Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.11
      1  1.11  rmind /*	$NetBSD: sched_m2.c,v 1.11 2007/11/07 03:07:14 rmind Exp $	*/
      2   1.1  rmind 
      3   1.1  rmind /*
      4   1.1  rmind  * Copyright (c) 2007, Mindaugas Rasiukevicius
      5   1.1  rmind  *
      6   1.1  rmind  * Redistribution and use in source and binary forms, with or without
      7   1.1  rmind  * modification, are permitted provided that the following conditions
      8   1.1  rmind  * are met:
      9   1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     10   1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     11   1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     12   1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     13   1.1  rmind  *    documentation and/or other materials provided with the distribution.
     14   1.1  rmind  *
     15   1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16   1.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     17   1.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     18   1.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     19   1.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     20   1.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     21   1.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     22   1.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     23   1.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     24   1.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     25   1.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     26   1.1  rmind  */
     27   1.1  rmind 
     28   1.1  rmind /*
     29   1.1  rmind  * TODO:
     30   1.1  rmind  *  - Implementation of fair share queue;
     31   1.1  rmind  *  - Support for NUMA;
     32   1.1  rmind  */
     33   1.1  rmind 
     34   1.1  rmind #include <sys/cdefs.h>
     35  1.11  rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.11 2007/11/07 03:07:14 rmind Exp $");
     36   1.1  rmind 
     37   1.1  rmind #include <sys/param.h>
     38   1.1  rmind 
     39   1.8  rmind #include <sys/bitops.h>
     40   1.1  rmind #include <sys/cpu.h>
     41   1.1  rmind #include <sys/callout.h>
     42   1.1  rmind #include <sys/errno.h>
     43   1.1  rmind #include <sys/kernel.h>
     44   1.1  rmind #include <sys/kmem.h>
     45   1.1  rmind #include <sys/lwp.h>
     46   1.1  rmind #include <sys/mutex.h>
     47   1.1  rmind #include <sys/pool.h>
     48   1.1  rmind #include <sys/proc.h>
     49   1.1  rmind #include <sys/resource.h>
     50   1.1  rmind #include <sys/resourcevar.h>
     51   1.1  rmind #include <sys/sched.h>
     52   1.1  rmind #include <sys/syscallargs.h>
     53   1.1  rmind #include <sys/sysctl.h>
     54   1.1  rmind #include <sys/types.h>
     55   1.1  rmind 
     56   1.1  rmind /*
     57  1.10     ad  * Priority related defintions.
     58   1.1  rmind  */
     59  1.10     ad #define	PRI_TS_COUNT	(NPRI_USER)
     60  1.10     ad #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     61  1.10     ad #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     62  1.10     ad 
     63  1.11  rmind #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     64  1.10     ad #define	PRI_DEFAULT	(NPRI_USER >> 1)
     65  1.10     ad 
     66  1.10     ad const int schedppq = 1;
     67   1.1  rmind 
     68   1.1  rmind /*
     69   1.1  rmind  * Bits per map.
     70   1.1  rmind  */
     71  1.10     ad #define	BITMAP_BITS	(32)
     72  1.10     ad #define	BITMAP_SHIFT	(5)
     73  1.11  rmind #define	BITMAP_MSB	(0x80000000U)
     74  1.10     ad #define	BITMAP_MASK	(BITMAP_BITS - 1)
     75   1.1  rmind 
     76   1.1  rmind /*
     77   1.1  rmind  * Time-slices and priorities.
     78   1.1  rmind  */
     79   1.1  rmind static u_int	min_ts;			/* Minimal time-slice */
     80   1.1  rmind static u_int	max_ts;			/* Maximal time-slice */
     81   1.1  rmind static u_int	rt_ts;			/* Real-time time-slice */
     82   1.1  rmind static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     83   1.1  rmind static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     84   1.1  rmind 
     85   1.1  rmind /*
     86   1.1  rmind  * Migration and balancing.
     87   1.1  rmind  */
     88   1.1  rmind #ifdef MULTIPROCESSOR
     89   1.1  rmind static u_int	cacheht_time;		/* Cache hotness time */
     90   1.1  rmind static u_int	min_catch;		/* Minimal LWP count for catching */
     91   1.1  rmind 
     92   1.1  rmind static u_int		balance_period;	/* Balance period */
     93   1.1  rmind static struct callout	balance_ch;	/* Callout of balancer */
     94   1.1  rmind 
     95   1.1  rmind static struct cpu_info * volatile worker_ci;
     96   1.1  rmind 
     97   1.1  rmind #define CACHE_HOT(sil)		(sil->sl_lrtime && \
     98   1.1  rmind     (hardclock_ticks - sil->sl_lrtime < cacheht_time))
     99   1.1  rmind 
    100   1.1  rmind #endif
    101   1.1  rmind 
    102   1.1  rmind /*
    103   1.1  rmind  * Structures, runqueue.
    104   1.1  rmind  */
    105   1.1  rmind 
    106   1.1  rmind typedef struct {
    107   1.1  rmind 	TAILQ_HEAD(, lwp) q_head;
    108   1.1  rmind } queue_t;
    109   1.1  rmind 
    110   1.1  rmind typedef struct {
    111   1.1  rmind 	/* Lock and bitmap */
    112   1.1  rmind 	kmutex_t	r_rq_mutex;
    113  1.10     ad 	uint32_t	r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
    114   1.1  rmind 	/* Counters */
    115   1.1  rmind 	u_int		r_count;	/* Count of the threads */
    116   1.1  rmind 	pri_t		r_highest_pri;	/* Highest priority */
    117   1.1  rmind 	u_int		r_avgcount;	/* Average count of threads */
    118   1.1  rmind 	u_int		r_mcount;	/* Count of migratable threads */
    119   1.1  rmind 	/* Runqueues */
    120   1.1  rmind 	queue_t		r_rt_queue[PRI_RT_COUNT];
    121   1.1  rmind 	queue_t		r_ts_queue[PRI_TS_COUNT];
    122   1.1  rmind } runqueue_t;
    123   1.1  rmind 
    124   1.1  rmind typedef struct {
    125   1.1  rmind 	u_int		sl_flags;
    126   1.1  rmind 	u_int		sl_timeslice;	/* Time-slice of thread */
    127   1.1  rmind 	u_int		sl_slept;	/* Saved sleep time for sleep sum */
    128   1.1  rmind 	u_int		sl_slpsum;	/* Sum of sleep time */
    129   1.1  rmind 	u_int		sl_rtime;	/* Saved start time of run */
    130   1.1  rmind 	u_int		sl_rtsum;	/* Sum of the run time */
    131   1.1  rmind 	u_int		sl_lrtime;	/* Last run time */
    132   1.1  rmind } sched_info_lwp_t;
    133   1.1  rmind 
    134   1.1  rmind /* Flags */
    135   1.1  rmind #define	SL_BATCH	0x01
    136   1.1  rmind 
    137   1.1  rmind /* Pool of the scheduler-specific structures for threads */
    138   1.1  rmind static struct pool	sil_pool;
    139   1.1  rmind 
    140   1.1  rmind /*
    141   1.1  rmind  * Prototypes.
    142   1.1  rmind  */
    143   1.1  rmind 
    144   1.1  rmind static inline void *	sched_getrq(runqueue_t *, const pri_t);
    145   1.1  rmind static inline void	sched_newts(struct lwp *);
    146   1.1  rmind static void		sched_precalcts(void);
    147   1.1  rmind 
    148   1.1  rmind #ifdef MULTIPROCESSOR
    149   1.1  rmind static struct lwp *	sched_catchlwp(void);
    150   1.1  rmind static void		sched_balance(void *);
    151   1.1  rmind #endif
    152   1.1  rmind 
    153   1.1  rmind /*
    154   1.1  rmind  * Initialization and setup.
    155   1.1  rmind  */
    156   1.1  rmind 
    157   1.1  rmind void
    158   1.1  rmind sched_rqinit(void)
    159   1.1  rmind {
    160   1.1  rmind 	struct cpu_info *ci = curcpu();
    161   1.1  rmind 
    162   1.1  rmind 	if (hz < 100) {
    163   1.1  rmind 		panic("sched_rqinit: value of HZ is too low\n");
    164   1.1  rmind 	}
    165   1.1  rmind 
    166   1.1  rmind 	/* Default timing ranges */
    167   1.1  rmind 	min_ts = mstohz(50);			/* ~50ms  */
    168   1.1  rmind 	max_ts = mstohz(150);			/* ~150ms */
    169   1.1  rmind 	rt_ts = mstohz(100);			/* ~100ms */
    170   1.1  rmind 	sched_precalcts();
    171   1.1  rmind 
    172   1.1  rmind #ifdef MULTIPROCESSOR
    173   1.1  rmind 	/* Balancing */
    174   1.1  rmind 	worker_ci = ci;
    175   1.1  rmind 	cacheht_time = mstohz(5);		/* ~5 ms  */
    176   1.1  rmind 	balance_period = mstohz(300);		/* ~300ms */
    177   1.1  rmind 	min_catch = ~0;
    178   1.1  rmind #endif
    179   1.1  rmind 
    180   1.1  rmind 	/* Pool of the scheduler-specific structures */
    181   1.1  rmind 	pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
    182   1.1  rmind 	    "lwpsd", &pool_allocator_nointr, IPL_NONE);
    183   1.1  rmind 
    184   1.1  rmind 	/* Attach the primary CPU here */
    185   1.1  rmind 	sched_cpuattach(ci);
    186   1.1  rmind 
    187   1.1  rmind 	/* Initialize the scheduler structure of the primary LWP */
    188   1.1  rmind 	lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
    189  1.10     ad 	sched_lwp_fork(NULL, &lwp0);
    190   1.1  rmind 	sched_newts(&lwp0);
    191   1.1  rmind }
    192   1.1  rmind 
    193   1.1  rmind void
    194   1.1  rmind sched_setup(void)
    195   1.1  rmind {
    196   1.1  rmind 
    197   1.1  rmind #ifdef MULTIPROCESSOR
    198   1.1  rmind 	/* Minimal count of LWPs for catching: log2(count of CPUs) */
    199   1.8  rmind 	min_catch = min(ilog2(ncpu), 4);
    200   1.1  rmind 
    201   1.1  rmind 	/* Initialize balancing callout and run it */
    202   1.1  rmind 	callout_init(&balance_ch, CALLOUT_MPSAFE);
    203   1.1  rmind 	callout_setfunc(&balance_ch, sched_balance, NULL);
    204   1.1  rmind 	callout_schedule(&balance_ch, balance_period);
    205   1.1  rmind #endif
    206   1.1  rmind }
    207   1.1  rmind 
    208   1.1  rmind void
    209   1.1  rmind sched_cpuattach(struct cpu_info *ci)
    210   1.1  rmind {
    211   1.1  rmind 	runqueue_t *ci_rq;
    212   1.1  rmind 	void *rq_ptr;
    213   1.1  rmind 	u_int i, size;
    214   1.1  rmind 
    215   1.1  rmind 	/*
    216   1.1  rmind 	 * Allocate the run queue.
    217   1.1  rmind 	 * XXX: Estimate cache behaviour more..
    218   1.1  rmind 	 */
    219   1.1  rmind 	size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
    220   1.1  rmind 	rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
    221   1.1  rmind 	if (rq_ptr == NULL) {
    222   1.1  rmind 		panic("scheduler: could not allocate the runqueue");
    223   1.1  rmind 	}
    224   1.1  rmind 	/* XXX: Save the original pointer for future.. */
    225   1.1  rmind 	ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
    226   1.1  rmind 
    227   1.1  rmind 	/* Initialize run queues */
    228   1.1  rmind 	mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
    229   1.1  rmind 	for (i = 0; i < PRI_RT_COUNT; i++)
    230   1.1  rmind 		TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
    231   1.1  rmind 	for (i = 0; i < PRI_TS_COUNT; i++)
    232   1.1  rmind 		TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
    233  1.10     ad 	ci_rq->r_highest_pri = 0;
    234   1.1  rmind 
    235   1.1  rmind 	ci->ci_schedstate.spc_sched_info = ci_rq;
    236   1.1  rmind 	ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
    237   1.1  rmind }
    238   1.1  rmind 
    239   1.1  rmind /* Pre-calculate the time-slices for the priorities */
    240   1.1  rmind static void
    241   1.1  rmind sched_precalcts(void)
    242   1.1  rmind {
    243   1.1  rmind 	pri_t p;
    244   1.1  rmind 
    245  1.10     ad 	/* Time-sharing range */
    246  1.10     ad 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    247  1.10     ad 		ts_map[p] = max_ts -
    248  1.10     ad 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    249  1.10     ad 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    250  1.10     ad 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    251  1.10     ad 	}
    252  1.10     ad 
    253  1.10     ad 	/* Real-time range */
    254  1.10     ad 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    255   1.1  rmind 		ts_map[p] = rt_ts;
    256   1.1  rmind 		high_pri[p] = p;
    257   1.1  rmind 	}
    258   1.1  rmind }
    259   1.1  rmind 
    260   1.1  rmind /*
    261   1.1  rmind  * Hooks.
    262   1.1  rmind  */
    263   1.1  rmind 
    264   1.1  rmind void
    265   1.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    266   1.1  rmind {
    267   1.1  rmind 	struct lwp *l;
    268   1.1  rmind 
    269   1.1  rmind 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    270   1.1  rmind 		lwp_lock(l);
    271   1.1  rmind 		sched_newts(l);
    272   1.1  rmind 		lwp_unlock(l);
    273   1.1  rmind 	}
    274   1.1  rmind }
    275   1.1  rmind 
    276   1.1  rmind void
    277   1.1  rmind sched_proc_exit(struct proc *child, struct proc *parent)
    278   1.1  rmind {
    279   1.1  rmind 
    280   1.1  rmind 	/* Dummy */
    281   1.1  rmind }
    282   1.1  rmind 
    283   1.1  rmind void
    284  1.10     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    285   1.1  rmind {
    286   1.1  rmind 
    287  1.10     ad 	KASSERT(l2->l_sched_info == NULL);
    288  1.10     ad 	l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
    289  1.10     ad 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    290  1.10     ad 	if (l2->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
    291  1.10     ad 		l2->l_priority = PRI_DEFAULT;
    292   1.1  rmind }
    293   1.1  rmind 
    294   1.1  rmind void
    295   1.1  rmind sched_lwp_exit(struct lwp *l)
    296   1.1  rmind {
    297   1.1  rmind 
    298   1.1  rmind 	KASSERT(l->l_sched_info != NULL);
    299   1.1  rmind 	pool_put(&sil_pool, l->l_sched_info);
    300   1.1  rmind 	l->l_sched_info = NULL;
    301   1.1  rmind }
    302   1.1  rmind 
    303   1.1  rmind void
    304  1.10     ad sched_lwp_collect(struct lwp *l)
    305  1.10     ad {
    306  1.10     ad 
    307  1.10     ad }
    308  1.10     ad 
    309  1.10     ad void
    310   1.1  rmind sched_setrunnable(struct lwp *l)
    311   1.1  rmind {
    312   1.1  rmind 
    313   1.1  rmind 	/* Dummy */
    314   1.1  rmind }
    315   1.1  rmind 
    316   1.1  rmind void
    317   1.1  rmind sched_schedclock(struct lwp *l)
    318   1.1  rmind {
    319   1.1  rmind 
    320   1.1  rmind 	/* Dummy */
    321   1.1  rmind }
    322   1.1  rmind 
    323   1.1  rmind /*
    324   1.1  rmind  * Priorities and time-slice.
    325   1.1  rmind  */
    326   1.1  rmind 
    327   1.1  rmind void
    328   1.1  rmind sched_nice(struct proc *p, int prio)
    329   1.1  rmind {
    330   1.1  rmind 	int nprio;
    331   1.1  rmind 	struct lwp *l;
    332   1.1  rmind 
    333  1.10     ad 	KASSERT(mutex_owned(&p->p_smutex));
    334   1.1  rmind 
    335   1.1  rmind 	p->p_nice = prio;
    336  1.10     ad 	nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
    337   1.1  rmind 
    338   1.1  rmind 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    339   1.1  rmind 		lwp_lock(l);
    340   1.1  rmind 		lwp_changepri(l, nprio);
    341   1.1  rmind 		lwp_unlock(l);
    342   1.1  rmind 	}
    343   1.1  rmind }
    344   1.1  rmind 
    345   1.1  rmind /* Recalculate the time-slice */
    346   1.1  rmind static inline void
    347   1.1  rmind sched_newts(struct lwp *l)
    348   1.1  rmind {
    349   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    350   1.1  rmind 
    351   1.1  rmind 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    352   1.1  rmind }
    353   1.1  rmind 
    354   1.1  rmind /*
    355   1.1  rmind  * Control of the runqueue.
    356   1.1  rmind  */
    357   1.1  rmind 
    358   1.1  rmind static inline void *
    359   1.1  rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
    360   1.1  rmind {
    361   1.1  rmind 
    362   1.1  rmind 	KASSERT(prio < PRI_COUNT);
    363  1.10     ad 	return (prio <= PRI_HIGHEST_TS) ?
    364  1.10     ad 	    &ci_rq->r_ts_queue[prio].q_head :
    365  1.10     ad 	    &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
    366   1.1  rmind }
    367   1.1  rmind 
    368   1.1  rmind void
    369   1.1  rmind sched_enqueue(struct lwp *l, bool swtch)
    370   1.1  rmind {
    371   1.1  rmind 	runqueue_t *ci_rq;
    372   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    373   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    374   1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    375   1.1  rmind 
    376   1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    377   1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    378   1.1  rmind 
    379   1.1  rmind 	/* Update the last run time on switch */
    380  1.11  rmind 	if (__predict_true(swtch == true)) {
    381   1.1  rmind 		sil->sl_lrtime = hardclock_ticks;
    382   1.1  rmind 		sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
    383   1.8  rmind 	} else if (sil->sl_lrtime == 0)
    384   1.8  rmind 		sil->sl_lrtime = hardclock_ticks;
    385   1.1  rmind 
    386   1.1  rmind 	/* Enqueue the thread */
    387   1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    388   1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    389   1.1  rmind 		u_int i;
    390   1.1  rmind 		uint32_t q;
    391   1.1  rmind 
    392   1.1  rmind 		/* Mark bit */
    393   1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    394  1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    395  1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) == 0);
    396  1.10     ad 		ci_rq->r_bitmap[i] |= q;
    397   1.1  rmind 	}
    398   1.1  rmind 	TAILQ_INSERT_TAIL(q_head, l, l_runq);
    399   1.1  rmind 	ci_rq->r_count++;
    400   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    401   1.1  rmind 		ci_rq->r_mcount++;
    402   1.1  rmind 
    403   1.1  rmind 	/*
    404   1.1  rmind 	 * Update the value of highest priority in the runqueue,
    405   1.1  rmind 	 * if priority of this thread is higher.
    406   1.1  rmind 	 */
    407  1.10     ad 	if (eprio > ci_rq->r_highest_pri)
    408   1.1  rmind 		ci_rq->r_highest_pri = eprio;
    409   1.1  rmind 
    410   1.1  rmind 	sched_newts(l);
    411   1.1  rmind }
    412   1.1  rmind 
    413   1.1  rmind void
    414   1.1  rmind sched_dequeue(struct lwp *l)
    415   1.1  rmind {
    416   1.1  rmind 	runqueue_t *ci_rq;
    417   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    418   1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    419   1.1  rmind 
    420   1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    421   1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    422  1.10     ad 	KASSERT(eprio <= ci_rq->r_highest_pri);
    423   1.1  rmind 	KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
    424   1.1  rmind 	KASSERT(ci_rq->r_count > 0);
    425   1.1  rmind 
    426   1.1  rmind 	ci_rq->r_count--;
    427   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    428   1.1  rmind 		ci_rq->r_mcount--;
    429   1.1  rmind 
    430   1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    431   1.1  rmind 	TAILQ_REMOVE(q_head, l, l_runq);
    432   1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    433   1.1  rmind 		u_int i;
    434   1.1  rmind 		uint32_t q;
    435   1.1  rmind 
    436   1.1  rmind 		/* Unmark bit */
    437   1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    438  1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    439  1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) != 0);
    440  1.10     ad 		ci_rq->r_bitmap[i] &= ~q;
    441   1.1  rmind 
    442   1.1  rmind 		/*
    443   1.1  rmind 		 * Update the value of highest priority in the runqueue, in a
    444   1.1  rmind 		 * case it was a last thread in the queue of highest priority.
    445   1.1  rmind 		 */
    446   1.1  rmind 		if (eprio != ci_rq->r_highest_pri)
    447   1.1  rmind 			return;
    448   1.1  rmind 
    449   1.1  rmind 		do {
    450   1.1  rmind 			q = ffs(ci_rq->r_bitmap[i]);
    451   1.1  rmind 			if (q) {
    452   1.1  rmind 				ci_rq->r_highest_pri =
    453  1.10     ad 				    (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
    454   1.1  rmind 				return;
    455   1.1  rmind 			}
    456  1.10     ad 		} while (i--);
    457   1.1  rmind 
    458  1.10     ad 		/* If not found - set the lowest value */
    459  1.10     ad 		ci_rq->r_highest_pri = 0;
    460   1.1  rmind 	}
    461   1.1  rmind }
    462   1.1  rmind 
    463   1.1  rmind void
    464   1.1  rmind sched_slept(struct lwp *l)
    465   1.1  rmind {
    466   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    467   1.1  rmind 
    468   1.1  rmind 	/* Save the time when thread has slept */
    469   1.1  rmind 	sil->sl_slept = hardclock_ticks;
    470   1.1  rmind 
    471   1.1  rmind 	/*
    472  1.10     ad 	 * If thread is in time-sharing queue and batch flag is not marked,
    473  1.10     ad 	 * increase the the priority, and run with the lower time-quantum.
    474   1.1  rmind 	 */
    475  1.10     ad 	if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
    476  1.10     ad 		KASSERT(l->l_class == SCHED_OTHER);
    477  1.10     ad 		l->l_priority++;
    478  1.10     ad 	}
    479   1.1  rmind }
    480   1.1  rmind 
    481   1.1  rmind void
    482   1.1  rmind sched_wakeup(struct lwp *l)
    483   1.1  rmind {
    484   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    485   1.1  rmind 
    486   1.1  rmind 	/* Update sleep time delta */
    487   1.1  rmind 	sil->sl_slpsum += (l->l_slptime == 0) ?
    488   1.1  rmind 	    (hardclock_ticks - sil->sl_slept) : hz;
    489   1.1  rmind 
    490   1.1  rmind 	/* If thread was sleeping a second or more - set a high priority */
    491   1.1  rmind 	if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
    492  1.10     ad 		l->l_priority = high_pri[l->l_priority];
    493   1.1  rmind 
    494   1.1  rmind 	/* Also, consider looking for a better CPU to wake up */
    495   1.1  rmind 	if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
    496   1.1  rmind 		l->l_cpu = sched_takecpu(l);
    497   1.1  rmind }
    498   1.1  rmind 
    499   1.1  rmind void
    500   1.1  rmind sched_pstats_hook(struct lwp *l)
    501   1.1  rmind {
    502   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    503  1.11  rmind 	pri_t prio;
    504  1.10     ad 	bool batch;
    505  1.10     ad 
    506  1.10     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    507  1.10     ad 	    l->l_stat == LSSUSPENDED)
    508  1.10     ad 		l->l_slptime++;
    509   1.1  rmind 
    510   1.1  rmind 	/*
    511   1.1  rmind 	 * Set that thread is more CPU-bound, if sum of run time exceeds the
    512  1.10     ad 	 * sum of sleep time.  Check if thread is CPU-bound a first time.
    513   1.1  rmind 	 */
    514  1.10     ad 	batch = (sil->sl_rtsum > sil->sl_slpsum);
    515  1.10     ad 	if (batch) {
    516  1.10     ad 		if ((sil->sl_flags & SL_BATCH) == 0)
    517  1.10     ad 			batch = false;
    518   1.1  rmind 		sil->sl_flags |= SL_BATCH;
    519  1.10     ad 	} else
    520   1.1  rmind 		sil->sl_flags &= ~SL_BATCH;
    521  1.10     ad 
    522  1.10     ad 	/* Reset the time sums */
    523   1.1  rmind 	sil->sl_slpsum = 0;
    524   1.1  rmind 	sil->sl_rtsum = 0;
    525   1.1  rmind 
    526  1.10     ad 	/* Estimate threads on time-sharing queue only */
    527  1.10     ad 	if (l->l_priority >= PRI_HIGHEST_TS)
    528   1.1  rmind 		return;
    529   1.1  rmind 
    530  1.10     ad 	/* If it is CPU-bound not a first time - decrease the priority */
    531  1.11  rmind 	prio = l->l_priority;
    532  1.11  rmind 	if (batch && prio != 0)
    533  1.11  rmind 		prio--;
    534  1.10     ad 
    535   1.1  rmind 	/* If thread was not ran a second or more - set a high priority */
    536  1.11  rmind 	if (l->l_stat == LSRUN) {
    537  1.11  rmind 		if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
    538  1.11  rmind 			prio = high_pri[prio];
    539  1.11  rmind 		/* Re-enqueue the thread if priority has changed */
    540  1.11  rmind 		if (prio != l->l_priority)
    541  1.11  rmind 			lwp_changepri(l, prio);
    542  1.11  rmind 	} else {
    543  1.11  rmind 		/* In other states, change the priority directly */
    544  1.11  rmind 		l->l_priority = prio;
    545  1.11  rmind 	}
    546   1.1  rmind }
    547   1.1  rmind 
    548   1.1  rmind /*
    549   1.1  rmind  * Migration and balancing.
    550   1.1  rmind  */
    551   1.1  rmind 
    552   1.1  rmind #ifdef MULTIPROCESSOR
    553   1.1  rmind 
    554   1.1  rmind /* Check if LWP can migrate to the chosen CPU */
    555   1.1  rmind static inline bool
    556   1.1  rmind sched_migratable(const struct lwp *l, const struct cpu_info *ci)
    557   1.1  rmind {
    558   1.1  rmind 
    559   1.1  rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    560   1.1  rmind 		return false;
    561   1.1  rmind 
    562   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    563   1.1  rmind 		return true;
    564   1.1  rmind #if 0
    565   1.1  rmind 	return cpu_in_pset(ci, l->l_psid);
    566   1.1  rmind #else
    567   1.1  rmind 	return false;
    568   1.1  rmind #endif
    569   1.1  rmind }
    570   1.1  rmind 
    571   1.1  rmind /*
    572   1.1  rmind  * Estimate the migration of LWP to the other CPU.
    573   1.1  rmind  * Take and return the CPU, if migration is needed.
    574   1.1  rmind  */
    575   1.1  rmind struct cpu_info *
    576   1.1  rmind sched_takecpu(struct lwp *l)
    577   1.1  rmind {
    578   1.1  rmind 	struct cpu_info *ci, *tci = NULL;
    579   1.1  rmind 	struct schedstate_percpu *spc;
    580   1.1  rmind 	runqueue_t *ci_rq;
    581   1.1  rmind 	sched_info_lwp_t *sil;
    582   1.1  rmind 	CPU_INFO_ITERATOR cii;
    583   1.1  rmind 	pri_t eprio, lpri;
    584   1.1  rmind 
    585   1.1  rmind 	ci = l->l_cpu;
    586   1.1  rmind 	spc = &ci->ci_schedstate;
    587   1.1  rmind 	ci_rq = spc->spc_sched_info;
    588   1.1  rmind 
    589   1.1  rmind 	/* CPU of this thread is idling - run there */
    590   1.1  rmind 	if (ci_rq->r_count == 0)
    591   1.1  rmind 		return ci;
    592   1.1  rmind 
    593   1.1  rmind 	eprio = lwp_eprio(l);
    594   1.1  rmind 	sil = l->l_sched_info;
    595   1.1  rmind 
    596   1.1  rmind 	/* Stay if thread is cache-hot */
    597   1.1  rmind 	if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
    598  1.10     ad 	    CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
    599   1.1  rmind 		return ci;
    600   1.1  rmind 
    601   1.1  rmind 	/* Run on current CPU if priority of thread is higher */
    602   1.1  rmind 	ci = curcpu();
    603   1.1  rmind 	spc = &ci->ci_schedstate;
    604  1.10     ad 	if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
    605   1.1  rmind 		return ci;
    606   1.1  rmind 
    607   1.1  rmind 	/*
    608   1.1  rmind 	 * Look for the CPU with the lowest priority thread.  In case of
    609   1.1  rmind 	 * equal the priority - check the lower count of the threads.
    610   1.1  rmind 	 */
    611  1.10     ad 	lpri = PRI_COUNT;
    612   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    613   1.1  rmind 		runqueue_t *ici_rq;
    614   1.1  rmind 		pri_t pri;
    615   1.1  rmind 
    616   1.1  rmind 		spc = &ci->ci_schedstate;
    617   1.1  rmind 		ici_rq = spc->spc_sched_info;
    618  1.10     ad 		pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
    619  1.10     ad 		if (pri > lpri)
    620   1.1  rmind 			continue;
    621   1.1  rmind 
    622  1.10     ad 		if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
    623   1.1  rmind 			continue;
    624   1.1  rmind 
    625   1.1  rmind 		if (sched_migratable(l, ci) == false)
    626   1.1  rmind 			continue;
    627   1.1  rmind 
    628   1.1  rmind 		lpri = pri;
    629   1.1  rmind 		tci = ci;
    630   1.1  rmind 		ci_rq = ici_rq;
    631   1.1  rmind 	}
    632   1.1  rmind 
    633  1.10     ad 	KASSERT(tci != NULL);
    634   1.1  rmind 	return tci;
    635   1.1  rmind }
    636   1.1  rmind 
    637   1.1  rmind /*
    638   1.1  rmind  * Tries to catch an LWP from the runqueue of other CPU.
    639   1.1  rmind  */
    640   1.1  rmind static struct lwp *
    641   1.1  rmind sched_catchlwp(void)
    642   1.1  rmind {
    643   1.1  rmind 	struct cpu_info *curci = curcpu(), *ci = worker_ci;
    644   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    645   1.1  rmind 	runqueue_t *ci_rq;
    646   1.1  rmind 	struct lwp *l;
    647   1.1  rmind 
    648   1.1  rmind 	if (curci == ci)
    649   1.1  rmind 		return NULL;
    650   1.1  rmind 
    651   1.1  rmind 	/* Lockless check */
    652   1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    653   1.1  rmind 	if (ci_rq->r_count < min_catch)
    654   1.1  rmind 		return NULL;
    655   1.1  rmind 
    656   1.1  rmind 	/*
    657   1.1  rmind 	 * Double-lock the runqueues.
    658   1.1  rmind 	 */
    659   1.3  rmind 	if (curci < ci) {
    660   1.1  rmind 		spc_lock(ci);
    661   1.1  rmind 	} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
    662   1.1  rmind 		const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
    663   1.1  rmind 
    664   1.1  rmind 		spc_unlock(curci);
    665   1.1  rmind 		spc_lock(ci);
    666   1.1  rmind 		spc_lock(curci);
    667   1.1  rmind 
    668   1.1  rmind 		if (cur_rq->r_count) {
    669   1.1  rmind 			spc_unlock(ci);
    670   1.1  rmind 			return NULL;
    671   1.1  rmind 		}
    672   1.1  rmind 	}
    673   1.1  rmind 
    674   1.1  rmind 	if (ci_rq->r_count < min_catch) {
    675   1.1  rmind 		spc_unlock(ci);
    676   1.1  rmind 		return NULL;
    677   1.1  rmind 	}
    678   1.1  rmind 
    679   1.1  rmind 	/* Take the highest priority thread */
    680   1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    681   1.1  rmind 	l = TAILQ_FIRST(q_head);
    682   1.1  rmind 
    683   1.1  rmind 	for (;;) {
    684   1.1  rmind 		sched_info_lwp_t *sil;
    685   1.1  rmind 
    686   1.1  rmind 		/* Check the first and next result from the queue */
    687   1.1  rmind 		if (l == NULL)
    688   1.1  rmind 			break;
    689   1.1  rmind 
    690   1.1  rmind 		/* Look for threads, whose are allowed to migrate */
    691   1.1  rmind 		sil = l->l_sched_info;
    692   1.1  rmind 		if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
    693   1.1  rmind 		    sched_migratable(l, curci) == false) {
    694   1.1  rmind 			l = TAILQ_NEXT(l, l_runq);
    695   1.1  rmind 			continue;
    696   1.1  rmind 		}
    697   1.1  rmind 		/* Recheck if chosen thread is still on the runqueue */
    698   1.1  rmind 		if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
    699   1.1  rmind 			sched_dequeue(l);
    700   1.1  rmind 			l->l_cpu = curci;
    701   1.1  rmind 			lwp_setlock(l, curci->ci_schedstate.spc_mutex);
    702   1.1  rmind 			sched_enqueue(l, false);
    703   1.1  rmind 			break;
    704   1.1  rmind 		}
    705   1.1  rmind 		l = TAILQ_NEXT(l, l_runq);
    706   1.1  rmind 	}
    707   1.1  rmind 	spc_unlock(ci);
    708   1.1  rmind 
    709   1.1  rmind 	return l;
    710   1.1  rmind }
    711   1.1  rmind 
    712   1.1  rmind /*
    713   1.1  rmind  * Periodical calculations for balancing.
    714   1.1  rmind  */
    715   1.1  rmind static void
    716   1.1  rmind sched_balance(void *nocallout)
    717   1.1  rmind {
    718   1.1  rmind 	struct cpu_info *ci, *hci;
    719   1.1  rmind 	runqueue_t *ci_rq;
    720   1.1  rmind 	CPU_INFO_ITERATOR cii;
    721   1.1  rmind 	u_int highest;
    722   1.1  rmind 
    723   1.1  rmind 	hci = curcpu();
    724   1.1  rmind 	highest = 0;
    725   1.1  rmind 
    726   1.1  rmind 	/* Make lockless countings */
    727   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    728   1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
    729   1.1  rmind 
    730   1.1  rmind 		/* Average count of the threads */
    731   1.1  rmind 		ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
    732   1.1  rmind 
    733   1.1  rmind 		/* Look for CPU with the highest average */
    734   1.1  rmind 		if (ci_rq->r_avgcount > highest) {
    735   1.1  rmind 			hci = ci;
    736   1.1  rmind 			highest = ci_rq->r_avgcount;
    737   1.1  rmind 		}
    738   1.1  rmind 	}
    739   1.1  rmind 
    740   1.1  rmind 	/* Update the worker */
    741   1.1  rmind 	worker_ci = hci;
    742   1.1  rmind 
    743   1.1  rmind 	if (nocallout == NULL)
    744   1.1  rmind 		callout_schedule(&balance_ch, balance_period);
    745   1.1  rmind }
    746   1.1  rmind 
    747   1.1  rmind #else
    748   1.1  rmind 
    749   1.1  rmind struct cpu_info *
    750   1.1  rmind sched_takecpu(struct lwp *l)
    751   1.1  rmind {
    752   1.1  rmind 
    753   1.1  rmind 	return l->l_cpu;
    754   1.1  rmind }
    755   1.1  rmind 
    756   1.1  rmind #endif	/* MULTIPROCESSOR */
    757   1.1  rmind 
    758   1.1  rmind /*
    759   1.1  rmind  * Scheduler mill.
    760   1.1  rmind  */
    761   1.1  rmind struct lwp *
    762   1.1  rmind sched_nextlwp(void)
    763   1.1  rmind {
    764   1.1  rmind 	struct cpu_info *ci = curcpu();
    765   1.1  rmind 	struct schedstate_percpu *spc;
    766   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    767   1.1  rmind 	sched_info_lwp_t *sil;
    768   1.1  rmind 	runqueue_t *ci_rq;
    769   1.1  rmind 	struct lwp *l;
    770   1.1  rmind 
    771   1.1  rmind 	spc = &ci->ci_schedstate;
    772   1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    773   1.1  rmind 
    774   1.1  rmind #ifdef MULTIPROCESSOR
    775   1.1  rmind 	/* If runqueue is empty, try to catch some thread from other CPU */
    776  1.11  rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
    777   1.7  rmind 		if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
    778   1.1  rmind 			return NULL;
    779   1.1  rmind 	} else if (ci_rq->r_count == 0) {
    780   1.1  rmind 		/* Reset the counter, and call the balancer */
    781   1.1  rmind 		ci_rq->r_avgcount = 0;
    782   1.1  rmind 		sched_balance(ci);
    783   1.1  rmind 
    784   1.1  rmind 		/* The re-locking will be done inside */
    785   1.1  rmind 		return sched_catchlwp();
    786   1.1  rmind 	}
    787   1.1  rmind #else
    788   1.1  rmind 	if (ci_rq->r_count == 0)
    789   1.1  rmind 		return NULL;
    790   1.1  rmind #endif
    791   1.1  rmind 
    792   1.1  rmind 	/* Take the highest priority thread */
    793   1.1  rmind 	KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
    794   1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    795   1.1  rmind 	l = TAILQ_FIRST(q_head);
    796   1.1  rmind 	KASSERT(l != NULL);
    797   1.1  rmind 
    798   1.1  rmind 	/* Update the counters */
    799   1.1  rmind 	sil = l->l_sched_info;
    800   1.1  rmind 	KASSERT(sil->sl_timeslice >= min_ts);
    801   1.1  rmind 	KASSERT(sil->sl_timeslice <= max_ts);
    802   1.1  rmind 	spc->spc_ticks = sil->sl_timeslice;
    803   1.1  rmind 	sil->sl_rtime = hardclock_ticks;
    804   1.1  rmind 
    805   1.1  rmind 	return l;
    806   1.1  rmind }
    807   1.1  rmind 
    808   1.1  rmind bool
    809   1.1  rmind sched_curcpu_runnable_p(void)
    810   1.1  rmind {
    811   1.1  rmind 	const struct cpu_info *ci = curcpu();
    812   1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    813   1.1  rmind 
    814  1.11  rmind #ifndef __HAVE_FAST_SOFTINTS
    815  1.11  rmind 	if (ci->ci_data.cpu_softints)
    816  1.11  rmind 		return true;
    817  1.11  rmind #endif
    818  1.11  rmind 
    819   1.1  rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    820   1.7  rmind 		return (ci_rq->r_count - ci_rq->r_mcount);
    821   1.1  rmind 
    822   1.1  rmind 	return ci_rq->r_count;
    823   1.1  rmind }
    824   1.1  rmind 
    825   1.1  rmind /*
    826   1.1  rmind  * Time-driven events.
    827   1.1  rmind  */
    828   1.1  rmind 
    829   1.1  rmind /*
    830   1.1  rmind  * Called once per time-quantum.  This routine is CPU-local and runs at
    831   1.1  rmind  * IPL_SCHED, thus the locking is not needed.
    832   1.1  rmind  */
    833   1.1  rmind void
    834   1.1  rmind sched_tick(struct cpu_info *ci)
    835   1.1  rmind {
    836   1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    837   1.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    838   1.1  rmind 	struct lwp *l = curlwp;
    839   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    840   1.1  rmind 
    841   1.2  rmind 	if (CURCPU_IDLE_P())
    842   1.2  rmind 		return;
    843   1.1  rmind 
    844  1.10     ad 	switch (l->l_class) {
    845   1.2  rmind 	case SCHED_FIFO:
    846   1.2  rmind 		/*
    847   1.2  rmind 		 * Update the time-quantum, and continue running,
    848   1.2  rmind 		 * if thread runs on FIFO real-time policy.
    849   1.2  rmind 		 */
    850   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    851   1.1  rmind 		return;
    852   1.2  rmind 	case SCHED_OTHER:
    853  1.10     ad 		/*
    854  1.10     ad 		 * If thread is in time-sharing queue, decrease the priority,
    855  1.10     ad 		 * and run with a higher time-quantum.
    856  1.10     ad 		 */
    857  1.10     ad 		if (l->l_priority > PRI_HIGHEST_TS)
    858   1.2  rmind 			break;
    859  1.10     ad 		if (l->l_priority != 0)
    860  1.10     ad 			l->l_priority--;
    861   1.2  rmind 		break;
    862   1.1  rmind 	}
    863   1.1  rmind 
    864   1.1  rmind 	/*
    865   1.2  rmind 	 * If there are higher priority threads or threads in the same queue,
    866   1.2  rmind 	 * mark that thread should yield, otherwise, continue running.
    867   1.1  rmind 	 */
    868  1.10     ad 	if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
    869   1.1  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    870   1.1  rmind 		cpu_need_resched(ci, 0);
    871   1.1  rmind 	} else
    872   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    873   1.1  rmind }
    874   1.1  rmind 
    875   1.1  rmind /*
    876   1.1  rmind  * Sysctl nodes and initialization.
    877   1.1  rmind  */
    878   1.1  rmind 
    879   1.1  rmind static int
    880   1.1  rmind sysctl_sched_mints(SYSCTLFN_ARGS)
    881   1.1  rmind {
    882   1.1  rmind 	struct sysctlnode node;
    883   1.1  rmind 	struct cpu_info *ci;
    884   1.1  rmind 	int error, newsize;
    885   1.1  rmind 	CPU_INFO_ITERATOR cii;
    886   1.1  rmind 
    887   1.1  rmind 	node = *rnode;
    888   1.1  rmind 	node.sysctl_data = &newsize;
    889   1.1  rmind 
    890   1.1  rmind 	newsize = hztoms(min_ts);
    891   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    892   1.1  rmind 	if (error || newp == NULL)
    893   1.1  rmind 		return error;
    894   1.1  rmind 
    895   1.8  rmind 	newsize = mstohz(newsize);
    896   1.1  rmind 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    897   1.1  rmind 		return EINVAL;
    898   1.1  rmind 
    899   1.1  rmind 	/* It is safe to do this in such order */
    900   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    901   1.1  rmind 		spc_lock(ci);
    902   1.1  rmind 
    903   1.8  rmind 	min_ts = newsize;
    904   1.1  rmind 	sched_precalcts();
    905   1.1  rmind 
    906   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    907   1.1  rmind 		spc_unlock(ci);
    908   1.1  rmind 
    909   1.1  rmind 	return 0;
    910   1.1  rmind }
    911   1.1  rmind 
    912   1.1  rmind static int
    913   1.1  rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
    914   1.1  rmind {
    915   1.1  rmind 	struct sysctlnode node;
    916   1.1  rmind 	struct cpu_info *ci;
    917   1.1  rmind 	int error, newsize;
    918   1.1  rmind 	CPU_INFO_ITERATOR cii;
    919   1.1  rmind 
    920   1.1  rmind 	node = *rnode;
    921   1.1  rmind 	node.sysctl_data = &newsize;
    922   1.1  rmind 
    923   1.1  rmind 	newsize = hztoms(max_ts);
    924   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    925   1.1  rmind 	if (error || newp == NULL)
    926   1.1  rmind 		return error;
    927   1.1  rmind 
    928   1.8  rmind 	newsize = mstohz(newsize);
    929   1.1  rmind 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    930   1.1  rmind 		return EINVAL;
    931   1.1  rmind 
    932   1.1  rmind 	/* It is safe to do this in such order */
    933   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    934   1.1  rmind 		spc_lock(ci);
    935   1.1  rmind 
    936   1.8  rmind 	max_ts = newsize;
    937   1.1  rmind 	sched_precalcts();
    938   1.1  rmind 
    939   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    940   1.1  rmind 		spc_unlock(ci);
    941   1.1  rmind 
    942   1.1  rmind 	return 0;
    943   1.1  rmind }
    944   1.1  rmind 
    945   1.1  rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    946   1.1  rmind {
    947   1.1  rmind 	const struct sysctlnode *node = NULL;
    948   1.1  rmind 
    949   1.1  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    950   1.1  rmind 		CTLFLAG_PERMANENT,
    951   1.1  rmind 		CTLTYPE_NODE, "kern", NULL,
    952   1.1  rmind 		NULL, 0, NULL, 0,
    953   1.1  rmind 		CTL_KERN, CTL_EOL);
    954   1.1  rmind 	sysctl_createv(clog, 0, NULL, &node,
    955   1.1  rmind 		CTLFLAG_PERMANENT,
    956   1.1  rmind 		CTLTYPE_NODE, "sched",
    957   1.1  rmind 		SYSCTL_DESCR("Scheduler options"),
    958   1.1  rmind 		NULL, 0, NULL, 0,
    959   1.1  rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    960   1.1  rmind 
    961   1.1  rmind 	if (node == NULL)
    962   1.1  rmind 		return;
    963   1.1  rmind 
    964   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    965   1.1  rmind 		CTLFLAG_PERMANENT,
    966   1.1  rmind 		CTLTYPE_STRING, "name", NULL,
    967   1.1  rmind 		NULL, 0, __UNCONST("M2"), 0,
    968   1.1  rmind 		CTL_CREATE, CTL_EOL);
    969   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    970   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    971   1.1  rmind 		CTLTYPE_INT, "maxts",
    972   1.8  rmind 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
    973   1.1  rmind 		sysctl_sched_maxts, 0, &max_ts, 0,
    974   1.1  rmind 		CTL_CREATE, CTL_EOL);
    975   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    976   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    977   1.1  rmind 		CTLTYPE_INT, "mints",
    978   1.8  rmind 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
    979   1.1  rmind 		sysctl_sched_mints, 0, &min_ts, 0,
    980   1.1  rmind 		CTL_CREATE, CTL_EOL);
    981   1.1  rmind 
    982   1.1  rmind #ifdef MULTIPROCESSOR
    983   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    984   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    985   1.1  rmind 		CTLTYPE_INT, "cacheht_time",
    986   1.8  rmind 		SYSCTL_DESCR("Cache hotness time (in ticks)"),
    987   1.1  rmind 		NULL, 0, &cacheht_time, 0,
    988   1.1  rmind 		CTL_CREATE, CTL_EOL);
    989   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    990   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    991   1.9  rmind 		CTLTYPE_INT, "balance_period",
    992   1.9  rmind 		SYSCTL_DESCR("Balance period (in ticks)"),
    993   1.1  rmind 		NULL, 0, &balance_period, 0,
    994   1.1  rmind 		CTL_CREATE, CTL_EOL);
    995   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    996   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    997   1.1  rmind 		CTLTYPE_INT, "min_catch",
    998   1.8  rmind 		SYSCTL_DESCR("Minimal count of the threads for catching"),
    999   1.1  rmind 		NULL, 0, &min_catch, 0,
   1000   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1001   1.1  rmind #endif
   1002   1.1  rmind }
   1003   1.1  rmind 
   1004   1.1  rmind /*
   1005   1.1  rmind  * Debugging.
   1006   1.1  rmind  */
   1007   1.1  rmind 
   1008   1.1  rmind #ifdef DDB
   1009   1.1  rmind 
   1010   1.1  rmind void
   1011   1.1  rmind sched_print_runqueue(void (*pr)(const char *, ...))
   1012   1.1  rmind {
   1013   1.1  rmind 	runqueue_t *ci_rq;
   1014   1.1  rmind 	sched_info_lwp_t *sil;
   1015   1.1  rmind 	struct lwp *l;
   1016   1.1  rmind 	struct proc *p;
   1017   1.1  rmind 	int i;
   1018   1.1  rmind 
   1019   1.1  rmind 	struct cpu_info *ci;
   1020   1.1  rmind 	CPU_INFO_ITERATOR cii;
   1021   1.1  rmind 
   1022   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
   1023   1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
   1024   1.1  rmind 
   1025   1.1  rmind 		(*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
   1026   1.1  rmind 		(*pr)(" pid.lid = %d.%d, threads count = %u, "
   1027   1.1  rmind 		    "avgcount = %u, highest pri = %d\n",
   1028   1.1  rmind 		    ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
   1029   1.1  rmind 		    ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
   1030  1.10     ad 		i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
   1031   1.1  rmind 		do {
   1032  1.10     ad 			uint32_t q;
   1033  1.10     ad 			q = ci_rq->r_bitmap[i];
   1034  1.10     ad 			(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
   1035  1.10     ad 		} while (i--);
   1036   1.1  rmind 	}
   1037   1.1  rmind 
   1038   1.1  rmind 	(*pr)("   %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
   1039  1.10     ad 	    "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
   1040   1.1  rmind 
   1041   1.1  rmind 	PROCLIST_FOREACH(p, &allproc) {
   1042   1.1  rmind 		(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
   1043   1.1  rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1044   1.1  rmind 			sil = l->l_sched_info;
   1045   1.1  rmind 			ci = l->l_cpu;
   1046   1.1  rmind 			(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
   1047   1.1  rmind 			    "%u ST=%d RT=%d %d\n",
   1048  1.10     ad 			    (int)l->l_lid, l->l_priority, lwp_eprio(l),
   1049   1.1  rmind 			    l->l_flag, l->l_stat == LSRUN ? "RQ" :
   1050   1.1  rmind 			    (l->l_stat == LSSLEEP ? "SQ" : "-"),
   1051   1.1  rmind 			    sil->sl_timeslice, l, ci->ci_cpuid,
   1052   1.1  rmind 			    (u_int)(hardclock_ticks - sil->sl_lrtime),
   1053   1.1  rmind 			    sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
   1054   1.1  rmind 		}
   1055   1.1  rmind 	}
   1056   1.1  rmind }
   1057   1.1  rmind 
   1058   1.1  rmind #endif /* defined(DDB) */
   1059