Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.12
      1  1.12  rmind /*	$NetBSD: sched_m2.c,v 1.12 2007/11/28 19:30:56 rmind Exp $	*/
      2   1.1  rmind 
      3   1.1  rmind /*
      4  1.12  rmind  * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  1.12  rmind  * All rights reserved.
      6   1.1  rmind  *
      7   1.1  rmind  * Redistribution and use in source and binary forms, with or without
      8   1.1  rmind  * modification, are permitted provided that the following conditions
      9   1.1  rmind  * are met:
     10   1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rmind  *    documentation and/or other materials provided with the distribution.
     15   1.1  rmind  *
     16   1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17   1.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     27   1.1  rmind  */
     28   1.1  rmind 
     29   1.1  rmind /*
     30   1.1  rmind  * TODO:
     31   1.1  rmind  *  - Implementation of fair share queue;
     32   1.1  rmind  *  - Support for NUMA;
     33   1.1  rmind  */
     34   1.1  rmind 
     35   1.1  rmind #include <sys/cdefs.h>
     36  1.12  rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.12 2007/11/28 19:30:56 rmind Exp $");
     37   1.1  rmind 
     38   1.1  rmind #include <sys/param.h>
     39   1.1  rmind 
     40   1.8  rmind #include <sys/bitops.h>
     41   1.1  rmind #include <sys/cpu.h>
     42   1.1  rmind #include <sys/callout.h>
     43   1.1  rmind #include <sys/errno.h>
     44   1.1  rmind #include <sys/kernel.h>
     45   1.1  rmind #include <sys/kmem.h>
     46   1.1  rmind #include <sys/lwp.h>
     47   1.1  rmind #include <sys/mutex.h>
     48   1.1  rmind #include <sys/pool.h>
     49   1.1  rmind #include <sys/proc.h>
     50   1.1  rmind #include <sys/resource.h>
     51   1.1  rmind #include <sys/resourcevar.h>
     52   1.1  rmind #include <sys/sched.h>
     53   1.1  rmind #include <sys/syscallargs.h>
     54   1.1  rmind #include <sys/sysctl.h>
     55   1.1  rmind #include <sys/types.h>
     56   1.1  rmind 
     57   1.1  rmind /*
     58  1.10     ad  * Priority related defintions.
     59   1.1  rmind  */
     60  1.10     ad #define	PRI_TS_COUNT	(NPRI_USER)
     61  1.10     ad #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     62  1.10     ad #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     63  1.10     ad 
     64  1.11  rmind #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     65  1.10     ad #define	PRI_DEFAULT	(NPRI_USER >> 1)
     66  1.10     ad 
     67  1.10     ad const int schedppq = 1;
     68   1.1  rmind 
     69   1.1  rmind /*
     70   1.1  rmind  * Bits per map.
     71   1.1  rmind  */
     72  1.10     ad #define	BITMAP_BITS	(32)
     73  1.10     ad #define	BITMAP_SHIFT	(5)
     74  1.11  rmind #define	BITMAP_MSB	(0x80000000U)
     75  1.10     ad #define	BITMAP_MASK	(BITMAP_BITS - 1)
     76   1.1  rmind 
     77   1.1  rmind /*
     78   1.1  rmind  * Time-slices and priorities.
     79   1.1  rmind  */
     80   1.1  rmind static u_int	min_ts;			/* Minimal time-slice */
     81   1.1  rmind static u_int	max_ts;			/* Maximal time-slice */
     82   1.1  rmind static u_int	rt_ts;			/* Real-time time-slice */
     83   1.1  rmind static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     84   1.1  rmind static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     85   1.1  rmind 
     86   1.1  rmind /*
     87   1.1  rmind  * Migration and balancing.
     88   1.1  rmind  */
     89   1.1  rmind #ifdef MULTIPROCESSOR
     90   1.1  rmind static u_int	cacheht_time;		/* Cache hotness time */
     91   1.1  rmind static u_int	min_catch;		/* Minimal LWP count for catching */
     92   1.1  rmind 
     93   1.1  rmind static u_int		balance_period;	/* Balance period */
     94   1.1  rmind static struct callout	balance_ch;	/* Callout of balancer */
     95   1.1  rmind 
     96   1.1  rmind static struct cpu_info * volatile worker_ci;
     97   1.1  rmind 
     98   1.1  rmind #define CACHE_HOT(sil)		(sil->sl_lrtime && \
     99   1.1  rmind     (hardclock_ticks - sil->sl_lrtime < cacheht_time))
    100   1.1  rmind 
    101   1.1  rmind #endif
    102   1.1  rmind 
    103   1.1  rmind /*
    104   1.1  rmind  * Structures, runqueue.
    105   1.1  rmind  */
    106   1.1  rmind 
    107   1.1  rmind typedef struct {
    108   1.1  rmind 	TAILQ_HEAD(, lwp) q_head;
    109   1.1  rmind } queue_t;
    110   1.1  rmind 
    111   1.1  rmind typedef struct {
    112   1.1  rmind 	/* Lock and bitmap */
    113   1.1  rmind 	kmutex_t	r_rq_mutex;
    114  1.10     ad 	uint32_t	r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
    115   1.1  rmind 	/* Counters */
    116   1.1  rmind 	u_int		r_count;	/* Count of the threads */
    117   1.1  rmind 	pri_t		r_highest_pri;	/* Highest priority */
    118   1.1  rmind 	u_int		r_avgcount;	/* Average count of threads */
    119   1.1  rmind 	u_int		r_mcount;	/* Count of migratable threads */
    120   1.1  rmind 	/* Runqueues */
    121   1.1  rmind 	queue_t		r_rt_queue[PRI_RT_COUNT];
    122   1.1  rmind 	queue_t		r_ts_queue[PRI_TS_COUNT];
    123   1.1  rmind } runqueue_t;
    124   1.1  rmind 
    125   1.1  rmind typedef struct {
    126   1.1  rmind 	u_int		sl_flags;
    127   1.1  rmind 	u_int		sl_timeslice;	/* Time-slice of thread */
    128   1.1  rmind 	u_int		sl_slept;	/* Saved sleep time for sleep sum */
    129   1.1  rmind 	u_int		sl_slpsum;	/* Sum of sleep time */
    130   1.1  rmind 	u_int		sl_rtime;	/* Saved start time of run */
    131   1.1  rmind 	u_int		sl_rtsum;	/* Sum of the run time */
    132   1.1  rmind 	u_int		sl_lrtime;	/* Last run time */
    133   1.1  rmind } sched_info_lwp_t;
    134   1.1  rmind 
    135   1.1  rmind /* Flags */
    136   1.1  rmind #define	SL_BATCH	0x01
    137   1.1  rmind 
    138   1.1  rmind /* Pool of the scheduler-specific structures for threads */
    139   1.1  rmind static struct pool	sil_pool;
    140   1.1  rmind 
    141   1.1  rmind /*
    142   1.1  rmind  * Prototypes.
    143   1.1  rmind  */
    144   1.1  rmind 
    145   1.1  rmind static inline void *	sched_getrq(runqueue_t *, const pri_t);
    146   1.1  rmind static inline void	sched_newts(struct lwp *);
    147   1.1  rmind static void		sched_precalcts(void);
    148   1.1  rmind 
    149   1.1  rmind #ifdef MULTIPROCESSOR
    150   1.1  rmind static struct lwp *	sched_catchlwp(void);
    151   1.1  rmind static void		sched_balance(void *);
    152   1.1  rmind #endif
    153   1.1  rmind 
    154   1.1  rmind /*
    155   1.1  rmind  * Initialization and setup.
    156   1.1  rmind  */
    157   1.1  rmind 
    158   1.1  rmind void
    159   1.1  rmind sched_rqinit(void)
    160   1.1  rmind {
    161   1.1  rmind 	struct cpu_info *ci = curcpu();
    162   1.1  rmind 
    163   1.1  rmind 	if (hz < 100) {
    164   1.1  rmind 		panic("sched_rqinit: value of HZ is too low\n");
    165   1.1  rmind 	}
    166   1.1  rmind 
    167   1.1  rmind 	/* Default timing ranges */
    168   1.1  rmind 	min_ts = mstohz(50);			/* ~50ms  */
    169   1.1  rmind 	max_ts = mstohz(150);			/* ~150ms */
    170   1.1  rmind 	rt_ts = mstohz(100);			/* ~100ms */
    171   1.1  rmind 	sched_precalcts();
    172   1.1  rmind 
    173   1.1  rmind #ifdef MULTIPROCESSOR
    174   1.1  rmind 	/* Balancing */
    175   1.1  rmind 	worker_ci = ci;
    176   1.1  rmind 	cacheht_time = mstohz(5);		/* ~5 ms  */
    177   1.1  rmind 	balance_period = mstohz(300);		/* ~300ms */
    178   1.1  rmind 	min_catch = ~0;
    179   1.1  rmind #endif
    180   1.1  rmind 
    181   1.1  rmind 	/* Pool of the scheduler-specific structures */
    182   1.1  rmind 	pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
    183   1.1  rmind 	    "lwpsd", &pool_allocator_nointr, IPL_NONE);
    184   1.1  rmind 
    185   1.1  rmind 	/* Attach the primary CPU here */
    186   1.1  rmind 	sched_cpuattach(ci);
    187   1.1  rmind 
    188   1.1  rmind 	/* Initialize the scheduler structure of the primary LWP */
    189   1.1  rmind 	lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
    190  1.10     ad 	sched_lwp_fork(NULL, &lwp0);
    191   1.1  rmind 	sched_newts(&lwp0);
    192   1.1  rmind }
    193   1.1  rmind 
    194   1.1  rmind void
    195   1.1  rmind sched_setup(void)
    196   1.1  rmind {
    197   1.1  rmind 
    198   1.1  rmind #ifdef MULTIPROCESSOR
    199   1.1  rmind 	/* Minimal count of LWPs for catching: log2(count of CPUs) */
    200   1.8  rmind 	min_catch = min(ilog2(ncpu), 4);
    201   1.1  rmind 
    202   1.1  rmind 	/* Initialize balancing callout and run it */
    203   1.1  rmind 	callout_init(&balance_ch, CALLOUT_MPSAFE);
    204   1.1  rmind 	callout_setfunc(&balance_ch, sched_balance, NULL);
    205   1.1  rmind 	callout_schedule(&balance_ch, balance_period);
    206   1.1  rmind #endif
    207   1.1  rmind }
    208   1.1  rmind 
    209   1.1  rmind void
    210   1.1  rmind sched_cpuattach(struct cpu_info *ci)
    211   1.1  rmind {
    212   1.1  rmind 	runqueue_t *ci_rq;
    213   1.1  rmind 	void *rq_ptr;
    214   1.1  rmind 	u_int i, size;
    215   1.1  rmind 
    216   1.1  rmind 	/*
    217   1.1  rmind 	 * Allocate the run queue.
    218   1.1  rmind 	 * XXX: Estimate cache behaviour more..
    219   1.1  rmind 	 */
    220   1.1  rmind 	size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
    221   1.1  rmind 	rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
    222   1.1  rmind 	if (rq_ptr == NULL) {
    223   1.1  rmind 		panic("scheduler: could not allocate the runqueue");
    224   1.1  rmind 	}
    225   1.1  rmind 	/* XXX: Save the original pointer for future.. */
    226   1.1  rmind 	ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
    227   1.1  rmind 
    228   1.1  rmind 	/* Initialize run queues */
    229   1.1  rmind 	mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
    230   1.1  rmind 	for (i = 0; i < PRI_RT_COUNT; i++)
    231   1.1  rmind 		TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
    232   1.1  rmind 	for (i = 0; i < PRI_TS_COUNT; i++)
    233   1.1  rmind 		TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
    234  1.10     ad 	ci_rq->r_highest_pri = 0;
    235   1.1  rmind 
    236   1.1  rmind 	ci->ci_schedstate.spc_sched_info = ci_rq;
    237   1.1  rmind 	ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
    238   1.1  rmind }
    239   1.1  rmind 
    240   1.1  rmind /* Pre-calculate the time-slices for the priorities */
    241   1.1  rmind static void
    242   1.1  rmind sched_precalcts(void)
    243   1.1  rmind {
    244   1.1  rmind 	pri_t p;
    245   1.1  rmind 
    246  1.10     ad 	/* Time-sharing range */
    247  1.10     ad 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    248  1.10     ad 		ts_map[p] = max_ts -
    249  1.10     ad 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    250  1.10     ad 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    251  1.10     ad 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    252  1.10     ad 	}
    253  1.10     ad 
    254  1.10     ad 	/* Real-time range */
    255  1.10     ad 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    256   1.1  rmind 		ts_map[p] = rt_ts;
    257   1.1  rmind 		high_pri[p] = p;
    258   1.1  rmind 	}
    259   1.1  rmind }
    260   1.1  rmind 
    261   1.1  rmind /*
    262   1.1  rmind  * Hooks.
    263   1.1  rmind  */
    264   1.1  rmind 
    265   1.1  rmind void
    266   1.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    267   1.1  rmind {
    268   1.1  rmind 	struct lwp *l;
    269   1.1  rmind 
    270   1.1  rmind 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    271   1.1  rmind 		lwp_lock(l);
    272   1.1  rmind 		sched_newts(l);
    273   1.1  rmind 		lwp_unlock(l);
    274   1.1  rmind 	}
    275   1.1  rmind }
    276   1.1  rmind 
    277   1.1  rmind void
    278   1.1  rmind sched_proc_exit(struct proc *child, struct proc *parent)
    279   1.1  rmind {
    280   1.1  rmind 
    281   1.1  rmind 	/* Dummy */
    282   1.1  rmind }
    283   1.1  rmind 
    284   1.1  rmind void
    285  1.10     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    286   1.1  rmind {
    287   1.1  rmind 
    288  1.10     ad 	KASSERT(l2->l_sched_info == NULL);
    289  1.10     ad 	l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
    290  1.10     ad 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    291  1.10     ad 	if (l2->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
    292  1.10     ad 		l2->l_priority = PRI_DEFAULT;
    293   1.1  rmind }
    294   1.1  rmind 
    295   1.1  rmind void
    296   1.1  rmind sched_lwp_exit(struct lwp *l)
    297   1.1  rmind {
    298   1.1  rmind 
    299   1.1  rmind 	KASSERT(l->l_sched_info != NULL);
    300   1.1  rmind 	pool_put(&sil_pool, l->l_sched_info);
    301   1.1  rmind 	l->l_sched_info = NULL;
    302   1.1  rmind }
    303   1.1  rmind 
    304   1.1  rmind void
    305  1.10     ad sched_lwp_collect(struct lwp *l)
    306  1.10     ad {
    307  1.10     ad 
    308  1.10     ad }
    309  1.10     ad 
    310  1.10     ad void
    311   1.1  rmind sched_setrunnable(struct lwp *l)
    312   1.1  rmind {
    313   1.1  rmind 
    314   1.1  rmind 	/* Dummy */
    315   1.1  rmind }
    316   1.1  rmind 
    317   1.1  rmind void
    318   1.1  rmind sched_schedclock(struct lwp *l)
    319   1.1  rmind {
    320   1.1  rmind 
    321   1.1  rmind 	/* Dummy */
    322   1.1  rmind }
    323   1.1  rmind 
    324   1.1  rmind /*
    325   1.1  rmind  * Priorities and time-slice.
    326   1.1  rmind  */
    327   1.1  rmind 
    328   1.1  rmind void
    329   1.1  rmind sched_nice(struct proc *p, int prio)
    330   1.1  rmind {
    331   1.1  rmind 	int nprio;
    332   1.1  rmind 	struct lwp *l;
    333   1.1  rmind 
    334  1.10     ad 	KASSERT(mutex_owned(&p->p_smutex));
    335   1.1  rmind 
    336   1.1  rmind 	p->p_nice = prio;
    337  1.10     ad 	nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
    338   1.1  rmind 
    339   1.1  rmind 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    340   1.1  rmind 		lwp_lock(l);
    341   1.1  rmind 		lwp_changepri(l, nprio);
    342   1.1  rmind 		lwp_unlock(l);
    343   1.1  rmind 	}
    344   1.1  rmind }
    345   1.1  rmind 
    346   1.1  rmind /* Recalculate the time-slice */
    347   1.1  rmind static inline void
    348   1.1  rmind sched_newts(struct lwp *l)
    349   1.1  rmind {
    350   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    351   1.1  rmind 
    352   1.1  rmind 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    353   1.1  rmind }
    354   1.1  rmind 
    355   1.1  rmind /*
    356   1.1  rmind  * Control of the runqueue.
    357   1.1  rmind  */
    358   1.1  rmind 
    359   1.1  rmind static inline void *
    360   1.1  rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
    361   1.1  rmind {
    362   1.1  rmind 
    363   1.1  rmind 	KASSERT(prio < PRI_COUNT);
    364  1.10     ad 	return (prio <= PRI_HIGHEST_TS) ?
    365  1.10     ad 	    &ci_rq->r_ts_queue[prio].q_head :
    366  1.10     ad 	    &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
    367   1.1  rmind }
    368   1.1  rmind 
    369   1.1  rmind void
    370   1.1  rmind sched_enqueue(struct lwp *l, bool swtch)
    371   1.1  rmind {
    372   1.1  rmind 	runqueue_t *ci_rq;
    373   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    374   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    375   1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    376   1.1  rmind 
    377   1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    378   1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    379   1.1  rmind 
    380   1.1  rmind 	/* Update the last run time on switch */
    381  1.11  rmind 	if (__predict_true(swtch == true)) {
    382   1.1  rmind 		sil->sl_lrtime = hardclock_ticks;
    383   1.1  rmind 		sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
    384   1.8  rmind 	} else if (sil->sl_lrtime == 0)
    385   1.8  rmind 		sil->sl_lrtime = hardclock_ticks;
    386   1.1  rmind 
    387   1.1  rmind 	/* Enqueue the thread */
    388   1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    389   1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    390   1.1  rmind 		u_int i;
    391   1.1  rmind 		uint32_t q;
    392   1.1  rmind 
    393   1.1  rmind 		/* Mark bit */
    394   1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    395  1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    396  1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) == 0);
    397  1.10     ad 		ci_rq->r_bitmap[i] |= q;
    398   1.1  rmind 	}
    399   1.1  rmind 	TAILQ_INSERT_TAIL(q_head, l, l_runq);
    400   1.1  rmind 	ci_rq->r_count++;
    401   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    402   1.1  rmind 		ci_rq->r_mcount++;
    403   1.1  rmind 
    404   1.1  rmind 	/*
    405   1.1  rmind 	 * Update the value of highest priority in the runqueue,
    406   1.1  rmind 	 * if priority of this thread is higher.
    407   1.1  rmind 	 */
    408  1.10     ad 	if (eprio > ci_rq->r_highest_pri)
    409   1.1  rmind 		ci_rq->r_highest_pri = eprio;
    410   1.1  rmind 
    411   1.1  rmind 	sched_newts(l);
    412   1.1  rmind }
    413   1.1  rmind 
    414   1.1  rmind void
    415   1.1  rmind sched_dequeue(struct lwp *l)
    416   1.1  rmind {
    417   1.1  rmind 	runqueue_t *ci_rq;
    418   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    419   1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    420   1.1  rmind 
    421   1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    422   1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    423  1.10     ad 	KASSERT(eprio <= ci_rq->r_highest_pri);
    424   1.1  rmind 	KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
    425   1.1  rmind 	KASSERT(ci_rq->r_count > 0);
    426   1.1  rmind 
    427   1.1  rmind 	ci_rq->r_count--;
    428   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    429   1.1  rmind 		ci_rq->r_mcount--;
    430   1.1  rmind 
    431   1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    432   1.1  rmind 	TAILQ_REMOVE(q_head, l, l_runq);
    433   1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    434   1.1  rmind 		u_int i;
    435   1.1  rmind 		uint32_t q;
    436   1.1  rmind 
    437   1.1  rmind 		/* Unmark bit */
    438   1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    439  1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    440  1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) != 0);
    441  1.10     ad 		ci_rq->r_bitmap[i] &= ~q;
    442   1.1  rmind 
    443   1.1  rmind 		/*
    444   1.1  rmind 		 * Update the value of highest priority in the runqueue, in a
    445   1.1  rmind 		 * case it was a last thread in the queue of highest priority.
    446   1.1  rmind 		 */
    447   1.1  rmind 		if (eprio != ci_rq->r_highest_pri)
    448   1.1  rmind 			return;
    449   1.1  rmind 
    450   1.1  rmind 		do {
    451   1.1  rmind 			q = ffs(ci_rq->r_bitmap[i]);
    452   1.1  rmind 			if (q) {
    453   1.1  rmind 				ci_rq->r_highest_pri =
    454  1.10     ad 				    (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
    455   1.1  rmind 				return;
    456   1.1  rmind 			}
    457  1.10     ad 		} while (i--);
    458   1.1  rmind 
    459  1.10     ad 		/* If not found - set the lowest value */
    460  1.10     ad 		ci_rq->r_highest_pri = 0;
    461   1.1  rmind 	}
    462   1.1  rmind }
    463   1.1  rmind 
    464   1.1  rmind void
    465   1.1  rmind sched_slept(struct lwp *l)
    466   1.1  rmind {
    467   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    468   1.1  rmind 
    469   1.1  rmind 	/* Save the time when thread has slept */
    470   1.1  rmind 	sil->sl_slept = hardclock_ticks;
    471   1.1  rmind 
    472   1.1  rmind 	/*
    473  1.10     ad 	 * If thread is in time-sharing queue and batch flag is not marked,
    474  1.10     ad 	 * increase the the priority, and run with the lower time-quantum.
    475   1.1  rmind 	 */
    476  1.10     ad 	if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
    477  1.10     ad 		KASSERT(l->l_class == SCHED_OTHER);
    478  1.10     ad 		l->l_priority++;
    479  1.10     ad 	}
    480   1.1  rmind }
    481   1.1  rmind 
    482   1.1  rmind void
    483   1.1  rmind sched_wakeup(struct lwp *l)
    484   1.1  rmind {
    485   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    486   1.1  rmind 
    487   1.1  rmind 	/* Update sleep time delta */
    488   1.1  rmind 	sil->sl_slpsum += (l->l_slptime == 0) ?
    489   1.1  rmind 	    (hardclock_ticks - sil->sl_slept) : hz;
    490   1.1  rmind 
    491   1.1  rmind 	/* If thread was sleeping a second or more - set a high priority */
    492   1.1  rmind 	if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
    493  1.10     ad 		l->l_priority = high_pri[l->l_priority];
    494   1.1  rmind 
    495   1.1  rmind 	/* Also, consider looking for a better CPU to wake up */
    496   1.1  rmind 	if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
    497   1.1  rmind 		l->l_cpu = sched_takecpu(l);
    498   1.1  rmind }
    499   1.1  rmind 
    500   1.1  rmind void
    501   1.1  rmind sched_pstats_hook(struct lwp *l)
    502   1.1  rmind {
    503   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    504  1.11  rmind 	pri_t prio;
    505  1.10     ad 	bool batch;
    506  1.10     ad 
    507  1.10     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    508  1.10     ad 	    l->l_stat == LSSUSPENDED)
    509  1.10     ad 		l->l_slptime++;
    510   1.1  rmind 
    511   1.1  rmind 	/*
    512   1.1  rmind 	 * Set that thread is more CPU-bound, if sum of run time exceeds the
    513  1.10     ad 	 * sum of sleep time.  Check if thread is CPU-bound a first time.
    514   1.1  rmind 	 */
    515  1.10     ad 	batch = (sil->sl_rtsum > sil->sl_slpsum);
    516  1.10     ad 	if (batch) {
    517  1.10     ad 		if ((sil->sl_flags & SL_BATCH) == 0)
    518  1.10     ad 			batch = false;
    519   1.1  rmind 		sil->sl_flags |= SL_BATCH;
    520  1.10     ad 	} else
    521   1.1  rmind 		sil->sl_flags &= ~SL_BATCH;
    522  1.10     ad 
    523  1.10     ad 	/* Reset the time sums */
    524   1.1  rmind 	sil->sl_slpsum = 0;
    525   1.1  rmind 	sil->sl_rtsum = 0;
    526   1.1  rmind 
    527  1.10     ad 	/* Estimate threads on time-sharing queue only */
    528  1.10     ad 	if (l->l_priority >= PRI_HIGHEST_TS)
    529   1.1  rmind 		return;
    530   1.1  rmind 
    531  1.10     ad 	/* If it is CPU-bound not a first time - decrease the priority */
    532  1.11  rmind 	prio = l->l_priority;
    533  1.11  rmind 	if (batch && prio != 0)
    534  1.11  rmind 		prio--;
    535  1.10     ad 
    536   1.1  rmind 	/* If thread was not ran a second or more - set a high priority */
    537  1.11  rmind 	if (l->l_stat == LSRUN) {
    538  1.11  rmind 		if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
    539  1.11  rmind 			prio = high_pri[prio];
    540  1.11  rmind 		/* Re-enqueue the thread if priority has changed */
    541  1.11  rmind 		if (prio != l->l_priority)
    542  1.11  rmind 			lwp_changepri(l, prio);
    543  1.11  rmind 	} else {
    544  1.11  rmind 		/* In other states, change the priority directly */
    545  1.11  rmind 		l->l_priority = prio;
    546  1.11  rmind 	}
    547   1.1  rmind }
    548   1.1  rmind 
    549   1.1  rmind /*
    550   1.1  rmind  * Migration and balancing.
    551   1.1  rmind  */
    552   1.1  rmind 
    553   1.1  rmind #ifdef MULTIPROCESSOR
    554   1.1  rmind 
    555   1.1  rmind /* Check if LWP can migrate to the chosen CPU */
    556   1.1  rmind static inline bool
    557   1.1  rmind sched_migratable(const struct lwp *l, const struct cpu_info *ci)
    558   1.1  rmind {
    559   1.1  rmind 
    560   1.1  rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    561   1.1  rmind 		return false;
    562   1.1  rmind 
    563   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    564   1.1  rmind 		return true;
    565   1.1  rmind #if 0
    566   1.1  rmind 	return cpu_in_pset(ci, l->l_psid);
    567   1.1  rmind #else
    568   1.1  rmind 	return false;
    569   1.1  rmind #endif
    570   1.1  rmind }
    571   1.1  rmind 
    572   1.1  rmind /*
    573   1.1  rmind  * Estimate the migration of LWP to the other CPU.
    574   1.1  rmind  * Take and return the CPU, if migration is needed.
    575   1.1  rmind  */
    576   1.1  rmind struct cpu_info *
    577   1.1  rmind sched_takecpu(struct lwp *l)
    578   1.1  rmind {
    579   1.1  rmind 	struct cpu_info *ci, *tci = NULL;
    580   1.1  rmind 	struct schedstate_percpu *spc;
    581   1.1  rmind 	runqueue_t *ci_rq;
    582   1.1  rmind 	sched_info_lwp_t *sil;
    583   1.1  rmind 	CPU_INFO_ITERATOR cii;
    584   1.1  rmind 	pri_t eprio, lpri;
    585   1.1  rmind 
    586   1.1  rmind 	ci = l->l_cpu;
    587   1.1  rmind 	spc = &ci->ci_schedstate;
    588   1.1  rmind 	ci_rq = spc->spc_sched_info;
    589   1.1  rmind 
    590   1.1  rmind 	/* CPU of this thread is idling - run there */
    591   1.1  rmind 	if (ci_rq->r_count == 0)
    592   1.1  rmind 		return ci;
    593   1.1  rmind 
    594   1.1  rmind 	eprio = lwp_eprio(l);
    595   1.1  rmind 	sil = l->l_sched_info;
    596   1.1  rmind 
    597   1.1  rmind 	/* Stay if thread is cache-hot */
    598   1.1  rmind 	if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
    599  1.10     ad 	    CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
    600   1.1  rmind 		return ci;
    601   1.1  rmind 
    602   1.1  rmind 	/* Run on current CPU if priority of thread is higher */
    603   1.1  rmind 	ci = curcpu();
    604   1.1  rmind 	spc = &ci->ci_schedstate;
    605  1.10     ad 	if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
    606   1.1  rmind 		return ci;
    607   1.1  rmind 
    608   1.1  rmind 	/*
    609   1.1  rmind 	 * Look for the CPU with the lowest priority thread.  In case of
    610   1.1  rmind 	 * equal the priority - check the lower count of the threads.
    611   1.1  rmind 	 */
    612  1.10     ad 	lpri = PRI_COUNT;
    613   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    614   1.1  rmind 		runqueue_t *ici_rq;
    615   1.1  rmind 		pri_t pri;
    616   1.1  rmind 
    617   1.1  rmind 		spc = &ci->ci_schedstate;
    618   1.1  rmind 		ici_rq = spc->spc_sched_info;
    619  1.10     ad 		pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
    620  1.10     ad 		if (pri > lpri)
    621   1.1  rmind 			continue;
    622   1.1  rmind 
    623  1.10     ad 		if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
    624   1.1  rmind 			continue;
    625   1.1  rmind 
    626   1.1  rmind 		if (sched_migratable(l, ci) == false)
    627   1.1  rmind 			continue;
    628   1.1  rmind 
    629   1.1  rmind 		lpri = pri;
    630   1.1  rmind 		tci = ci;
    631   1.1  rmind 		ci_rq = ici_rq;
    632   1.1  rmind 	}
    633   1.1  rmind 
    634  1.10     ad 	KASSERT(tci != NULL);
    635   1.1  rmind 	return tci;
    636   1.1  rmind }
    637   1.1  rmind 
    638   1.1  rmind /*
    639   1.1  rmind  * Tries to catch an LWP from the runqueue of other CPU.
    640   1.1  rmind  */
    641   1.1  rmind static struct lwp *
    642   1.1  rmind sched_catchlwp(void)
    643   1.1  rmind {
    644   1.1  rmind 	struct cpu_info *curci = curcpu(), *ci = worker_ci;
    645   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    646   1.1  rmind 	runqueue_t *ci_rq;
    647   1.1  rmind 	struct lwp *l;
    648   1.1  rmind 
    649   1.1  rmind 	if (curci == ci)
    650   1.1  rmind 		return NULL;
    651   1.1  rmind 
    652   1.1  rmind 	/* Lockless check */
    653   1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    654   1.1  rmind 	if (ci_rq->r_count < min_catch)
    655   1.1  rmind 		return NULL;
    656   1.1  rmind 
    657   1.1  rmind 	/*
    658   1.1  rmind 	 * Double-lock the runqueues.
    659   1.1  rmind 	 */
    660   1.3  rmind 	if (curci < ci) {
    661   1.1  rmind 		spc_lock(ci);
    662   1.1  rmind 	} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
    663   1.1  rmind 		const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
    664   1.1  rmind 
    665   1.1  rmind 		spc_unlock(curci);
    666   1.1  rmind 		spc_lock(ci);
    667   1.1  rmind 		spc_lock(curci);
    668   1.1  rmind 
    669   1.1  rmind 		if (cur_rq->r_count) {
    670   1.1  rmind 			spc_unlock(ci);
    671   1.1  rmind 			return NULL;
    672   1.1  rmind 		}
    673   1.1  rmind 	}
    674   1.1  rmind 
    675   1.1  rmind 	if (ci_rq->r_count < min_catch) {
    676   1.1  rmind 		spc_unlock(ci);
    677   1.1  rmind 		return NULL;
    678   1.1  rmind 	}
    679   1.1  rmind 
    680   1.1  rmind 	/* Take the highest priority thread */
    681   1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    682   1.1  rmind 	l = TAILQ_FIRST(q_head);
    683   1.1  rmind 
    684   1.1  rmind 	for (;;) {
    685   1.1  rmind 		sched_info_lwp_t *sil;
    686   1.1  rmind 
    687   1.1  rmind 		/* Check the first and next result from the queue */
    688   1.1  rmind 		if (l == NULL)
    689   1.1  rmind 			break;
    690   1.1  rmind 
    691   1.1  rmind 		/* Look for threads, whose are allowed to migrate */
    692   1.1  rmind 		sil = l->l_sched_info;
    693   1.1  rmind 		if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
    694   1.1  rmind 		    sched_migratable(l, curci) == false) {
    695   1.1  rmind 			l = TAILQ_NEXT(l, l_runq);
    696   1.1  rmind 			continue;
    697   1.1  rmind 		}
    698   1.1  rmind 		/* Recheck if chosen thread is still on the runqueue */
    699   1.1  rmind 		if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
    700   1.1  rmind 			sched_dequeue(l);
    701   1.1  rmind 			l->l_cpu = curci;
    702   1.1  rmind 			lwp_setlock(l, curci->ci_schedstate.spc_mutex);
    703   1.1  rmind 			sched_enqueue(l, false);
    704   1.1  rmind 			break;
    705   1.1  rmind 		}
    706   1.1  rmind 		l = TAILQ_NEXT(l, l_runq);
    707   1.1  rmind 	}
    708   1.1  rmind 	spc_unlock(ci);
    709   1.1  rmind 
    710   1.1  rmind 	return l;
    711   1.1  rmind }
    712   1.1  rmind 
    713   1.1  rmind /*
    714   1.1  rmind  * Periodical calculations for balancing.
    715   1.1  rmind  */
    716   1.1  rmind static void
    717   1.1  rmind sched_balance(void *nocallout)
    718   1.1  rmind {
    719   1.1  rmind 	struct cpu_info *ci, *hci;
    720   1.1  rmind 	runqueue_t *ci_rq;
    721   1.1  rmind 	CPU_INFO_ITERATOR cii;
    722   1.1  rmind 	u_int highest;
    723   1.1  rmind 
    724   1.1  rmind 	hci = curcpu();
    725   1.1  rmind 	highest = 0;
    726   1.1  rmind 
    727   1.1  rmind 	/* Make lockless countings */
    728   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    729   1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
    730   1.1  rmind 
    731   1.1  rmind 		/* Average count of the threads */
    732   1.1  rmind 		ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
    733   1.1  rmind 
    734   1.1  rmind 		/* Look for CPU with the highest average */
    735   1.1  rmind 		if (ci_rq->r_avgcount > highest) {
    736   1.1  rmind 			hci = ci;
    737   1.1  rmind 			highest = ci_rq->r_avgcount;
    738   1.1  rmind 		}
    739   1.1  rmind 	}
    740   1.1  rmind 
    741   1.1  rmind 	/* Update the worker */
    742   1.1  rmind 	worker_ci = hci;
    743   1.1  rmind 
    744   1.1  rmind 	if (nocallout == NULL)
    745   1.1  rmind 		callout_schedule(&balance_ch, balance_period);
    746   1.1  rmind }
    747   1.1  rmind 
    748   1.1  rmind #else
    749   1.1  rmind 
    750   1.1  rmind struct cpu_info *
    751   1.1  rmind sched_takecpu(struct lwp *l)
    752   1.1  rmind {
    753   1.1  rmind 
    754   1.1  rmind 	return l->l_cpu;
    755   1.1  rmind }
    756   1.1  rmind 
    757   1.1  rmind #endif	/* MULTIPROCESSOR */
    758   1.1  rmind 
    759   1.1  rmind /*
    760   1.1  rmind  * Scheduler mill.
    761   1.1  rmind  */
    762   1.1  rmind struct lwp *
    763   1.1  rmind sched_nextlwp(void)
    764   1.1  rmind {
    765   1.1  rmind 	struct cpu_info *ci = curcpu();
    766   1.1  rmind 	struct schedstate_percpu *spc;
    767   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    768   1.1  rmind 	sched_info_lwp_t *sil;
    769   1.1  rmind 	runqueue_t *ci_rq;
    770   1.1  rmind 	struct lwp *l;
    771   1.1  rmind 
    772   1.1  rmind 	spc = &ci->ci_schedstate;
    773   1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    774   1.1  rmind 
    775   1.1  rmind #ifdef MULTIPROCESSOR
    776   1.1  rmind 	/* If runqueue is empty, try to catch some thread from other CPU */
    777  1.11  rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
    778   1.7  rmind 		if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
    779   1.1  rmind 			return NULL;
    780   1.1  rmind 	} else if (ci_rq->r_count == 0) {
    781   1.1  rmind 		/* Reset the counter, and call the balancer */
    782   1.1  rmind 		ci_rq->r_avgcount = 0;
    783   1.1  rmind 		sched_balance(ci);
    784   1.1  rmind 
    785   1.1  rmind 		/* The re-locking will be done inside */
    786   1.1  rmind 		return sched_catchlwp();
    787   1.1  rmind 	}
    788   1.1  rmind #else
    789   1.1  rmind 	if (ci_rq->r_count == 0)
    790   1.1  rmind 		return NULL;
    791   1.1  rmind #endif
    792   1.1  rmind 
    793   1.1  rmind 	/* Take the highest priority thread */
    794   1.1  rmind 	KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
    795   1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    796   1.1  rmind 	l = TAILQ_FIRST(q_head);
    797   1.1  rmind 	KASSERT(l != NULL);
    798   1.1  rmind 
    799   1.1  rmind 	/* Update the counters */
    800   1.1  rmind 	sil = l->l_sched_info;
    801   1.1  rmind 	KASSERT(sil->sl_timeslice >= min_ts);
    802   1.1  rmind 	KASSERT(sil->sl_timeslice <= max_ts);
    803   1.1  rmind 	spc->spc_ticks = sil->sl_timeslice;
    804   1.1  rmind 	sil->sl_rtime = hardclock_ticks;
    805   1.1  rmind 
    806   1.1  rmind 	return l;
    807   1.1  rmind }
    808   1.1  rmind 
    809   1.1  rmind bool
    810   1.1  rmind sched_curcpu_runnable_p(void)
    811   1.1  rmind {
    812   1.1  rmind 	const struct cpu_info *ci = curcpu();
    813   1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    814   1.1  rmind 
    815  1.11  rmind #ifndef __HAVE_FAST_SOFTINTS
    816  1.11  rmind 	if (ci->ci_data.cpu_softints)
    817  1.11  rmind 		return true;
    818  1.11  rmind #endif
    819  1.11  rmind 
    820   1.1  rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    821   1.7  rmind 		return (ci_rq->r_count - ci_rq->r_mcount);
    822   1.1  rmind 
    823   1.1  rmind 	return ci_rq->r_count;
    824   1.1  rmind }
    825   1.1  rmind 
    826   1.1  rmind /*
    827   1.1  rmind  * Time-driven events.
    828   1.1  rmind  */
    829   1.1  rmind 
    830   1.1  rmind /*
    831   1.1  rmind  * Called once per time-quantum.  This routine is CPU-local and runs at
    832   1.1  rmind  * IPL_SCHED, thus the locking is not needed.
    833   1.1  rmind  */
    834   1.1  rmind void
    835   1.1  rmind sched_tick(struct cpu_info *ci)
    836   1.1  rmind {
    837   1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    838   1.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    839   1.1  rmind 	struct lwp *l = curlwp;
    840   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    841   1.1  rmind 
    842   1.2  rmind 	if (CURCPU_IDLE_P())
    843   1.2  rmind 		return;
    844   1.1  rmind 
    845  1.10     ad 	switch (l->l_class) {
    846   1.2  rmind 	case SCHED_FIFO:
    847   1.2  rmind 		/*
    848   1.2  rmind 		 * Update the time-quantum, and continue running,
    849   1.2  rmind 		 * if thread runs on FIFO real-time policy.
    850   1.2  rmind 		 */
    851   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    852   1.1  rmind 		return;
    853   1.2  rmind 	case SCHED_OTHER:
    854  1.10     ad 		/*
    855  1.10     ad 		 * If thread is in time-sharing queue, decrease the priority,
    856  1.10     ad 		 * and run with a higher time-quantum.
    857  1.10     ad 		 */
    858  1.10     ad 		if (l->l_priority > PRI_HIGHEST_TS)
    859   1.2  rmind 			break;
    860  1.10     ad 		if (l->l_priority != 0)
    861  1.10     ad 			l->l_priority--;
    862   1.2  rmind 		break;
    863   1.1  rmind 	}
    864   1.1  rmind 
    865   1.1  rmind 	/*
    866   1.2  rmind 	 * If there are higher priority threads or threads in the same queue,
    867   1.2  rmind 	 * mark that thread should yield, otherwise, continue running.
    868   1.1  rmind 	 */
    869  1.10     ad 	if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
    870   1.1  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    871   1.1  rmind 		cpu_need_resched(ci, 0);
    872   1.1  rmind 	} else
    873   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    874   1.1  rmind }
    875   1.1  rmind 
    876   1.1  rmind /*
    877   1.1  rmind  * Sysctl nodes and initialization.
    878   1.1  rmind  */
    879   1.1  rmind 
    880   1.1  rmind static int
    881   1.1  rmind sysctl_sched_mints(SYSCTLFN_ARGS)
    882   1.1  rmind {
    883   1.1  rmind 	struct sysctlnode node;
    884   1.1  rmind 	struct cpu_info *ci;
    885   1.1  rmind 	int error, newsize;
    886   1.1  rmind 	CPU_INFO_ITERATOR cii;
    887   1.1  rmind 
    888   1.1  rmind 	node = *rnode;
    889   1.1  rmind 	node.sysctl_data = &newsize;
    890   1.1  rmind 
    891   1.1  rmind 	newsize = hztoms(min_ts);
    892   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    893   1.1  rmind 	if (error || newp == NULL)
    894   1.1  rmind 		return error;
    895   1.1  rmind 
    896   1.8  rmind 	newsize = mstohz(newsize);
    897   1.1  rmind 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    898   1.1  rmind 		return EINVAL;
    899   1.1  rmind 
    900   1.1  rmind 	/* It is safe to do this in such order */
    901   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    902   1.1  rmind 		spc_lock(ci);
    903   1.1  rmind 
    904   1.8  rmind 	min_ts = newsize;
    905   1.1  rmind 	sched_precalcts();
    906   1.1  rmind 
    907   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    908   1.1  rmind 		spc_unlock(ci);
    909   1.1  rmind 
    910   1.1  rmind 	return 0;
    911   1.1  rmind }
    912   1.1  rmind 
    913   1.1  rmind static int
    914   1.1  rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
    915   1.1  rmind {
    916   1.1  rmind 	struct sysctlnode node;
    917   1.1  rmind 	struct cpu_info *ci;
    918   1.1  rmind 	int error, newsize;
    919   1.1  rmind 	CPU_INFO_ITERATOR cii;
    920   1.1  rmind 
    921   1.1  rmind 	node = *rnode;
    922   1.1  rmind 	node.sysctl_data = &newsize;
    923   1.1  rmind 
    924   1.1  rmind 	newsize = hztoms(max_ts);
    925   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    926   1.1  rmind 	if (error || newp == NULL)
    927   1.1  rmind 		return error;
    928   1.1  rmind 
    929   1.8  rmind 	newsize = mstohz(newsize);
    930   1.1  rmind 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    931   1.1  rmind 		return EINVAL;
    932   1.1  rmind 
    933   1.1  rmind 	/* It is safe to do this in such order */
    934   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    935   1.1  rmind 		spc_lock(ci);
    936   1.1  rmind 
    937   1.8  rmind 	max_ts = newsize;
    938   1.1  rmind 	sched_precalcts();
    939   1.1  rmind 
    940   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    941   1.1  rmind 		spc_unlock(ci);
    942   1.1  rmind 
    943   1.1  rmind 	return 0;
    944   1.1  rmind }
    945   1.1  rmind 
    946   1.1  rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    947   1.1  rmind {
    948   1.1  rmind 	const struct sysctlnode *node = NULL;
    949   1.1  rmind 
    950   1.1  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    951   1.1  rmind 		CTLFLAG_PERMANENT,
    952   1.1  rmind 		CTLTYPE_NODE, "kern", NULL,
    953   1.1  rmind 		NULL, 0, NULL, 0,
    954   1.1  rmind 		CTL_KERN, CTL_EOL);
    955   1.1  rmind 	sysctl_createv(clog, 0, NULL, &node,
    956   1.1  rmind 		CTLFLAG_PERMANENT,
    957   1.1  rmind 		CTLTYPE_NODE, "sched",
    958   1.1  rmind 		SYSCTL_DESCR("Scheduler options"),
    959   1.1  rmind 		NULL, 0, NULL, 0,
    960   1.1  rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    961   1.1  rmind 
    962   1.1  rmind 	if (node == NULL)
    963   1.1  rmind 		return;
    964   1.1  rmind 
    965   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    966   1.1  rmind 		CTLFLAG_PERMANENT,
    967   1.1  rmind 		CTLTYPE_STRING, "name", NULL,
    968   1.1  rmind 		NULL, 0, __UNCONST("M2"), 0,
    969   1.1  rmind 		CTL_CREATE, CTL_EOL);
    970   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    971   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    972   1.1  rmind 		CTLTYPE_INT, "maxts",
    973   1.8  rmind 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
    974   1.1  rmind 		sysctl_sched_maxts, 0, &max_ts, 0,
    975   1.1  rmind 		CTL_CREATE, CTL_EOL);
    976   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    977   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    978   1.1  rmind 		CTLTYPE_INT, "mints",
    979   1.8  rmind 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
    980   1.1  rmind 		sysctl_sched_mints, 0, &min_ts, 0,
    981   1.1  rmind 		CTL_CREATE, CTL_EOL);
    982   1.1  rmind 
    983   1.1  rmind #ifdef MULTIPROCESSOR
    984   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    985   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    986   1.1  rmind 		CTLTYPE_INT, "cacheht_time",
    987   1.8  rmind 		SYSCTL_DESCR("Cache hotness time (in ticks)"),
    988   1.1  rmind 		NULL, 0, &cacheht_time, 0,
    989   1.1  rmind 		CTL_CREATE, CTL_EOL);
    990   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    991   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    992   1.9  rmind 		CTLTYPE_INT, "balance_period",
    993   1.9  rmind 		SYSCTL_DESCR("Balance period (in ticks)"),
    994   1.1  rmind 		NULL, 0, &balance_period, 0,
    995   1.1  rmind 		CTL_CREATE, CTL_EOL);
    996   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    997   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    998   1.1  rmind 		CTLTYPE_INT, "min_catch",
    999   1.8  rmind 		SYSCTL_DESCR("Minimal count of the threads for catching"),
   1000   1.1  rmind 		NULL, 0, &min_catch, 0,
   1001   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1002   1.1  rmind #endif
   1003   1.1  rmind }
   1004   1.1  rmind 
   1005   1.1  rmind /*
   1006   1.1  rmind  * Debugging.
   1007   1.1  rmind  */
   1008   1.1  rmind 
   1009   1.1  rmind #ifdef DDB
   1010   1.1  rmind 
   1011   1.1  rmind void
   1012   1.1  rmind sched_print_runqueue(void (*pr)(const char *, ...))
   1013   1.1  rmind {
   1014   1.1  rmind 	runqueue_t *ci_rq;
   1015   1.1  rmind 	sched_info_lwp_t *sil;
   1016   1.1  rmind 	struct lwp *l;
   1017   1.1  rmind 	struct proc *p;
   1018   1.1  rmind 	int i;
   1019   1.1  rmind 
   1020   1.1  rmind 	struct cpu_info *ci;
   1021   1.1  rmind 	CPU_INFO_ITERATOR cii;
   1022   1.1  rmind 
   1023   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
   1024   1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
   1025   1.1  rmind 
   1026   1.1  rmind 		(*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
   1027   1.1  rmind 		(*pr)(" pid.lid = %d.%d, threads count = %u, "
   1028   1.1  rmind 		    "avgcount = %u, highest pri = %d\n",
   1029   1.1  rmind 		    ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
   1030   1.1  rmind 		    ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
   1031  1.10     ad 		i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
   1032   1.1  rmind 		do {
   1033  1.10     ad 			uint32_t q;
   1034  1.10     ad 			q = ci_rq->r_bitmap[i];
   1035  1.10     ad 			(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
   1036  1.10     ad 		} while (i--);
   1037   1.1  rmind 	}
   1038   1.1  rmind 
   1039   1.1  rmind 	(*pr)("   %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
   1040  1.10     ad 	    "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
   1041   1.1  rmind 
   1042   1.1  rmind 	PROCLIST_FOREACH(p, &allproc) {
   1043   1.1  rmind 		(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
   1044   1.1  rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1045   1.1  rmind 			sil = l->l_sched_info;
   1046   1.1  rmind 			ci = l->l_cpu;
   1047   1.1  rmind 			(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
   1048   1.1  rmind 			    "%u ST=%d RT=%d %d\n",
   1049  1.10     ad 			    (int)l->l_lid, l->l_priority, lwp_eprio(l),
   1050   1.1  rmind 			    l->l_flag, l->l_stat == LSRUN ? "RQ" :
   1051   1.1  rmind 			    (l->l_stat == LSSLEEP ? "SQ" : "-"),
   1052   1.1  rmind 			    sil->sl_timeslice, l, ci->ci_cpuid,
   1053   1.1  rmind 			    (u_int)(hardclock_ticks - sil->sl_lrtime),
   1054   1.1  rmind 			    sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
   1055   1.1  rmind 		}
   1056   1.1  rmind 	}
   1057   1.1  rmind }
   1058   1.1  rmind 
   1059   1.1  rmind #endif /* defined(DDB) */
   1060