Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.10.2.5
      1  1.10.2.5  matt /*	sched_m2.c,v 1.10.2.4 2008/01/09 01:56:14 matt Exp	*/
      2  1.10.2.2  matt 
      3  1.10.2.2  matt /*
      4  1.10.2.5  matt  * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  1.10.2.4  matt  * All rights reserved.
      6  1.10.2.2  matt  *
      7  1.10.2.2  matt  * Redistribution and use in source and binary forms, with or without
      8  1.10.2.2  matt  * modification, are permitted provided that the following conditions
      9  1.10.2.2  matt  * are met:
     10  1.10.2.2  matt  * 1. Redistributions of source code must retain the above copyright
     11  1.10.2.2  matt  *    notice, this list of conditions and the following disclaimer.
     12  1.10.2.2  matt  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.10.2.2  matt  *    notice, this list of conditions and the following disclaimer in the
     14  1.10.2.2  matt  *    documentation and/or other materials provided with the distribution.
     15  1.10.2.2  matt  *
     16  1.10.2.5  matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  1.10.2.5  matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  1.10.2.5  matt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  1.10.2.5  matt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  1.10.2.5  matt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  1.10.2.5  matt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  1.10.2.5  matt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  1.10.2.5  matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  1.10.2.5  matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.10.2.5  matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.10.2.5  matt  * SUCH DAMAGE.
     27  1.10.2.2  matt  */
     28  1.10.2.2  matt 
     29  1.10.2.2  matt /*
     30  1.10.2.2  matt  * TODO:
     31  1.10.2.2  matt  *  - Implementation of fair share queue;
     32  1.10.2.2  matt  *  - Support for NUMA;
     33  1.10.2.2  matt  */
     34  1.10.2.2  matt 
     35  1.10.2.2  matt #include <sys/cdefs.h>
     36  1.10.2.5  matt __KERNEL_RCSID(0, "sched_m2.c,v 1.10.2.4 2008/01/09 01:56:14 matt Exp");
     37  1.10.2.2  matt 
     38  1.10.2.2  matt #include <sys/param.h>
     39  1.10.2.2  matt 
     40  1.10.2.2  matt #include <sys/bitops.h>
     41  1.10.2.2  matt #include <sys/cpu.h>
     42  1.10.2.2  matt #include <sys/callout.h>
     43  1.10.2.2  matt #include <sys/errno.h>
     44  1.10.2.2  matt #include <sys/kernel.h>
     45  1.10.2.2  matt #include <sys/kmem.h>
     46  1.10.2.2  matt #include <sys/lwp.h>
     47  1.10.2.2  matt #include <sys/mutex.h>
     48  1.10.2.2  matt #include <sys/pool.h>
     49  1.10.2.2  matt #include <sys/proc.h>
     50  1.10.2.5  matt #include <sys/pset.h>
     51  1.10.2.2  matt #include <sys/resource.h>
     52  1.10.2.2  matt #include <sys/resourcevar.h>
     53  1.10.2.2  matt #include <sys/sched.h>
     54  1.10.2.2  matt #include <sys/syscallargs.h>
     55  1.10.2.2  matt #include <sys/sysctl.h>
     56  1.10.2.2  matt #include <sys/types.h>
     57  1.10.2.2  matt 
     58  1.10.2.2  matt /*
     59  1.10.2.2  matt  * Priority related defintions.
     60  1.10.2.2  matt  */
     61  1.10.2.2  matt #define	PRI_TS_COUNT	(NPRI_USER)
     62  1.10.2.2  matt #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     63  1.10.2.2  matt #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     64  1.10.2.2  matt 
     65  1.10.2.3  matt #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     66  1.10.2.2  matt 
     67  1.10.2.2  matt const int schedppq = 1;
     68  1.10.2.2  matt 
     69  1.10.2.2  matt /*
     70  1.10.2.2  matt  * Bits per map.
     71  1.10.2.2  matt  */
     72  1.10.2.2  matt #define	BITMAP_BITS	(32)
     73  1.10.2.2  matt #define	BITMAP_SHIFT	(5)
     74  1.10.2.3  matt #define	BITMAP_MSB	(0x80000000U)
     75  1.10.2.2  matt #define	BITMAP_MASK	(BITMAP_BITS - 1)
     76  1.10.2.2  matt 
     77  1.10.2.2  matt /*
     78  1.10.2.2  matt  * Time-slices and priorities.
     79  1.10.2.2  matt  */
     80  1.10.2.2  matt static u_int	min_ts;			/* Minimal time-slice */
     81  1.10.2.2  matt static u_int	max_ts;			/* Maximal time-slice */
     82  1.10.2.2  matt static u_int	rt_ts;			/* Real-time time-slice */
     83  1.10.2.2  matt static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     84  1.10.2.2  matt static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     85  1.10.2.2  matt 
     86  1.10.2.2  matt /*
     87  1.10.2.2  matt  * Migration and balancing.
     88  1.10.2.2  matt  */
     89  1.10.2.2  matt #ifdef MULTIPROCESSOR
     90  1.10.2.5  matt 
     91  1.10.2.2  matt static u_int	cacheht_time;		/* Cache hotness time */
     92  1.10.2.2  matt static u_int	min_catch;		/* Minimal LWP count for catching */
     93  1.10.2.2  matt 
     94  1.10.2.2  matt static u_int		balance_period;	/* Balance period */
     95  1.10.2.2  matt static struct callout	balance_ch;	/* Callout of balancer */
     96  1.10.2.2  matt 
     97  1.10.2.2  matt static struct cpu_info * volatile worker_ci;
     98  1.10.2.2  matt 
     99  1.10.2.2  matt #endif
    100  1.10.2.2  matt 
    101  1.10.2.2  matt /*
    102  1.10.2.2  matt  * Structures, runqueue.
    103  1.10.2.2  matt  */
    104  1.10.2.2  matt 
    105  1.10.2.2  matt typedef struct {
    106  1.10.2.2  matt 	TAILQ_HEAD(, lwp) q_head;
    107  1.10.2.2  matt } queue_t;
    108  1.10.2.2  matt 
    109  1.10.2.2  matt typedef struct {
    110  1.10.2.2  matt 	/* Lock and bitmap */
    111  1.10.2.2  matt 	uint32_t	r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
    112  1.10.2.2  matt 	/* Counters */
    113  1.10.2.2  matt 	u_int		r_count;	/* Count of the threads */
    114  1.10.2.2  matt 	pri_t		r_highest_pri;	/* Highest priority */
    115  1.10.2.2  matt 	u_int		r_avgcount;	/* Average count of threads */
    116  1.10.2.2  matt 	u_int		r_mcount;	/* Count of migratable threads */
    117  1.10.2.2  matt 	/* Runqueues */
    118  1.10.2.2  matt 	queue_t		r_rt_queue[PRI_RT_COUNT];
    119  1.10.2.2  matt 	queue_t		r_ts_queue[PRI_TS_COUNT];
    120  1.10.2.2  matt } runqueue_t;
    121  1.10.2.2  matt 
    122  1.10.2.2  matt typedef struct {
    123  1.10.2.2  matt 	u_int		sl_flags;
    124  1.10.2.2  matt 	u_int		sl_timeslice;	/* Time-slice of thread */
    125  1.10.2.2  matt 	u_int		sl_slept;	/* Saved sleep time for sleep sum */
    126  1.10.2.2  matt 	u_int		sl_slpsum;	/* Sum of sleep time */
    127  1.10.2.2  matt 	u_int		sl_rtime;	/* Saved start time of run */
    128  1.10.2.2  matt 	u_int		sl_rtsum;	/* Sum of the run time */
    129  1.10.2.2  matt 	u_int		sl_lrtime;	/* Last run time */
    130  1.10.2.2  matt } sched_info_lwp_t;
    131  1.10.2.2  matt 
    132  1.10.2.2  matt /* Flags */
    133  1.10.2.2  matt #define	SL_BATCH	0x01
    134  1.10.2.2  matt 
    135  1.10.2.2  matt /* Pool of the scheduler-specific structures for threads */
    136  1.10.2.5  matt static pool_cache_t	sil_pool;
    137  1.10.2.2  matt 
    138  1.10.2.2  matt /*
    139  1.10.2.2  matt  * Prototypes.
    140  1.10.2.2  matt  */
    141  1.10.2.2  matt 
    142  1.10.2.2  matt static inline void *	sched_getrq(runqueue_t *, const pri_t);
    143  1.10.2.2  matt static inline void	sched_newts(struct lwp *);
    144  1.10.2.2  matt static void		sched_precalcts(void);
    145  1.10.2.2  matt 
    146  1.10.2.2  matt #ifdef MULTIPROCESSOR
    147  1.10.2.2  matt static struct lwp *	sched_catchlwp(void);
    148  1.10.2.2  matt static void		sched_balance(void *);
    149  1.10.2.2  matt #endif
    150  1.10.2.2  matt 
    151  1.10.2.2  matt /*
    152  1.10.2.2  matt  * Initialization and setup.
    153  1.10.2.2  matt  */
    154  1.10.2.2  matt 
    155  1.10.2.2  matt void
    156  1.10.2.2  matt sched_rqinit(void)
    157  1.10.2.2  matt {
    158  1.10.2.2  matt 	struct cpu_info *ci = curcpu();
    159  1.10.2.2  matt 
    160  1.10.2.2  matt 	if (hz < 100) {
    161  1.10.2.2  matt 		panic("sched_rqinit: value of HZ is too low\n");
    162  1.10.2.2  matt 	}
    163  1.10.2.2  matt 
    164  1.10.2.2  matt 	/* Default timing ranges */
    165  1.10.2.2  matt 	min_ts = mstohz(50);			/* ~50ms  */
    166  1.10.2.2  matt 	max_ts = mstohz(150);			/* ~150ms */
    167  1.10.2.2  matt 	rt_ts = mstohz(100);			/* ~100ms */
    168  1.10.2.2  matt 	sched_precalcts();
    169  1.10.2.2  matt 
    170  1.10.2.2  matt #ifdef MULTIPROCESSOR
    171  1.10.2.2  matt 	/* Balancing */
    172  1.10.2.2  matt 	worker_ci = ci;
    173  1.10.2.2  matt 	cacheht_time = mstohz(5);		/* ~5 ms  */
    174  1.10.2.2  matt 	balance_period = mstohz(300);		/* ~300ms */
    175  1.10.2.2  matt 	min_catch = ~0;
    176  1.10.2.2  matt #endif
    177  1.10.2.2  matt 
    178  1.10.2.2  matt 	/* Pool of the scheduler-specific structures */
    179  1.10.2.5  matt 	sil_pool = pool_cache_init(sizeof(sched_info_lwp_t), CACHE_LINE_SIZE,
    180  1.10.2.5  matt 	    0, 0, "lwpsd", NULL, IPL_NONE, NULL, NULL, NULL);
    181  1.10.2.2  matt 
    182  1.10.2.2  matt 	/* Attach the primary CPU here */
    183  1.10.2.2  matt 	sched_cpuattach(ci);
    184  1.10.2.2  matt 
    185  1.10.2.2  matt 	sched_lwp_fork(NULL, &lwp0);
    186  1.10.2.2  matt 	sched_newts(&lwp0);
    187  1.10.2.2  matt }
    188  1.10.2.2  matt 
    189  1.10.2.2  matt void
    190  1.10.2.2  matt sched_setup(void)
    191  1.10.2.2  matt {
    192  1.10.2.2  matt 
    193  1.10.2.2  matt #ifdef MULTIPROCESSOR
    194  1.10.2.2  matt 	/* Minimal count of LWPs for catching: log2(count of CPUs) */
    195  1.10.2.2  matt 	min_catch = min(ilog2(ncpu), 4);
    196  1.10.2.2  matt 
    197  1.10.2.2  matt 	/* Initialize balancing callout and run it */
    198  1.10.2.2  matt 	callout_init(&balance_ch, CALLOUT_MPSAFE);
    199  1.10.2.2  matt 	callout_setfunc(&balance_ch, sched_balance, NULL);
    200  1.10.2.2  matt 	callout_schedule(&balance_ch, balance_period);
    201  1.10.2.2  matt #endif
    202  1.10.2.2  matt }
    203  1.10.2.2  matt 
    204  1.10.2.2  matt void
    205  1.10.2.2  matt sched_cpuattach(struct cpu_info *ci)
    206  1.10.2.2  matt {
    207  1.10.2.2  matt 	runqueue_t *ci_rq;
    208  1.10.2.2  matt 	void *rq_ptr;
    209  1.10.2.2  matt 	u_int i, size;
    210  1.10.2.2  matt 
    211  1.10.2.5  matt 	if (ci == lwp0.l_cpu) {
    212  1.10.2.5  matt 		/* Initialize the scheduler structure of the primary LWP */
    213  1.10.2.5  matt 		lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
    214  1.10.2.5  matt 	}
    215  1.10.2.5  matt 
    216  1.10.2.5  matt 	if (ci->ci_schedstate.spc_mutex != NULL) {
    217  1.10.2.5  matt 		/* Already initialized. */
    218  1.10.2.5  matt 		return;
    219  1.10.2.5  matt 	}
    220  1.10.2.5  matt 
    221  1.10.2.5  matt 	/* Allocate the run queue */
    222  1.10.2.5  matt 	size = roundup2(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
    223  1.10.2.4  matt 	rq_ptr = kmem_zalloc(size, KM_SLEEP);
    224  1.10.2.2  matt 	if (rq_ptr == NULL) {
    225  1.10.2.5  matt 		panic("sched_cpuattach: could not allocate the runqueue");
    226  1.10.2.2  matt 	}
    227  1.10.2.5  matt 	ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), CACHE_LINE_SIZE));
    228  1.10.2.2  matt 
    229  1.10.2.2  matt 	/* Initialize run queues */
    230  1.10.2.5  matt 	KASSERT(sizeof(kmutex_t) <= CACHE_LINE_SIZE);
    231  1.10.2.5  matt 	ci->ci_schedstate.spc_mutex = kmem_alloc(CACHE_LINE_SIZE, KM_SLEEP);
    232  1.10.2.5  matt 	mutex_init(ci->ci_schedstate.spc_mutex, MUTEX_DEFAULT, IPL_SCHED);
    233  1.10.2.2  matt 	for (i = 0; i < PRI_RT_COUNT; i++)
    234  1.10.2.2  matt 		TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
    235  1.10.2.2  matt 	for (i = 0; i < PRI_TS_COUNT; i++)
    236  1.10.2.2  matt 		TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
    237  1.10.2.2  matt 	ci_rq->r_highest_pri = 0;
    238  1.10.2.2  matt 
    239  1.10.2.2  matt 	ci->ci_schedstate.spc_sched_info = ci_rq;
    240  1.10.2.2  matt }
    241  1.10.2.2  matt 
    242  1.10.2.2  matt /* Pre-calculate the time-slices for the priorities */
    243  1.10.2.2  matt static void
    244  1.10.2.2  matt sched_precalcts(void)
    245  1.10.2.2  matt {
    246  1.10.2.2  matt 	pri_t p;
    247  1.10.2.2  matt 
    248  1.10.2.2  matt 	/* Time-sharing range */
    249  1.10.2.2  matt 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    250  1.10.2.2  matt 		ts_map[p] = max_ts -
    251  1.10.2.2  matt 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    252  1.10.2.2  matt 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    253  1.10.2.2  matt 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    254  1.10.2.2  matt 	}
    255  1.10.2.2  matt 
    256  1.10.2.2  matt 	/* Real-time range */
    257  1.10.2.2  matt 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    258  1.10.2.2  matt 		ts_map[p] = rt_ts;
    259  1.10.2.2  matt 		high_pri[p] = p;
    260  1.10.2.2  matt 	}
    261  1.10.2.2  matt }
    262  1.10.2.2  matt 
    263  1.10.2.2  matt /*
    264  1.10.2.2  matt  * Hooks.
    265  1.10.2.2  matt  */
    266  1.10.2.2  matt 
    267  1.10.2.2  matt void
    268  1.10.2.2  matt sched_proc_fork(struct proc *parent, struct proc *child)
    269  1.10.2.2  matt {
    270  1.10.2.2  matt 	struct lwp *l;
    271  1.10.2.2  matt 
    272  1.10.2.2  matt 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    273  1.10.2.2  matt 		lwp_lock(l);
    274  1.10.2.2  matt 		sched_newts(l);
    275  1.10.2.2  matt 		lwp_unlock(l);
    276  1.10.2.2  matt 	}
    277  1.10.2.2  matt }
    278  1.10.2.2  matt 
    279  1.10.2.2  matt void
    280  1.10.2.2  matt sched_proc_exit(struct proc *child, struct proc *parent)
    281  1.10.2.2  matt {
    282  1.10.2.2  matt 
    283  1.10.2.2  matt 	/* Dummy */
    284  1.10.2.2  matt }
    285  1.10.2.2  matt 
    286  1.10.2.2  matt void
    287  1.10.2.2  matt sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    288  1.10.2.2  matt {
    289  1.10.2.2  matt 
    290  1.10.2.2  matt 	KASSERT(l2->l_sched_info == NULL);
    291  1.10.2.5  matt 	l2->l_sched_info = pool_cache_get(sil_pool, PR_WAITOK);
    292  1.10.2.2  matt 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    293  1.10.2.2  matt }
    294  1.10.2.2  matt 
    295  1.10.2.2  matt void
    296  1.10.2.2  matt sched_lwp_exit(struct lwp *l)
    297  1.10.2.2  matt {
    298  1.10.2.2  matt 
    299  1.10.2.2  matt 	KASSERT(l->l_sched_info != NULL);
    300  1.10.2.5  matt 	pool_cache_put(sil_pool, l->l_sched_info);
    301  1.10.2.2  matt 	l->l_sched_info = NULL;
    302  1.10.2.2  matt }
    303  1.10.2.2  matt 
    304  1.10.2.2  matt void
    305  1.10.2.2  matt sched_lwp_collect(struct lwp *l)
    306  1.10.2.2  matt {
    307  1.10.2.2  matt 
    308  1.10.2.2  matt }
    309  1.10.2.2  matt 
    310  1.10.2.2  matt void
    311  1.10.2.2  matt sched_setrunnable(struct lwp *l)
    312  1.10.2.2  matt {
    313  1.10.2.2  matt 
    314  1.10.2.2  matt 	/* Dummy */
    315  1.10.2.2  matt }
    316  1.10.2.2  matt 
    317  1.10.2.2  matt void
    318  1.10.2.2  matt sched_schedclock(struct lwp *l)
    319  1.10.2.2  matt {
    320  1.10.2.2  matt 
    321  1.10.2.2  matt 	/* Dummy */
    322  1.10.2.2  matt }
    323  1.10.2.2  matt 
    324  1.10.2.2  matt /*
    325  1.10.2.2  matt  * Priorities and time-slice.
    326  1.10.2.2  matt  */
    327  1.10.2.2  matt 
    328  1.10.2.2  matt void
    329  1.10.2.2  matt sched_nice(struct proc *p, int prio)
    330  1.10.2.2  matt {
    331  1.10.2.2  matt 
    332  1.10.2.5  matt 	/* TODO: implement as SCHED_IA */
    333  1.10.2.2  matt }
    334  1.10.2.2  matt 
    335  1.10.2.2  matt /* Recalculate the time-slice */
    336  1.10.2.2  matt static inline void
    337  1.10.2.2  matt sched_newts(struct lwp *l)
    338  1.10.2.2  matt {
    339  1.10.2.2  matt 	sched_info_lwp_t *sil = l->l_sched_info;
    340  1.10.2.2  matt 
    341  1.10.2.2  matt 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    342  1.10.2.2  matt }
    343  1.10.2.2  matt 
    344  1.10.2.2  matt /*
    345  1.10.2.2  matt  * Control of the runqueue.
    346  1.10.2.2  matt  */
    347  1.10.2.2  matt 
    348  1.10.2.2  matt static inline void *
    349  1.10.2.2  matt sched_getrq(runqueue_t *ci_rq, const pri_t prio)
    350  1.10.2.2  matt {
    351  1.10.2.2  matt 
    352  1.10.2.2  matt 	KASSERT(prio < PRI_COUNT);
    353  1.10.2.2  matt 	return (prio <= PRI_HIGHEST_TS) ?
    354  1.10.2.2  matt 	    &ci_rq->r_ts_queue[prio].q_head :
    355  1.10.2.2  matt 	    &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
    356  1.10.2.2  matt }
    357  1.10.2.2  matt 
    358  1.10.2.2  matt void
    359  1.10.2.2  matt sched_enqueue(struct lwp *l, bool swtch)
    360  1.10.2.2  matt {
    361  1.10.2.2  matt 	runqueue_t *ci_rq;
    362  1.10.2.2  matt 	sched_info_lwp_t *sil = l->l_sched_info;
    363  1.10.2.2  matt 	TAILQ_HEAD(, lwp) *q_head;
    364  1.10.2.2  matt 	const pri_t eprio = lwp_eprio(l);
    365  1.10.2.2  matt 
    366  1.10.2.2  matt 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    367  1.10.2.2  matt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    368  1.10.2.2  matt 
    369  1.10.2.2  matt 	/* Update the last run time on switch */
    370  1.10.2.3  matt 	if (__predict_true(swtch == true)) {
    371  1.10.2.2  matt 		sil->sl_lrtime = hardclock_ticks;
    372  1.10.2.2  matt 		sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
    373  1.10.2.2  matt 	} else if (sil->sl_lrtime == 0)
    374  1.10.2.2  matt 		sil->sl_lrtime = hardclock_ticks;
    375  1.10.2.2  matt 
    376  1.10.2.2  matt 	/* Enqueue the thread */
    377  1.10.2.2  matt 	q_head = sched_getrq(ci_rq, eprio);
    378  1.10.2.2  matt 	if (TAILQ_EMPTY(q_head)) {
    379  1.10.2.2  matt 		u_int i;
    380  1.10.2.2  matt 		uint32_t q;
    381  1.10.2.2  matt 
    382  1.10.2.2  matt 		/* Mark bit */
    383  1.10.2.2  matt 		i = eprio >> BITMAP_SHIFT;
    384  1.10.2.2  matt 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    385  1.10.2.2  matt 		KASSERT((ci_rq->r_bitmap[i] & q) == 0);
    386  1.10.2.2  matt 		ci_rq->r_bitmap[i] |= q;
    387  1.10.2.2  matt 	}
    388  1.10.2.2  matt 	TAILQ_INSERT_TAIL(q_head, l, l_runq);
    389  1.10.2.2  matt 	ci_rq->r_count++;
    390  1.10.2.2  matt 	if ((l->l_flag & LW_BOUND) == 0)
    391  1.10.2.2  matt 		ci_rq->r_mcount++;
    392  1.10.2.2  matt 
    393  1.10.2.2  matt 	/*
    394  1.10.2.2  matt 	 * Update the value of highest priority in the runqueue,
    395  1.10.2.2  matt 	 * if priority of this thread is higher.
    396  1.10.2.2  matt 	 */
    397  1.10.2.2  matt 	if (eprio > ci_rq->r_highest_pri)
    398  1.10.2.2  matt 		ci_rq->r_highest_pri = eprio;
    399  1.10.2.2  matt 
    400  1.10.2.2  matt 	sched_newts(l);
    401  1.10.2.2  matt }
    402  1.10.2.2  matt 
    403  1.10.2.2  matt void
    404  1.10.2.2  matt sched_dequeue(struct lwp *l)
    405  1.10.2.2  matt {
    406  1.10.2.2  matt 	runqueue_t *ci_rq;
    407  1.10.2.2  matt 	TAILQ_HEAD(, lwp) *q_head;
    408  1.10.2.2  matt 	const pri_t eprio = lwp_eprio(l);
    409  1.10.2.2  matt 
    410  1.10.2.2  matt 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    411  1.10.2.2  matt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    412  1.10.2.5  matt 
    413  1.10.2.2  matt 	KASSERT(eprio <= ci_rq->r_highest_pri);
    414  1.10.2.2  matt 	KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
    415  1.10.2.2  matt 	KASSERT(ci_rq->r_count > 0);
    416  1.10.2.2  matt 
    417  1.10.2.2  matt 	ci_rq->r_count--;
    418  1.10.2.2  matt 	if ((l->l_flag & LW_BOUND) == 0)
    419  1.10.2.2  matt 		ci_rq->r_mcount--;
    420  1.10.2.2  matt 
    421  1.10.2.2  matt 	q_head = sched_getrq(ci_rq, eprio);
    422  1.10.2.2  matt 	TAILQ_REMOVE(q_head, l, l_runq);
    423  1.10.2.2  matt 	if (TAILQ_EMPTY(q_head)) {
    424  1.10.2.2  matt 		u_int i;
    425  1.10.2.2  matt 		uint32_t q;
    426  1.10.2.2  matt 
    427  1.10.2.2  matt 		/* Unmark bit */
    428  1.10.2.2  matt 		i = eprio >> BITMAP_SHIFT;
    429  1.10.2.2  matt 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    430  1.10.2.2  matt 		KASSERT((ci_rq->r_bitmap[i] & q) != 0);
    431  1.10.2.2  matt 		ci_rq->r_bitmap[i] &= ~q;
    432  1.10.2.2  matt 
    433  1.10.2.2  matt 		/*
    434  1.10.2.2  matt 		 * Update the value of highest priority in the runqueue, in a
    435  1.10.2.2  matt 		 * case it was a last thread in the queue of highest priority.
    436  1.10.2.2  matt 		 */
    437  1.10.2.2  matt 		if (eprio != ci_rq->r_highest_pri)
    438  1.10.2.2  matt 			return;
    439  1.10.2.2  matt 
    440  1.10.2.2  matt 		do {
    441  1.10.2.2  matt 			q = ffs(ci_rq->r_bitmap[i]);
    442  1.10.2.2  matt 			if (q) {
    443  1.10.2.2  matt 				ci_rq->r_highest_pri =
    444  1.10.2.2  matt 				    (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
    445  1.10.2.2  matt 				return;
    446  1.10.2.2  matt 			}
    447  1.10.2.2  matt 		} while (i--);
    448  1.10.2.2  matt 
    449  1.10.2.2  matt 		/* If not found - set the lowest value */
    450  1.10.2.2  matt 		ci_rq->r_highest_pri = 0;
    451  1.10.2.2  matt 	}
    452  1.10.2.2  matt }
    453  1.10.2.2  matt 
    454  1.10.2.2  matt void
    455  1.10.2.2  matt sched_slept(struct lwp *l)
    456  1.10.2.2  matt {
    457  1.10.2.2  matt 	sched_info_lwp_t *sil = l->l_sched_info;
    458  1.10.2.2  matt 
    459  1.10.2.2  matt 	/* Save the time when thread has slept */
    460  1.10.2.2  matt 	sil->sl_slept = hardclock_ticks;
    461  1.10.2.2  matt 
    462  1.10.2.2  matt 	/*
    463  1.10.2.2  matt 	 * If thread is in time-sharing queue and batch flag is not marked,
    464  1.10.2.2  matt 	 * increase the the priority, and run with the lower time-quantum.
    465  1.10.2.2  matt 	 */
    466  1.10.2.5  matt 	if (l->l_priority < PRI_HIGHEST_TS &&
    467  1.10.2.5  matt 	    (sil->sl_flags & SL_BATCH) == 0) {
    468  1.10.2.2  matt 		KASSERT(l->l_class == SCHED_OTHER);
    469  1.10.2.2  matt 		l->l_priority++;
    470  1.10.2.2  matt 	}
    471  1.10.2.2  matt }
    472  1.10.2.2  matt 
    473  1.10.2.2  matt void
    474  1.10.2.2  matt sched_wakeup(struct lwp *l)
    475  1.10.2.2  matt {
    476  1.10.2.2  matt 	sched_info_lwp_t *sil = l->l_sched_info;
    477  1.10.2.5  matt 	const u_int slptime = hardclock_ticks - sil->sl_slept;
    478  1.10.2.2  matt 
    479  1.10.2.2  matt 	/* Update sleep time delta */
    480  1.10.2.5  matt 	sil->sl_slpsum += (l->l_slptime == 0) ? slptime : hz;
    481  1.10.2.2  matt 
    482  1.10.2.2  matt 	/* If thread was sleeping a second or more - set a high priority */
    483  1.10.2.5  matt 	if (l->l_slptime > 1 || slptime >= hz)
    484  1.10.2.2  matt 		l->l_priority = high_pri[l->l_priority];
    485  1.10.2.2  matt 
    486  1.10.2.2  matt 	/* Also, consider looking for a better CPU to wake up */
    487  1.10.2.5  matt 	l->l_cpu = sched_takecpu(l);
    488  1.10.2.2  matt }
    489  1.10.2.2  matt 
    490  1.10.2.2  matt void
    491  1.10.2.2  matt sched_pstats_hook(struct lwp *l)
    492  1.10.2.2  matt {
    493  1.10.2.2  matt 	sched_info_lwp_t *sil = l->l_sched_info;
    494  1.10.2.3  matt 	pri_t prio;
    495  1.10.2.2  matt 	bool batch;
    496  1.10.2.2  matt 
    497  1.10.2.2  matt 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    498  1.10.2.2  matt 	    l->l_stat == LSSUSPENDED)
    499  1.10.2.2  matt 		l->l_slptime++;
    500  1.10.2.2  matt 
    501  1.10.2.2  matt 	/*
    502  1.10.2.2  matt 	 * Set that thread is more CPU-bound, if sum of run time exceeds the
    503  1.10.2.2  matt 	 * sum of sleep time.  Check if thread is CPU-bound a first time.
    504  1.10.2.2  matt 	 */
    505  1.10.2.2  matt 	batch = (sil->sl_rtsum > sil->sl_slpsum);
    506  1.10.2.2  matt 	if (batch) {
    507  1.10.2.2  matt 		if ((sil->sl_flags & SL_BATCH) == 0)
    508  1.10.2.2  matt 			batch = false;
    509  1.10.2.2  matt 		sil->sl_flags |= SL_BATCH;
    510  1.10.2.2  matt 	} else
    511  1.10.2.2  matt 		sil->sl_flags &= ~SL_BATCH;
    512  1.10.2.2  matt 
    513  1.10.2.5  matt 	/*
    514  1.10.2.5  matt 	 * If thread is CPU-bound and never sleeps, it would occupy the CPU.
    515  1.10.2.5  matt 	 * In such case reset the value of last sleep, and check it later, if
    516  1.10.2.5  matt 	 * it is still zero - perform the migration, unmark the batch flag.
    517  1.10.2.5  matt 	 */
    518  1.10.2.5  matt 	if (batch && (l->l_slptime + sil->sl_slpsum) == 0) {
    519  1.10.2.5  matt 		if (l->l_stat != LSONPROC && sil->sl_slept == 0) {
    520  1.10.2.5  matt 			struct cpu_info *ci = sched_takecpu(l);
    521  1.10.2.5  matt 
    522  1.10.2.5  matt 			if (l->l_cpu != ci)
    523  1.10.2.5  matt 				l->l_target_cpu = ci;
    524  1.10.2.5  matt 			sil->sl_flags &= ~SL_BATCH;
    525  1.10.2.5  matt 		} else {
    526  1.10.2.5  matt 			sil->sl_slept = 0;
    527  1.10.2.5  matt 		}
    528  1.10.2.5  matt 	}
    529  1.10.2.5  matt 
    530  1.10.2.2  matt 	/* Reset the time sums */
    531  1.10.2.2  matt 	sil->sl_slpsum = 0;
    532  1.10.2.2  matt 	sil->sl_rtsum = 0;
    533  1.10.2.2  matt 
    534  1.10.2.5  matt 	/*
    535  1.10.2.5  matt 	 * Estimate threads on time-sharing queue only, however,
    536  1.10.2.5  matt 	 * exclude the highest priority for performance purposes.
    537  1.10.2.5  matt 	 */
    538  1.10.2.2  matt 	if (l->l_priority >= PRI_HIGHEST_TS)
    539  1.10.2.2  matt 		return;
    540  1.10.2.5  matt 	KASSERT(l->l_class == SCHED_OTHER);
    541  1.10.2.2  matt 
    542  1.10.2.2  matt 	/* If it is CPU-bound not a first time - decrease the priority */
    543  1.10.2.3  matt 	prio = l->l_priority;
    544  1.10.2.3  matt 	if (batch && prio != 0)
    545  1.10.2.3  matt 		prio--;
    546  1.10.2.2  matt 
    547  1.10.2.2  matt 	/* If thread was not ran a second or more - set a high priority */
    548  1.10.2.3  matt 	if (l->l_stat == LSRUN) {
    549  1.10.2.3  matt 		if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
    550  1.10.2.3  matt 			prio = high_pri[prio];
    551  1.10.2.3  matt 		/* Re-enqueue the thread if priority has changed */
    552  1.10.2.3  matt 		if (prio != l->l_priority)
    553  1.10.2.3  matt 			lwp_changepri(l, prio);
    554  1.10.2.3  matt 	} else {
    555  1.10.2.3  matt 		/* In other states, change the priority directly */
    556  1.10.2.3  matt 		l->l_priority = prio;
    557  1.10.2.3  matt 	}
    558  1.10.2.2  matt }
    559  1.10.2.2  matt 
    560  1.10.2.2  matt /*
    561  1.10.2.2  matt  * Migration and balancing.
    562  1.10.2.2  matt  */
    563  1.10.2.2  matt 
    564  1.10.2.2  matt #ifdef MULTIPROCESSOR
    565  1.10.2.2  matt 
    566  1.10.2.5  matt /* Estimate if LWP is cache-hot */
    567  1.10.2.5  matt static inline bool
    568  1.10.2.5  matt lwp_cache_hot(const struct lwp *l)
    569  1.10.2.5  matt {
    570  1.10.2.5  matt 	const sched_info_lwp_t *sil = l->l_sched_info;
    571  1.10.2.5  matt 
    572  1.10.2.5  matt 	if (l->l_slptime || sil->sl_lrtime == 0)
    573  1.10.2.5  matt 		return false;
    574  1.10.2.5  matt 
    575  1.10.2.5  matt 	return (hardclock_ticks - sil->sl_lrtime <= cacheht_time);
    576  1.10.2.5  matt }
    577  1.10.2.5  matt 
    578  1.10.2.2  matt /* Check if LWP can migrate to the chosen CPU */
    579  1.10.2.2  matt static inline bool
    580  1.10.2.5  matt sched_migratable(const struct lwp *l, struct cpu_info *ci)
    581  1.10.2.2  matt {
    582  1.10.2.5  matt 	const struct schedstate_percpu *spc = &ci->ci_schedstate;
    583  1.10.2.2  matt 
    584  1.10.2.5  matt 	/* CPU is offline */
    585  1.10.2.5  matt 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
    586  1.10.2.2  matt 		return false;
    587  1.10.2.2  matt 
    588  1.10.2.5  matt 	/* Affinity bind */
    589  1.10.2.5  matt 	if (__predict_false(l->l_flag & LW_AFFINITY))
    590  1.10.2.5  matt 		return CPU_ISSET(cpu_index(ci), &l->l_affinity);
    591  1.10.2.5  matt 
    592  1.10.2.5  matt 	/* Processor-set */
    593  1.10.2.5  matt 	return (spc->spc_psid == l->l_psid);
    594  1.10.2.2  matt }
    595  1.10.2.2  matt 
    596  1.10.2.2  matt /*
    597  1.10.2.2  matt  * Estimate the migration of LWP to the other CPU.
    598  1.10.2.2  matt  * Take and return the CPU, if migration is needed.
    599  1.10.2.2  matt  */
    600  1.10.2.2  matt struct cpu_info *
    601  1.10.2.2  matt sched_takecpu(struct lwp *l)
    602  1.10.2.2  matt {
    603  1.10.2.5  matt 	struct cpu_info *ci, *tci;
    604  1.10.2.2  matt 	struct schedstate_percpu *spc;
    605  1.10.2.2  matt 	runqueue_t *ci_rq;
    606  1.10.2.2  matt 	CPU_INFO_ITERATOR cii;
    607  1.10.2.2  matt 	pri_t eprio, lpri;
    608  1.10.2.2  matt 
    609  1.10.2.5  matt 	KASSERT(lwp_locked(l, NULL));
    610  1.10.2.5  matt 
    611  1.10.2.2  matt 	ci = l->l_cpu;
    612  1.10.2.2  matt 	spc = &ci->ci_schedstate;
    613  1.10.2.2  matt 	ci_rq = spc->spc_sched_info;
    614  1.10.2.2  matt 
    615  1.10.2.5  matt 	/* If thread is strictly bound, do not estimate other CPUs */
    616  1.10.2.5  matt 	if (l->l_flag & LW_BOUND)
    617  1.10.2.5  matt 		return ci;
    618  1.10.2.5  matt 
    619  1.10.2.2  matt 	/* CPU of this thread is idling - run there */
    620  1.10.2.2  matt 	if (ci_rq->r_count == 0)
    621  1.10.2.2  matt 		return ci;
    622  1.10.2.2  matt 
    623  1.10.2.2  matt 	eprio = lwp_eprio(l);
    624  1.10.2.2  matt 
    625  1.10.2.2  matt 	/* Stay if thread is cache-hot */
    626  1.10.2.5  matt 	if (__predict_true(l->l_stat != LSIDL) &&
    627  1.10.2.5  matt 	    lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
    628  1.10.2.2  matt 		return ci;
    629  1.10.2.2  matt 
    630  1.10.2.2  matt 	/* Run on current CPU if priority of thread is higher */
    631  1.10.2.2  matt 	ci = curcpu();
    632  1.10.2.2  matt 	spc = &ci->ci_schedstate;
    633  1.10.2.2  matt 	if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
    634  1.10.2.2  matt 		return ci;
    635  1.10.2.2  matt 
    636  1.10.2.2  matt 	/*
    637  1.10.2.2  matt 	 * Look for the CPU with the lowest priority thread.  In case of
    638  1.10.2.2  matt 	 * equal the priority - check the lower count of the threads.
    639  1.10.2.2  matt 	 */
    640  1.10.2.5  matt 	tci = l->l_cpu;
    641  1.10.2.2  matt 	lpri = PRI_COUNT;
    642  1.10.2.2  matt 	for (CPU_INFO_FOREACH(cii, ci)) {
    643  1.10.2.2  matt 		runqueue_t *ici_rq;
    644  1.10.2.2  matt 		pri_t pri;
    645  1.10.2.2  matt 
    646  1.10.2.2  matt 		spc = &ci->ci_schedstate;
    647  1.10.2.2  matt 		ici_rq = spc->spc_sched_info;
    648  1.10.2.2  matt 		pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
    649  1.10.2.2  matt 		if (pri > lpri)
    650  1.10.2.2  matt 			continue;
    651  1.10.2.2  matt 
    652  1.10.2.5  matt 		if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
    653  1.10.2.2  matt 			continue;
    654  1.10.2.2  matt 
    655  1.10.2.5  matt 		if (!sched_migratable(l, ci))
    656  1.10.2.2  matt 			continue;
    657  1.10.2.2  matt 
    658  1.10.2.2  matt 		lpri = pri;
    659  1.10.2.2  matt 		tci = ci;
    660  1.10.2.2  matt 		ci_rq = ici_rq;
    661  1.10.2.2  matt 	}
    662  1.10.2.2  matt 	return tci;
    663  1.10.2.2  matt }
    664  1.10.2.2  matt 
    665  1.10.2.2  matt /*
    666  1.10.2.2  matt  * Tries to catch an LWP from the runqueue of other CPU.
    667  1.10.2.2  matt  */
    668  1.10.2.2  matt static struct lwp *
    669  1.10.2.2  matt sched_catchlwp(void)
    670  1.10.2.2  matt {
    671  1.10.2.2  matt 	struct cpu_info *curci = curcpu(), *ci = worker_ci;
    672  1.10.2.2  matt 	TAILQ_HEAD(, lwp) *q_head;
    673  1.10.2.2  matt 	runqueue_t *ci_rq;
    674  1.10.2.2  matt 	struct lwp *l;
    675  1.10.2.2  matt 
    676  1.10.2.2  matt 	if (curci == ci)
    677  1.10.2.2  matt 		return NULL;
    678  1.10.2.2  matt 
    679  1.10.2.2  matt 	/* Lockless check */
    680  1.10.2.2  matt 	ci_rq = ci->ci_schedstate.spc_sched_info;
    681  1.10.2.5  matt 	if (ci_rq->r_mcount < min_catch)
    682  1.10.2.2  matt 		return NULL;
    683  1.10.2.2  matt 
    684  1.10.2.2  matt 	/*
    685  1.10.2.2  matt 	 * Double-lock the runqueues.
    686  1.10.2.2  matt 	 */
    687  1.10.2.2  matt 	if (curci < ci) {
    688  1.10.2.2  matt 		spc_lock(ci);
    689  1.10.2.2  matt 	} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
    690  1.10.2.2  matt 		const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
    691  1.10.2.2  matt 
    692  1.10.2.2  matt 		spc_unlock(curci);
    693  1.10.2.2  matt 		spc_lock(ci);
    694  1.10.2.2  matt 		spc_lock(curci);
    695  1.10.2.2  matt 
    696  1.10.2.2  matt 		if (cur_rq->r_count) {
    697  1.10.2.2  matt 			spc_unlock(ci);
    698  1.10.2.2  matt 			return NULL;
    699  1.10.2.2  matt 		}
    700  1.10.2.2  matt 	}
    701  1.10.2.2  matt 
    702  1.10.2.5  matt 	if (ci_rq->r_mcount < min_catch) {
    703  1.10.2.2  matt 		spc_unlock(ci);
    704  1.10.2.2  matt 		return NULL;
    705  1.10.2.2  matt 	}
    706  1.10.2.2  matt 
    707  1.10.2.2  matt 	/* Take the highest priority thread */
    708  1.10.2.2  matt 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    709  1.10.2.2  matt 	l = TAILQ_FIRST(q_head);
    710  1.10.2.2  matt 
    711  1.10.2.2  matt 	for (;;) {
    712  1.10.2.2  matt 		/* Check the first and next result from the queue */
    713  1.10.2.2  matt 		if (l == NULL)
    714  1.10.2.2  matt 			break;
    715  1.10.2.5  matt 		KASSERT(l->l_stat == LSRUN);
    716  1.10.2.5  matt 		KASSERT(l->l_flag & LW_INMEM);
    717  1.10.2.2  matt 
    718  1.10.2.2  matt 		/* Look for threads, whose are allowed to migrate */
    719  1.10.2.5  matt 		if ((l->l_flag & LW_BOUND) || lwp_cache_hot(l) ||
    720  1.10.2.5  matt 		    !sched_migratable(l, curci)) {
    721  1.10.2.2  matt 			l = TAILQ_NEXT(l, l_runq);
    722  1.10.2.2  matt 			continue;
    723  1.10.2.2  matt 		}
    724  1.10.2.5  matt 
    725  1.10.2.5  matt 		/* Grab the thread, and move to the local run queue */
    726  1.10.2.5  matt 		sched_dequeue(l);
    727  1.10.2.5  matt 		l->l_cpu = curci;
    728  1.10.2.5  matt 		lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
    729  1.10.2.5  matt 		sched_enqueue(l, false);
    730  1.10.2.5  matt 		return l;
    731  1.10.2.2  matt 	}
    732  1.10.2.2  matt 	spc_unlock(ci);
    733  1.10.2.2  matt 
    734  1.10.2.2  matt 	return l;
    735  1.10.2.2  matt }
    736  1.10.2.2  matt 
    737  1.10.2.2  matt /*
    738  1.10.2.2  matt  * Periodical calculations for balancing.
    739  1.10.2.2  matt  */
    740  1.10.2.2  matt static void
    741  1.10.2.2  matt sched_balance(void *nocallout)
    742  1.10.2.2  matt {
    743  1.10.2.2  matt 	struct cpu_info *ci, *hci;
    744  1.10.2.2  matt 	runqueue_t *ci_rq;
    745  1.10.2.2  matt 	CPU_INFO_ITERATOR cii;
    746  1.10.2.2  matt 	u_int highest;
    747  1.10.2.2  matt 
    748  1.10.2.2  matt 	hci = curcpu();
    749  1.10.2.2  matt 	highest = 0;
    750  1.10.2.2  matt 
    751  1.10.2.2  matt 	/* Make lockless countings */
    752  1.10.2.2  matt 	for (CPU_INFO_FOREACH(cii, ci)) {
    753  1.10.2.2  matt 		ci_rq = ci->ci_schedstate.spc_sched_info;
    754  1.10.2.2  matt 
    755  1.10.2.2  matt 		/* Average count of the threads */
    756  1.10.2.2  matt 		ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
    757  1.10.2.2  matt 
    758  1.10.2.2  matt 		/* Look for CPU with the highest average */
    759  1.10.2.2  matt 		if (ci_rq->r_avgcount > highest) {
    760  1.10.2.2  matt 			hci = ci;
    761  1.10.2.2  matt 			highest = ci_rq->r_avgcount;
    762  1.10.2.2  matt 		}
    763  1.10.2.2  matt 	}
    764  1.10.2.2  matt 
    765  1.10.2.2  matt 	/* Update the worker */
    766  1.10.2.2  matt 	worker_ci = hci;
    767  1.10.2.2  matt 
    768  1.10.2.2  matt 	if (nocallout == NULL)
    769  1.10.2.2  matt 		callout_schedule(&balance_ch, balance_period);
    770  1.10.2.2  matt }
    771  1.10.2.2  matt 
    772  1.10.2.2  matt #else
    773  1.10.2.2  matt 
    774  1.10.2.2  matt struct cpu_info *
    775  1.10.2.2  matt sched_takecpu(struct lwp *l)
    776  1.10.2.2  matt {
    777  1.10.2.2  matt 
    778  1.10.2.2  matt 	return l->l_cpu;
    779  1.10.2.2  matt }
    780  1.10.2.2  matt 
    781  1.10.2.2  matt #endif	/* MULTIPROCESSOR */
    782  1.10.2.2  matt 
    783  1.10.2.2  matt /*
    784  1.10.2.2  matt  * Scheduler mill.
    785  1.10.2.2  matt  */
    786  1.10.2.2  matt struct lwp *
    787  1.10.2.2  matt sched_nextlwp(void)
    788  1.10.2.2  matt {
    789  1.10.2.2  matt 	struct cpu_info *ci = curcpu();
    790  1.10.2.2  matt 	struct schedstate_percpu *spc;
    791  1.10.2.2  matt 	TAILQ_HEAD(, lwp) *q_head;
    792  1.10.2.2  matt 	sched_info_lwp_t *sil;
    793  1.10.2.2  matt 	runqueue_t *ci_rq;
    794  1.10.2.2  matt 	struct lwp *l;
    795  1.10.2.2  matt 
    796  1.10.2.2  matt 	spc = &ci->ci_schedstate;
    797  1.10.2.2  matt 	ci_rq = ci->ci_schedstate.spc_sched_info;
    798  1.10.2.2  matt 
    799  1.10.2.2  matt #ifdef MULTIPROCESSOR
    800  1.10.2.2  matt 	/* If runqueue is empty, try to catch some thread from other CPU */
    801  1.10.2.3  matt 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
    802  1.10.2.2  matt 		if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
    803  1.10.2.2  matt 			return NULL;
    804  1.10.2.2  matt 	} else if (ci_rq->r_count == 0) {
    805  1.10.2.2  matt 		/* Reset the counter, and call the balancer */
    806  1.10.2.2  matt 		ci_rq->r_avgcount = 0;
    807  1.10.2.2  matt 		sched_balance(ci);
    808  1.10.2.2  matt 
    809  1.10.2.2  matt 		/* The re-locking will be done inside */
    810  1.10.2.2  matt 		return sched_catchlwp();
    811  1.10.2.2  matt 	}
    812  1.10.2.2  matt #else
    813  1.10.2.2  matt 	if (ci_rq->r_count == 0)
    814  1.10.2.2  matt 		return NULL;
    815  1.10.2.2  matt #endif
    816  1.10.2.2  matt 
    817  1.10.2.2  matt 	/* Take the highest priority thread */
    818  1.10.2.2  matt 	KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
    819  1.10.2.2  matt 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    820  1.10.2.2  matt 	l = TAILQ_FIRST(q_head);
    821  1.10.2.2  matt 	KASSERT(l != NULL);
    822  1.10.2.2  matt 
    823  1.10.2.2  matt 	/* Update the counters */
    824  1.10.2.2  matt 	sil = l->l_sched_info;
    825  1.10.2.2  matt 	KASSERT(sil->sl_timeslice >= min_ts);
    826  1.10.2.2  matt 	KASSERT(sil->sl_timeslice <= max_ts);
    827  1.10.2.2  matt 	spc->spc_ticks = sil->sl_timeslice;
    828  1.10.2.2  matt 	sil->sl_rtime = hardclock_ticks;
    829  1.10.2.2  matt 
    830  1.10.2.2  matt 	return l;
    831  1.10.2.2  matt }
    832  1.10.2.2  matt 
    833  1.10.2.2  matt bool
    834  1.10.2.2  matt sched_curcpu_runnable_p(void)
    835  1.10.2.2  matt {
    836  1.10.2.2  matt 	const struct cpu_info *ci = curcpu();
    837  1.10.2.2  matt 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    838  1.10.2.2  matt 
    839  1.10.2.3  matt #ifndef __HAVE_FAST_SOFTINTS
    840  1.10.2.3  matt 	if (ci->ci_data.cpu_softints)
    841  1.10.2.3  matt 		return true;
    842  1.10.2.3  matt #endif
    843  1.10.2.3  matt 
    844  1.10.2.2  matt 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    845  1.10.2.2  matt 		return (ci_rq->r_count - ci_rq->r_mcount);
    846  1.10.2.2  matt 
    847  1.10.2.2  matt 	return ci_rq->r_count;
    848  1.10.2.2  matt }
    849  1.10.2.2  matt 
    850  1.10.2.2  matt /*
    851  1.10.2.2  matt  * Time-driven events.
    852  1.10.2.2  matt  */
    853  1.10.2.2  matt 
    854  1.10.2.2  matt /*
    855  1.10.2.2  matt  * Called once per time-quantum.  This routine is CPU-local and runs at
    856  1.10.2.2  matt  * IPL_SCHED, thus the locking is not needed.
    857  1.10.2.2  matt  */
    858  1.10.2.2  matt void
    859  1.10.2.2  matt sched_tick(struct cpu_info *ci)
    860  1.10.2.2  matt {
    861  1.10.2.2  matt 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    862  1.10.2.2  matt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    863  1.10.2.2  matt 	struct lwp *l = curlwp;
    864  1.10.2.5  matt 	const sched_info_lwp_t *sil = l->l_sched_info;
    865  1.10.2.2  matt 
    866  1.10.2.2  matt 	if (CURCPU_IDLE_P())
    867  1.10.2.2  matt 		return;
    868  1.10.2.2  matt 
    869  1.10.2.2  matt 	switch (l->l_class) {
    870  1.10.2.2  matt 	case SCHED_FIFO:
    871  1.10.2.2  matt 		/*
    872  1.10.2.2  matt 		 * Update the time-quantum, and continue running,
    873  1.10.2.2  matt 		 * if thread runs on FIFO real-time policy.
    874  1.10.2.2  matt 		 */
    875  1.10.2.5  matt 		KASSERT(l->l_priority > PRI_HIGHEST_TS);
    876  1.10.2.2  matt 		spc->spc_ticks = sil->sl_timeslice;
    877  1.10.2.2  matt 		return;
    878  1.10.2.2  matt 	case SCHED_OTHER:
    879  1.10.2.2  matt 		/*
    880  1.10.2.2  matt 		 * If thread is in time-sharing queue, decrease the priority,
    881  1.10.2.2  matt 		 * and run with a higher time-quantum.
    882  1.10.2.2  matt 		 */
    883  1.10.2.5  matt 		KASSERT(l->l_priority <= PRI_HIGHEST_TS);
    884  1.10.2.2  matt 		if (l->l_priority != 0)
    885  1.10.2.2  matt 			l->l_priority--;
    886  1.10.2.2  matt 		break;
    887  1.10.2.2  matt 	}
    888  1.10.2.2  matt 
    889  1.10.2.2  matt 	/*
    890  1.10.2.2  matt 	 * If there are higher priority threads or threads in the same queue,
    891  1.10.2.2  matt 	 * mark that thread should yield, otherwise, continue running.
    892  1.10.2.2  matt 	 */
    893  1.10.2.5  matt 	if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
    894  1.10.2.2  matt 		spc->spc_flags |= SPCF_SHOULDYIELD;
    895  1.10.2.2  matt 		cpu_need_resched(ci, 0);
    896  1.10.2.2  matt 	} else
    897  1.10.2.2  matt 		spc->spc_ticks = sil->sl_timeslice;
    898  1.10.2.2  matt }
    899  1.10.2.2  matt 
    900  1.10.2.2  matt /*
    901  1.10.2.2  matt  * Sysctl nodes and initialization.
    902  1.10.2.2  matt  */
    903  1.10.2.2  matt 
    904  1.10.2.2  matt static int
    905  1.10.2.5  matt sysctl_sched_rtts(SYSCTLFN_ARGS)
    906  1.10.2.5  matt {
    907  1.10.2.5  matt 	struct sysctlnode node;
    908  1.10.2.5  matt 	int rttsms = hztoms(rt_ts);
    909  1.10.2.5  matt 
    910  1.10.2.5  matt 	node = *rnode;
    911  1.10.2.5  matt 	node.sysctl_data = &rttsms;
    912  1.10.2.5  matt 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    913  1.10.2.5  matt }
    914  1.10.2.5  matt 
    915  1.10.2.5  matt static int
    916  1.10.2.2  matt sysctl_sched_mints(SYSCTLFN_ARGS)
    917  1.10.2.2  matt {
    918  1.10.2.2  matt 	struct sysctlnode node;
    919  1.10.2.2  matt 	struct cpu_info *ci;
    920  1.10.2.2  matt 	int error, newsize;
    921  1.10.2.2  matt 	CPU_INFO_ITERATOR cii;
    922  1.10.2.2  matt 
    923  1.10.2.2  matt 	node = *rnode;
    924  1.10.2.2  matt 	node.sysctl_data = &newsize;
    925  1.10.2.2  matt 
    926  1.10.2.2  matt 	newsize = hztoms(min_ts);
    927  1.10.2.2  matt 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    928  1.10.2.2  matt 	if (error || newp == NULL)
    929  1.10.2.2  matt 		return error;
    930  1.10.2.2  matt 
    931  1.10.2.2  matt 	newsize = mstohz(newsize);
    932  1.10.2.2  matt 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    933  1.10.2.2  matt 		return EINVAL;
    934  1.10.2.2  matt 
    935  1.10.2.2  matt 	/* It is safe to do this in such order */
    936  1.10.2.2  matt 	for (CPU_INFO_FOREACH(cii, ci))
    937  1.10.2.2  matt 		spc_lock(ci);
    938  1.10.2.2  matt 
    939  1.10.2.2  matt 	min_ts = newsize;
    940  1.10.2.2  matt 	sched_precalcts();
    941  1.10.2.2  matt 
    942  1.10.2.2  matt 	for (CPU_INFO_FOREACH(cii, ci))
    943  1.10.2.2  matt 		spc_unlock(ci);
    944  1.10.2.2  matt 
    945  1.10.2.2  matt 	return 0;
    946  1.10.2.2  matt }
    947  1.10.2.2  matt 
    948  1.10.2.2  matt static int
    949  1.10.2.2  matt sysctl_sched_maxts(SYSCTLFN_ARGS)
    950  1.10.2.2  matt {
    951  1.10.2.2  matt 	struct sysctlnode node;
    952  1.10.2.2  matt 	struct cpu_info *ci;
    953  1.10.2.2  matt 	int error, newsize;
    954  1.10.2.2  matt 	CPU_INFO_ITERATOR cii;
    955  1.10.2.2  matt 
    956  1.10.2.2  matt 	node = *rnode;
    957  1.10.2.2  matt 	node.sysctl_data = &newsize;
    958  1.10.2.2  matt 
    959  1.10.2.2  matt 	newsize = hztoms(max_ts);
    960  1.10.2.2  matt 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    961  1.10.2.2  matt 	if (error || newp == NULL)
    962  1.10.2.2  matt 		return error;
    963  1.10.2.2  matt 
    964  1.10.2.2  matt 	newsize = mstohz(newsize);
    965  1.10.2.2  matt 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    966  1.10.2.2  matt 		return EINVAL;
    967  1.10.2.2  matt 
    968  1.10.2.2  matt 	/* It is safe to do this in such order */
    969  1.10.2.2  matt 	for (CPU_INFO_FOREACH(cii, ci))
    970  1.10.2.2  matt 		spc_lock(ci);
    971  1.10.2.2  matt 
    972  1.10.2.2  matt 	max_ts = newsize;
    973  1.10.2.2  matt 	sched_precalcts();
    974  1.10.2.2  matt 
    975  1.10.2.2  matt 	for (CPU_INFO_FOREACH(cii, ci))
    976  1.10.2.2  matt 		spc_unlock(ci);
    977  1.10.2.2  matt 
    978  1.10.2.2  matt 	return 0;
    979  1.10.2.2  matt }
    980  1.10.2.2  matt 
    981  1.10.2.2  matt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    982  1.10.2.2  matt {
    983  1.10.2.2  matt 	const struct sysctlnode *node = NULL;
    984  1.10.2.2  matt 
    985  1.10.2.2  matt 	sysctl_createv(clog, 0, NULL, NULL,
    986  1.10.2.2  matt 		CTLFLAG_PERMANENT,
    987  1.10.2.2  matt 		CTLTYPE_NODE, "kern", NULL,
    988  1.10.2.2  matt 		NULL, 0, NULL, 0,
    989  1.10.2.2  matt 		CTL_KERN, CTL_EOL);
    990  1.10.2.2  matt 	sysctl_createv(clog, 0, NULL, &node,
    991  1.10.2.2  matt 		CTLFLAG_PERMANENT,
    992  1.10.2.2  matt 		CTLTYPE_NODE, "sched",
    993  1.10.2.2  matt 		SYSCTL_DESCR("Scheduler options"),
    994  1.10.2.2  matt 		NULL, 0, NULL, 0,
    995  1.10.2.2  matt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    996  1.10.2.2  matt 
    997  1.10.2.2  matt 	if (node == NULL)
    998  1.10.2.2  matt 		return;
    999  1.10.2.2  matt 
   1000  1.10.2.2  matt 	sysctl_createv(clog, 0, &node, NULL,
   1001  1.10.2.2  matt 		CTLFLAG_PERMANENT,
   1002  1.10.2.2  matt 		CTLTYPE_STRING, "name", NULL,
   1003  1.10.2.2  matt 		NULL, 0, __UNCONST("M2"), 0,
   1004  1.10.2.2  matt 		CTL_CREATE, CTL_EOL);
   1005  1.10.2.2  matt 	sysctl_createv(clog, 0, &node, NULL,
   1006  1.10.2.5  matt 		CTLFLAG_PERMANENT,
   1007  1.10.2.5  matt 		CTLTYPE_INT, "rtts",
   1008  1.10.2.5  matt 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
   1009  1.10.2.5  matt 		sysctl_sched_rtts, 0, NULL, 0,
   1010  1.10.2.5  matt 		CTL_CREATE, CTL_EOL);
   1011  1.10.2.5  matt 	sysctl_createv(clog, 0, &node, NULL,
   1012  1.10.2.2  matt 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1013  1.10.2.2  matt 		CTLTYPE_INT, "maxts",
   1014  1.10.2.2  matt 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
   1015  1.10.2.2  matt 		sysctl_sched_maxts, 0, &max_ts, 0,
   1016  1.10.2.2  matt 		CTL_CREATE, CTL_EOL);
   1017  1.10.2.2  matt 	sysctl_createv(clog, 0, &node, NULL,
   1018  1.10.2.2  matt 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1019  1.10.2.2  matt 		CTLTYPE_INT, "mints",
   1020  1.10.2.2  matt 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
   1021  1.10.2.2  matt 		sysctl_sched_mints, 0, &min_ts, 0,
   1022  1.10.2.2  matt 		CTL_CREATE, CTL_EOL);
   1023  1.10.2.2  matt 
   1024  1.10.2.2  matt #ifdef MULTIPROCESSOR
   1025  1.10.2.2  matt 	sysctl_createv(clog, 0, &node, NULL,
   1026  1.10.2.2  matt 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1027  1.10.2.2  matt 		CTLTYPE_INT, "cacheht_time",
   1028  1.10.2.2  matt 		SYSCTL_DESCR("Cache hotness time (in ticks)"),
   1029  1.10.2.2  matt 		NULL, 0, &cacheht_time, 0,
   1030  1.10.2.2  matt 		CTL_CREATE, CTL_EOL);
   1031  1.10.2.2  matt 	sysctl_createv(clog, 0, &node, NULL,
   1032  1.10.2.2  matt 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1033  1.10.2.2  matt 		CTLTYPE_INT, "balance_period",
   1034  1.10.2.2  matt 		SYSCTL_DESCR("Balance period (in ticks)"),
   1035  1.10.2.2  matt 		NULL, 0, &balance_period, 0,
   1036  1.10.2.2  matt 		CTL_CREATE, CTL_EOL);
   1037  1.10.2.2  matt 	sysctl_createv(clog, 0, &node, NULL,
   1038  1.10.2.2  matt 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1039  1.10.2.2  matt 		CTLTYPE_INT, "min_catch",
   1040  1.10.2.2  matt 		SYSCTL_DESCR("Minimal count of the threads for catching"),
   1041  1.10.2.2  matt 		NULL, 0, &min_catch, 0,
   1042  1.10.2.2  matt 		CTL_CREATE, CTL_EOL);
   1043  1.10.2.2  matt #endif
   1044  1.10.2.2  matt }
   1045  1.10.2.2  matt 
   1046  1.10.2.2  matt /*
   1047  1.10.2.2  matt  * Debugging.
   1048  1.10.2.2  matt  */
   1049  1.10.2.2  matt 
   1050  1.10.2.2  matt #ifdef DDB
   1051  1.10.2.2  matt 
   1052  1.10.2.2  matt void
   1053  1.10.2.2  matt sched_print_runqueue(void (*pr)(const char *, ...))
   1054  1.10.2.2  matt {
   1055  1.10.2.2  matt 	runqueue_t *ci_rq;
   1056  1.10.2.2  matt 	sched_info_lwp_t *sil;
   1057  1.10.2.2  matt 	struct lwp *l;
   1058  1.10.2.2  matt 	struct proc *p;
   1059  1.10.2.2  matt 	int i;
   1060  1.10.2.2  matt 
   1061  1.10.2.2  matt 	struct cpu_info *ci;
   1062  1.10.2.2  matt 	CPU_INFO_ITERATOR cii;
   1063  1.10.2.2  matt 
   1064  1.10.2.2  matt 	for (CPU_INFO_FOREACH(cii, ci)) {
   1065  1.10.2.2  matt 		ci_rq = ci->ci_schedstate.spc_sched_info;
   1066  1.10.2.2  matt 
   1067  1.10.2.5  matt 		(*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
   1068  1.10.2.2  matt 		(*pr)(" pid.lid = %d.%d, threads count = %u, "
   1069  1.10.2.2  matt 		    "avgcount = %u, highest pri = %d\n",
   1070  1.10.2.2  matt 		    ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
   1071  1.10.2.2  matt 		    ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
   1072  1.10.2.2  matt 		i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
   1073  1.10.2.2  matt 		do {
   1074  1.10.2.2  matt 			uint32_t q;
   1075  1.10.2.2  matt 			q = ci_rq->r_bitmap[i];
   1076  1.10.2.2  matt 			(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
   1077  1.10.2.2  matt 		} while (i--);
   1078  1.10.2.2  matt 	}
   1079  1.10.2.2  matt 
   1080  1.10.2.2  matt 	(*pr)("   %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
   1081  1.10.2.2  matt 	    "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
   1082  1.10.2.2  matt 
   1083  1.10.2.2  matt 	PROCLIST_FOREACH(p, &allproc) {
   1084  1.10.2.2  matt 		(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
   1085  1.10.2.2  matt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1086  1.10.2.2  matt 			sil = l->l_sched_info;
   1087  1.10.2.2  matt 			ci = l->l_cpu;
   1088  1.10.2.5  matt 			(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3u "
   1089  1.10.2.2  matt 			    "%u ST=%d RT=%d %d\n",
   1090  1.10.2.2  matt 			    (int)l->l_lid, l->l_priority, lwp_eprio(l),
   1091  1.10.2.2  matt 			    l->l_flag, l->l_stat == LSRUN ? "RQ" :
   1092  1.10.2.2  matt 			    (l->l_stat == LSSLEEP ? "SQ" : "-"),
   1093  1.10.2.5  matt 			    sil->sl_timeslice, l, ci->ci_index,
   1094  1.10.2.2  matt 			    (u_int)(hardclock_ticks - sil->sl_lrtime),
   1095  1.10.2.2  matt 			    sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
   1096  1.10.2.2  matt 		}
   1097  1.10.2.2  matt 	}
   1098  1.10.2.2  matt }
   1099  1.10.2.2  matt 
   1100  1.10.2.5  matt #endif
   1101