1 rmind spc = &ci->ci_schedstate;
594 1.1 rmind ici_rq = spc->spc_sched_info;
595 1.1 rmind pri = min(spc->spc_curpriority, ici_rq->r_highest_pri);
596 1.1 rmind if (pri < lpri)
597 1.1 rmind continue;
598 1.1 rmind
599 1.1 rmind if (pri == lpri && ci_rq && ci_rq->r_count < ici_rq->r_count)
600 1.1 rmind continue;
601 1.1 rmind
602 1.1 rmind if (sched_migratable(l, ci) == false)
603 1.1 rmind continue;
604 1.1 rmind
605 1.1 rmind lpri = pri;
606 1.1 rmind tci = ci;
607 1.1 rmind ci_rq = ici_rq;
608 1.1 rmind }
609 1.1 rmind
610 1.1 rmind return tci;
611 1.1 rmind }
612 1.1 rmind
613 1.1 rmind /*
614 1.1 rmind * Tries to catch an LWP from the runqueue of other CPU.
615 1.1 rmind */
616 1.1 rmind static struct lwp *
617 1.1 rmind sched_catchlwp(void)
618 1.1 rmind {
619 1.1 rmind struct cpu_info *curci = curcpu(), *ci = worker_ci;
620 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
621 1.1 rmind runqueue_t *ci_rq;
622 1.1 rmind struct lwp *l;
623 1.1 rmind
624 1.1 rmind if (curci == ci)
625 1.1 rmind return NULL;
626 1.1 rmind
627 1.1 rmind /* Lockless check */
628 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
629 1.1 rmind if (ci_rq->r_count < min_catch)
630 1.1 rmind return NULL;
631 1.1 rmind
632 1.1 rmind /*
633 1.1 rmind * Double-lock the runqueues.
634 1.1 rmind */
635 1.1 rmind if (curci->ci_schedstate.spc_mutex < ci->ci_schedstate.spc_mutex) {
636 1.1 rmind spc_lock(ci);
637 1.1 rmind } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
638 1.1 rmind const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
639 1.1 rmind
640 1.1 rmind spc_unlock(curci);
641 1.1 rmind spc_lock(ci);
642 1.1 rmind spc_lock(curci);
643 1.1 rmind
644 1.1 rmind if (cur_rq->r_count) {
645 1.1 rmind spc_unlock(ci);
646 1.1 rmind return NULL;
647 1.1 rmind }
648 1.1 rmind }
649 1.1 rmind
650 1.1 rmind if (ci_rq->r_count < min_catch) {
651 1.1 rmind spc_unlock(ci);
652 1.1 rmind return NULL;
653 1.1 rmind }
654 1.1 rmind
655 1.1 rmind /* Take the highest priority thread */
656 1.1 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
657 1.1 rmind l = TAILQ_FIRST(q_head);
658 1.1 rmind
659 1.1 rmind for (;;) {
660 1.1 rmind sched_info_lwp_t *sil;
661 1.1 rmind
662 1.1 rmind /* Check the first and next result from the queue */
663 1.1 rmind if (l == NULL)
664 1.1 rmind break;
665 1.1 rmind
666 1.1 rmind /* Look for threads, whose are allowed to migrate */
667 1.1 rmind sil = l->l_sched_info;
668 1.1 rmind if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
669 1.1 rmind sched_migratable(l, curci) == false) {
670 1.1 rmind l = TAILQ_NEXT(l, l_runq);
671 1.1 rmind continue;
672 1.1 rmind }
673 1.1 rmind /* Recheck if chosen thread is still on the runqueue */
674 1.1 rmind if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
675 1.1 rmind sched_dequeue(l);
676 1.1 rmind l->l_cpu = curci;
677 1.1 rmind lwp_setlock(l, curci->ci_schedstate.spc_mutex);
678 1.1 rmind sched_enqueue(l, false);
679 1.1 rmind break;
680 1.1 rmind }
681 1.1 rmind l = TAILQ_NEXT(l, l_runq);
682 1.1 rmind }
683 1.1 rmind spc_unlock(ci);
684 1.1 rmind
685 1.1 rmind return l;
686 1.1 rmind }
687 1.1 rmind
688 1.1 rmind /*
689 1.1 rmind * Periodical calculations for balancing.
690 1.1 rmind */
691 1.1 rmind static void
692 1.1 rmind sched_balance(void *nocallout)
693 1.1 rmind {
694 1.1 rmind struct cpu_info *ci, *hci;
695 1.1 rmind runqueue_t *ci_rq;
696 1.1 rmind CPU_INFO_ITERATOR cii;
697 1.1 rmind u_int highest;
698 1.1 rmind
699 1.1 rmind hci = curcpu();
700 1.1 rmind highest = 0;
701 1.1 rmind
702 1.1 rmind /* Make lockless countings */
703 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
704 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
705 1.1 rmind
706 1.1 rmind /* Average count of the threads */
707 1.1 rmind ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
708 1.1 rmind
709 1.1 rmind /* Look for CPU with the highest average */
710 1.1 rmind if (ci_rq->r_avgcount > highest) {
711 1.1 rmind hci = ci;
712 1.1 rmind highest = ci_rq->r_avgcount;
713 1.1 rmind }
714 1.1 rmind }
715 1.1 rmind
716 1.1 rmind /* Update the worker */
717 1.1 rmind worker_ci = hci;
718 1.1 rmind
719 1.1 rmind if (nocallout == NULL)
720 1.1 rmind callout_schedule(&balance_ch, balance_period);
721 1.1 rmind }
722 1.1 rmind
723 1.1 rmind #else
724 1.1 rmind
725 1.1 rmind struct cpu_info *
726 1.1 rmind sched_takecpu(struct lwp *l)
727 1.1 rmind {
728 1.1 rmind
729 1.1 rmind return l->l_cpu;
730 1.1 rmind }
731 1.1 rmind
732 1.1 rmind #endif /* MULTIPROCESSOR */
733 1.1 rmind
734 1.1 rmind /*
735 1.1 rmind * Scheduler mill.
736 1.1 rmind */
737 1.1 rmind struct lwp *
738 1.1 rmind sched_nextlwp(void)
739 1.1 rmind {
740 1.1 rmind struct cpu_info *ci = curcpu();
741 1.1 rmind struct schedstate_percpu *spc;
742 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
743 1.1 rmind sched_info_lwp_t *sil;
744 1.1 rmind runqueue_t *ci_rq;
745 1.1 rmind struct lwp *l;
746 1.1 rmind
747 1.1 rmind spc = &ci->ci_schedstate;
748 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
749 1.1 rmind
750 1.1 rmind #ifdef MULTIPROCESSOR
751 1.1 rmind /* If runqueue is empty, try to catch some thread from other CPU */
752 1.1 rmind if (spc->spc_flags & SPCF_OFFLINE) {
753 1.1 rmind if (ci_rq->r_mcount == 0)
754 1.1 rmind return NULL;
755 1.1 rmind } else if (ci_rq->r_count == 0) {
756 1.1 rmind /* Reset the counter, and call the balancer */
757 1.1 rmind ci_rq->r_avgcount = 0;
758 1.1 rmind sched_balance(ci);
759 1.1 rmind
760 1.1 rmind /* The re-locking will be done inside */
761 1.1 rmind return sched_catchlwp();
762 1.1 rmind }
763 1.1 rmind #else
764 1.1 rmind if (ci_rq->r_count == 0)
765 1.1 rmind return NULL;
766 1.1 rmind #endif
767 1.1 rmind
768 1.1 rmind /* Take the highest priority thread */
769 1.1 rmind KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
770 1.1 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
771 1.1 rmind l = TAILQ_FIRST(q_head);
772 1.1 rmind KASSERT(l != NULL);
773 1.1 rmind
774 1.1 rmind /* Update the counters */
775 1.1 rmind sil = l->l_sched_info;
776 1.1 rmind KASSERT(sil->sl_timeslice >= min_ts);
777 1.1 rmind KASSERT(sil->sl_timeslice <= max_ts);
778 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
779 1.1 rmind sil->sl_rtime = hardclock_ticks;
780 1.1 rmind
781 1.1 rmind return l;
782 1.1 rmind }
783 1.1 rmind
784 1.1 rmind bool
785 1.1 rmind sched_curcpu_runnable_p(void)
786 1.1 rmind {
787 1.1 rmind const struct cpu_info *ci = curcpu();
788 1.1 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
789 1.1 rmind
790 1.1 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
791 1.1 rmind return ci_rq->r_mcount;
792 1.1 rmind
793 1.1 rmind return ci_rq->r_count;
794 1.1 rmind }
795 1.1 rmind
796 1.1 rmind /*
797 1.1 rmind * Time-driven events.
798 1.1 rmind */
799 1.1 rmind
800 1.1 rmind /*
801 1.1 rmind * Called once per time-quantum. This routine is CPU-local and runs at
802 1.1 rmind * IPL_SCHED, thus the locking is not needed.
803 1.1 rmind */
804 1.1 rmind void
805 1.1 rmind sched_tick(struct cpu_info *ci)
806 1.1 rmind {
807 1.1 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
808 1.1 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
809 1.1 rmind struct lwp *l = curlwp;
810 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
811 1.1 rmind
812 1.1 rmind /* Decrease the priority, and run with a higher time-quantum */
813 1.1 rmind if (!CURCPU_IDLE_P() && l->l_policy == SCHED_OTHER) {
814 1.1 rmind if (l->l_usrpri >= PRI_REALTIME) {
815 1.1 rmind l->l_usrpri = min(l->l_usrpri + 1, PRI_MAX);
816 1.1 rmind l->l_priority = l->l_usrpri;
817 1.1 rmind }
818 1.1 rmind }
819 1.1 rmind
820 1.1 rmind /*
821 1.1 rmind * Update the time-quantum, and continue running,
822 1.1 rmind * if thread runs on FIFO real-time policy.
823 1.1 rmind */
824 1.1 rmind if (l->l_policy == SCHED_FIFO) {
825 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
826 1.1 rmind return;
827 1.1 rmind }
828 1.1 rmind
829 1.1 rmind /*
830 1.1 rmind * If there are higher priority threads with or threads in the same
831 1.1 rmind * queue, mark that thread should yield, otherwise, continue running.
832 1.1 rmind */
833 1.1 rmind if (CURCPU_IDLE_P() || lwp_eprio(l) >= ci_rq->r_highest_pri) {
834 1.1 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
835 1.1 rmind cpu_need_resched(ci, 0);
836 1.1 rmind } else
837 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
838 1.1 rmind }
839 1.1 rmind
840 1.1 rmind /*
841 1.1 rmind * Sysctl nodes and initialization.
842 1.1 rmind */
843 1.1 rmind
844 1.1 rmind static int
845 1.1 rmind sysctl_sched_mints(SYSCTLFN_ARGS)
846 1.1 rmind {
847 1.1 rmind struct sysctlnode node;
848 1.1 rmind struct cpu_info *ci;
849 1.1 rmind int error, newsize;
850 1.1 rmind CPU_INFO_ITERATOR cii;
851 1.1 rmind
852 1.1 rmind node = *rnode;
853 1.1 rmind node.sysctl_data = &newsize;
854 1.1 rmind
855 1.1 rmind newsize = hztoms(min_ts);
856 1.1 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
857 1.1 rmind if (error || newp == NULL)
858 1.1 rmind return error;
859 1.1 rmind
860 1.1 rmind if (newsize < 1 || newsize > hz || newsize >= max_ts)
861 1.1 rmind return EINVAL;
862 1.1 rmind
863 1.1 rmind /* It is safe to do this in such order */
864 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
865 1.1 rmind spc_lock(ci);
866 1.1 rmind
867 1.1 rmind min_ts = mstohz(newsize);
868 1.1 rmind sched_precalcts();
869 1.1 rmind
870 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
871 1.1 rmind spc_unlock(ci);
872 1.1 rmind
873 1.1 rmind return 0;
874 1.1 rmind }
875 1.1 rmind
876 1.1 rmind static int
877 1.1 rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
878 1.1 rmind {
879 1.1 rmind struct sysctlnode node;
880 1.1 rmind struct cpu_info *ci;
881 1.1 rmind int error, newsize;
882 1.1 rmind CPU_INFO_ITERATOR cii;
883 1.1 rmind
884 1.1 rmind node = *rnode;
885 1.1 rmind node.sysctl_data = &newsize;
886 1.1 rmind
887 1.1 rmind newsize = hztoms(max_ts);
888 1.1 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
889 1.1 rmind if (error || newp == NULL)
890 1.1 rmind return error;
891 1.1 rmind
892 1.1 rmind if (newsize < 10 || newsize > hz || newsize <= min_ts)
893 1.1 rmind return EINVAL;
894 1.1 rmind
895 1.1 rmind /* It is safe to do this in such order */
896 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
897 1.1 rmind spc_lock(ci);
898 1.1 rmind
899 1.1 rmind max_ts = mstohz(newsize);
900 1.1 rmind sched_precalcts();
901 1.1 rmind
902 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
903 1.1 rmind spc_unlock(ci);
904 1.1 rmind
905 1.1 rmind return 0;
906 1.1 rmind }
907 1.1 rmind
908 1.1 rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
909 1.1 rmind {
910 1.1 rmind const struct sysctlnode *node = NULL;
911 1.1 rmind
912 1.1 rmind sysctl_createv(clog, 0, NULL, NULL,
913 1.1 rmind CTLFLAG_PERMANENT,
914 1.1 rmind CTLTYPE_NODE, "kern", NULL,
915 1.1 rmind NULL, 0, NULL, 0,
916 1.1 rmind CTL_KERN, CTL_EOL);
917 1.1 rmind sysctl_createv(clog, 0, NULL, &node,
918 1.1 rmind CTLFLAG_PERMANENT,
919 1.1 rmind CTLTYPE_NODE, "sched",
920 1.1 rmind SYSCTL_DESCR("Scheduler options"),
921 1.1 rmind NULL, 0, NULL, 0,
922 1.1 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
923 1.1 rmind
924 1.1 rmind if (node == NULL)
925 1.1 rmind return;
926 1.1 rmind
927 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
928 1.1 rmind CTLFLAG_PERMANENT,
929 1.1 rmind CTLTYPE_STRING, "name", NULL,
930 1.1 rmind NULL, 0, __UNCONST("M2"), 0,
931 1.1 rmind CTL_CREATE, CTL_EOL);
932 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
933 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
934 1.1 rmind CTLTYPE_INT, "maxts",
935 1.1 rmind SYSCTL_DESCR("Maximal time quantum (in microseconds)"),
936 1.1 rmind sysctl_sched_maxts, 0, &max_ts, 0,
937 1.1 rmind CTL_CREATE, CTL_EOL);
938 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
939 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
940 1.1 rmind CTLTYPE_INT, "mints",
941 1.1 rmind SYSCTL_DESCR("Minimal time quantum (in microseconds)"),
942 1.1 rmind sysctl_sched_mints, 0, &min_ts, 0,
943 1.1 rmind CTL_CREATE, CTL_EOL);
944 1.1 rmind
945 1.1 rmind #ifdef MULTIPROCESSOR
946 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
947 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
948 1.1 rmind CTLTYPE_INT, "cacheht_time",
949 1.1 rmind SYSCTL_DESCR("Cache hotness time"),
950 1.1 rmind NULL, 0, &cacheht_time, 0,
951 1.1 rmind CTL_CREATE, CTL_EOL);
952 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
953 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
954 1.1 rmind CTLTYPE_INT, "balance_period",
955 1.1 rmind SYSCTL_DESCR("Balance period"),
956 1.1 rmind NULL, 0, &balance_period, 0,
957 1.1 rmind CTL_CREATE, CTL_EOL);
958 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
959 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
960 1.1 rmind CTLTYPE_INT, "min_catch",
961 1.1 rmind SYSCTL_DESCR("Minimal count of threads for catching"),
962 1.1 rmind NULL, 0, &min_catch, 0,
963 1.1 rmind CTL_CREATE, CTL_EOL);
964 1.1 rmind #endif
965 1.1 rmind }
966 1.1 rmind
967 1.1 rmind /*
968 1.1 rmind * Debugging.
969 1.1 rmind */
970 1.1 rmind
971 1.1 rmind #ifdef DDB
972 1.1 rmind
973 1.1 rmind void
974 1.1 rmind sched_print_runqueue(void (*pr)(const char *, ...))
975 1.1 rmind {
976 1.1 rmind runqueue_t *ci_rq;
977 1.1 rmind sched_info_lwp_t *sil;
978 1.1 rmind struct lwp *l;
979 1.1 rmind struct proc *p;
980 1.1 rmind int i;
981 1.1 rmind
982 1.1 rmind struct cpu_info *ci;
983 1.1 rmind CPU_INFO_ITERATOR cii;
984 1.1 rmind
985 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
986 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
987 1.1 rmind
988 1.1 rmind (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
989 1.1 rmind (*pr)(" pid.lid = %d.%d, threads count = %u, "
990 1.1 rmind "avgcount = %u, highest pri = %d\n",
991 1.1 rmind ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
992 1.1 rmind ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
993 1.1 rmind i = 0;
994 1.1 rmind do {
995 1.1 rmind int b;
996 1.1 rmind b = ci_rq->r_bitmap[i];
997 1.1 rmind (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(b), b);
998 1.1 rmind } while (++i < BITMAP_SIZE);
999 1.1 rmind }
1000 1.1 rmind
1001 1.1 rmind (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1002 1.1 rmind "LID", "PRI", "UPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1003 1.1 rmind
1004 1.1 rmind PROCLIST_FOREACH(p, &allproc) {
1005 1.1 rmind (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1006 1.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1007 1.1 rmind sil = l->l_sched_info;
1008 1.1 rmind ci = l->l_cpu;
1009 1.1 rmind (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1010 1.1 rmind "%u ST=%d RT=%d %d\n",
1011 1.1 rmind (int)l->l_lid, l->l_priority, l->l_usrpri,
1012 1.1 rmind l->l_flag, l->l_stat == LSRUN ? "RQ" :
1013 1.1 rmind (l->l_stat == LSSLEEP ? "SQ" : "-"),
1014 1.1 rmind sil->sl_timeslice, l, ci->ci_cpuid,
1015 1.1 rmind (u_int)(hardclock_ticks - sil->sl_lrtime),
1016 1.1 rmind sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1017 1.1 rmind }
1018 1.1 rmind }
1019 1.1 rmind }
1020 1.1 rmind
1021 1.1 rmind #endif /* defined(DDB) */
1022