Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.12.2.1
      1  1.12.2.1     ad /*	$NetBSD: sched_m2.c,v 1.12.2.1 2007/12/08 17:57:45 ad Exp $	*/
      2       1.1  rmind 
      3       1.1  rmind /*
      4      1.12  rmind  * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
      5      1.12  rmind  * All rights reserved.
      6       1.1  rmind  *
      7       1.1  rmind  * Redistribution and use in source and binary forms, with or without
      8       1.1  rmind  * modification, are permitted provided that the following conditions
      9       1.1  rmind  * are met:
     10       1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     11       1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     12       1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     14       1.1  rmind  *    documentation and/or other materials provided with the distribution.
     15       1.1  rmind  *
     16       1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17       1.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     27       1.1  rmind  */
     28       1.1  rmind 
     29       1.1  rmind /*
     30       1.1  rmind  * TODO:
     31       1.1  rmind  *  - Implementation of fair share queue;
     32       1.1  rmind  *  - Support for NUMA;
     33       1.1  rmind  */
     34       1.1  rmind 
     35       1.1  rmind #include <sys/cdefs.h>
     36  1.12.2.1     ad __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.12.2.1 2007/12/08 17:57:45 ad Exp $");
     37       1.1  rmind 
     38       1.1  rmind #include <sys/param.h>
     39       1.1  rmind 
     40       1.8  rmind #include <sys/bitops.h>
     41       1.1  rmind #include <sys/cpu.h>
     42       1.1  rmind #include <sys/callout.h>
     43       1.1  rmind #include <sys/errno.h>
     44       1.1  rmind #include <sys/kernel.h>
     45       1.1  rmind #include <sys/kmem.h>
     46       1.1  rmind #include <sys/lwp.h>
     47       1.1  rmind #include <sys/mutex.h>
     48       1.1  rmind #include <sys/pool.h>
     49       1.1  rmind #include <sys/proc.h>
     50       1.1  rmind #include <sys/resource.h>
     51       1.1  rmind #include <sys/resourcevar.h>
     52       1.1  rmind #include <sys/sched.h>
     53       1.1  rmind #include <sys/syscallargs.h>
     54       1.1  rmind #include <sys/sysctl.h>
     55       1.1  rmind #include <sys/types.h>
     56       1.1  rmind 
     57       1.1  rmind /*
     58      1.10     ad  * Priority related defintions.
     59       1.1  rmind  */
     60      1.10     ad #define	PRI_TS_COUNT	(NPRI_USER)
     61      1.10     ad #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     62      1.10     ad #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     63      1.10     ad 
     64      1.11  rmind #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     65      1.10     ad #define	PRI_DEFAULT	(NPRI_USER >> 1)
     66      1.10     ad 
     67      1.10     ad const int schedppq = 1;
     68       1.1  rmind 
     69       1.1  rmind /*
     70       1.1  rmind  * Bits per map.
     71       1.1  rmind  */
     72      1.10     ad #define	BITMAP_BITS	(32)
     73      1.10     ad #define	BITMAP_SHIFT	(5)
     74      1.11  rmind #define	BITMAP_MSB	(0x80000000U)
     75      1.10     ad #define	BITMAP_MASK	(BITMAP_BITS - 1)
     76       1.1  rmind 
     77       1.1  rmind /*
     78       1.1  rmind  * Time-slices and priorities.
     79       1.1  rmind  */
     80       1.1  rmind static u_int	min_ts;			/* Minimal time-slice */
     81       1.1  rmind static u_int	max_ts;			/* Maximal time-slice */
     82       1.1  rmind static u_int	rt_ts;			/* Real-time time-slice */
     83       1.1  rmind static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     84       1.1  rmind static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     85       1.1  rmind 
     86       1.1  rmind /*
     87       1.1  rmind  * Migration and balancing.
     88       1.1  rmind  */
     89       1.1  rmind #ifdef MULTIPROCESSOR
     90       1.1  rmind static u_int	cacheht_time;		/* Cache hotness time */
     91       1.1  rmind static u_int	min_catch;		/* Minimal LWP count for catching */
     92       1.1  rmind 
     93       1.1  rmind static u_int		balance_period;	/* Balance period */
     94       1.1  rmind static struct callout	balance_ch;	/* Callout of balancer */
     95       1.1  rmind 
     96       1.1  rmind static struct cpu_info * volatile worker_ci;
     97       1.1  rmind 
     98       1.1  rmind #define CACHE_HOT(sil)		(sil->sl_lrtime && \
     99       1.1  rmind     (hardclock_ticks - sil->sl_lrtime < cacheht_time))
    100       1.1  rmind 
    101       1.1  rmind #endif
    102       1.1  rmind 
    103       1.1  rmind /*
    104       1.1  rmind  * Structures, runqueue.
    105       1.1  rmind  */
    106       1.1  rmind 
    107       1.1  rmind typedef struct {
    108       1.1  rmind 	TAILQ_HEAD(, lwp) q_head;
    109       1.1  rmind } queue_t;
    110       1.1  rmind 
    111       1.1  rmind typedef struct {
    112       1.1  rmind 	/* Lock and bitmap */
    113       1.1  rmind 	kmutex_t	r_rq_mutex;
    114      1.10     ad 	uint32_t	r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
    115       1.1  rmind 	/* Counters */
    116       1.1  rmind 	u_int		r_count;	/* Count of the threads */
    117       1.1  rmind 	pri_t		r_highest_pri;	/* Highest priority */
    118       1.1  rmind 	u_int		r_avgcount;	/* Average count of threads */
    119       1.1  rmind 	u_int		r_mcount;	/* Count of migratable threads */
    120       1.1  rmind 	/* Runqueues */
    121       1.1  rmind 	queue_t		r_rt_queue[PRI_RT_COUNT];
    122       1.1  rmind 	queue_t		r_ts_queue[PRI_TS_COUNT];
    123       1.1  rmind } runqueue_t;
    124       1.1  rmind 
    125       1.1  rmind typedef struct {
    126       1.1  rmind 	u_int		sl_flags;
    127       1.1  rmind 	u_int		sl_timeslice;	/* Time-slice of thread */
    128       1.1  rmind 	u_int		sl_slept;	/* Saved sleep time for sleep sum */
    129       1.1  rmind 	u_int		sl_slpsum;	/* Sum of sleep time */
    130       1.1  rmind 	u_int		sl_rtime;	/* Saved start time of run */
    131       1.1  rmind 	u_int		sl_rtsum;	/* Sum of the run time */
    132       1.1  rmind 	u_int		sl_lrtime;	/* Last run time */
    133       1.1  rmind } sched_info_lwp_t;
    134       1.1  rmind 
    135       1.1  rmind /* Flags */
    136       1.1  rmind #define	SL_BATCH	0x01
    137       1.1  rmind 
    138       1.1  rmind /* Pool of the scheduler-specific structures for threads */
    139       1.1  rmind static struct pool	sil_pool;
    140       1.1  rmind 
    141       1.1  rmind /*
    142       1.1  rmind  * Prototypes.
    143       1.1  rmind  */
    144       1.1  rmind 
    145       1.1  rmind static inline void *	sched_getrq(runqueue_t *, const pri_t);
    146       1.1  rmind static inline void	sched_newts(struct lwp *);
    147       1.1  rmind static void		sched_precalcts(void);
    148       1.1  rmind 
    149       1.1  rmind #ifdef MULTIPROCESSOR
    150       1.1  rmind static struct lwp *	sched_catchlwp(void);
    151       1.1  rmind static void		sched_balance(void *);
    152       1.1  rmind #endif
    153       1.1  rmind 
    154       1.1  rmind /*
    155       1.1  rmind  * Initialization and setup.
    156       1.1  rmind  */
    157       1.1  rmind 
    158       1.1  rmind void
    159       1.1  rmind sched_rqinit(void)
    160       1.1  rmind {
    161       1.1  rmind 	struct cpu_info *ci = curcpu();
    162       1.1  rmind 
    163       1.1  rmind 	if (hz < 100) {
    164       1.1  rmind 		panic("sched_rqinit: value of HZ is too low\n");
    165       1.1  rmind 	}
    166       1.1  rmind 
    167       1.1  rmind 	/* Default timing ranges */
    168       1.1  rmind 	min_ts = mstohz(50);			/* ~50ms  */
    169       1.1  rmind 	max_ts = mstohz(150);			/* ~150ms */
    170       1.1  rmind 	rt_ts = mstohz(100);			/* ~100ms */
    171       1.1  rmind 	sched_precalcts();
    172       1.1  rmind 
    173       1.1  rmind #ifdef MULTIPROCESSOR
    174       1.1  rmind 	/* Balancing */
    175       1.1  rmind 	worker_ci = ci;
    176       1.1  rmind 	cacheht_time = mstohz(5);		/* ~5 ms  */
    177       1.1  rmind 	balance_period = mstohz(300);		/* ~300ms */
    178       1.1  rmind 	min_catch = ~0;
    179       1.1  rmind #endif
    180       1.1  rmind 
    181       1.1  rmind 	/* Pool of the scheduler-specific structures */
    182       1.1  rmind 	pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
    183       1.1  rmind 	    "lwpsd", &pool_allocator_nointr, IPL_NONE);
    184       1.1  rmind 
    185       1.1  rmind 	/* Attach the primary CPU here */
    186       1.1  rmind 	sched_cpuattach(ci);
    187       1.1  rmind 
    188       1.1  rmind 	/* Initialize the scheduler structure of the primary LWP */
    189       1.1  rmind 	lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
    190      1.10     ad 	sched_lwp_fork(NULL, &lwp0);
    191       1.1  rmind 	sched_newts(&lwp0);
    192       1.1  rmind }
    193       1.1  rmind 
    194       1.1  rmind void
    195       1.1  rmind sched_setup(void)
    196       1.1  rmind {
    197       1.1  rmind 
    198       1.1  rmind #ifdef MULTIPROCESSOR
    199       1.1  rmind 	/* Minimal count of LWPs for catching: log2(count of CPUs) */
    200       1.8  rmind 	min_catch = min(ilog2(ncpu), 4);
    201       1.1  rmind 
    202       1.1  rmind 	/* Initialize balancing callout and run it */
    203       1.1  rmind 	callout_init(&balance_ch, CALLOUT_MPSAFE);
    204       1.1  rmind 	callout_setfunc(&balance_ch, sched_balance, NULL);
    205       1.1  rmind 	callout_schedule(&balance_ch, balance_period);
    206       1.1  rmind #endif
    207       1.1  rmind }
    208       1.1  rmind 
    209       1.1  rmind void
    210       1.1  rmind sched_cpuattach(struct cpu_info *ci)
    211       1.1  rmind {
    212       1.1  rmind 	runqueue_t *ci_rq;
    213       1.1  rmind 	void *rq_ptr;
    214       1.1  rmind 	u_int i, size;
    215       1.1  rmind 
    216       1.1  rmind 	/*
    217       1.1  rmind 	 * Allocate the run queue.
    218       1.1  rmind 	 * XXX: Estimate cache behaviour more..
    219       1.1  rmind 	 */
    220       1.1  rmind 	size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
    221       1.1  rmind 	rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
    222       1.1  rmind 	if (rq_ptr == NULL) {
    223       1.1  rmind 		panic("scheduler: could not allocate the runqueue");
    224       1.1  rmind 	}
    225       1.1  rmind 	/* XXX: Save the original pointer for future.. */
    226       1.1  rmind 	ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
    227       1.1  rmind 
    228       1.1  rmind 	/* Initialize run queues */
    229  1.12.2.1     ad 	mutex_init(&ci_rq->r_rq_mutex, MUTEX_DEFAULT, IPL_SCHED);
    230       1.1  rmind 	for (i = 0; i < PRI_RT_COUNT; i++)
    231       1.1  rmind 		TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
    232       1.1  rmind 	for (i = 0; i < PRI_TS_COUNT; i++)
    233       1.1  rmind 		TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
    234      1.10     ad 	ci_rq->r_highest_pri = 0;
    235       1.1  rmind 
    236       1.1  rmind 	ci->ci_schedstate.spc_sched_info = ci_rq;
    237       1.1  rmind 	ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
    238       1.1  rmind }
    239       1.1  rmind 
    240       1.1  rmind /* Pre-calculate the time-slices for the priorities */
    241       1.1  rmind static void
    242       1.1  rmind sched_precalcts(void)
    243       1.1  rmind {
    244       1.1  rmind 	pri_t p;
    245       1.1  rmind 
    246      1.10     ad 	/* Time-sharing range */
    247      1.10     ad 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    248      1.10     ad 		ts_map[p] = max_ts -
    249      1.10     ad 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    250      1.10     ad 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    251      1.10     ad 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    252      1.10     ad 	}
    253      1.10     ad 
    254      1.10     ad 	/* Real-time range */
    255      1.10     ad 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    256       1.1  rmind 		ts_map[p] = rt_ts;
    257       1.1  rmind 		high_pri[p] = p;
    258       1.1  rmind 	}
    259       1.1  rmind }
    260       1.1  rmind 
    261       1.1  rmind /*
    262       1.1  rmind  * Hooks.
    263       1.1  rmind  */
    264       1.1  rmind 
    265       1.1  rmind void
    266       1.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    267       1.1  rmind {
    268       1.1  rmind 	struct lwp *l;
    269       1.1  rmind 
    270       1.1  rmind 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    271       1.1  rmind 		lwp_lock(l);
    272       1.1  rmind 		sched_newts(l);
    273       1.1  rmind 		lwp_unlock(l);
    274       1.1  rmind 	}
    275       1.1  rmind }
    276       1.1  rmind 
    277       1.1  rmind void
    278       1.1  rmind sched_proc_exit(struct proc *child, struct proc *parent)
    279       1.1  rmind {
    280       1.1  rmind 
    281       1.1  rmind 	/* Dummy */
    282       1.1  rmind }
    283       1.1  rmind 
    284       1.1  rmind void
    285      1.10     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    286       1.1  rmind {
    287       1.1  rmind 
    288      1.10     ad 	KASSERT(l2->l_sched_info == NULL);
    289      1.10     ad 	l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
    290      1.10     ad 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    291      1.10     ad 	if (l2->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
    292      1.10     ad 		l2->l_priority = PRI_DEFAULT;
    293       1.1  rmind }
    294       1.1  rmind 
    295       1.1  rmind void
    296       1.1  rmind sched_lwp_exit(struct lwp *l)
    297       1.1  rmind {
    298       1.1  rmind 
    299       1.1  rmind 	KASSERT(l->l_sched_info != NULL);
    300       1.1  rmind 	pool_put(&sil_pool, l->l_sched_info);
    301       1.1  rmind 	l->l_sched_info = NULL;
    302       1.1  rmind }
    303       1.1  rmind 
    304       1.1  rmind void
    305      1.10     ad sched_lwp_collect(struct lwp *l)
    306      1.10     ad {
    307      1.10     ad 
    308      1.10     ad }
    309      1.10     ad 
    310      1.10     ad void
    311       1.1  rmind sched_setrunnable(struct lwp *l)
    312       1.1  rmind {
    313       1.1  rmind 
    314       1.1  rmind 	/* Dummy */
    315       1.1  rmind }
    316       1.1  rmind 
    317       1.1  rmind void
    318       1.1  rmind sched_schedclock(struct lwp *l)
    319       1.1  rmind {
    320       1.1  rmind 
    321       1.1  rmind 	/* Dummy */
    322       1.1  rmind }
    323       1.1  rmind 
    324       1.1  rmind /*
    325       1.1  rmind  * Priorities and time-slice.
    326       1.1  rmind  */
    327       1.1  rmind 
    328       1.1  rmind void
    329       1.1  rmind sched_nice(struct proc *p, int prio)
    330       1.1  rmind {
    331       1.1  rmind 	int nprio;
    332       1.1  rmind 	struct lwp *l;
    333       1.1  rmind 
    334      1.10     ad 	KASSERT(mutex_owned(&p->p_smutex));
    335       1.1  rmind 
    336       1.1  rmind 	p->p_nice = prio;
    337      1.10     ad 	nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
    338       1.1  rmind 
    339       1.1  rmind 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    340       1.1  rmind 		lwp_lock(l);
    341       1.1  rmind 		lwp_changepri(l, nprio);
    342       1.1  rmind 		lwp_unlock(l);
    343       1.1  rmind 	}
    344       1.1  rmind }
    345       1.1  rmind 
    346       1.1  rmind /* Recalculate the time-slice */
    347       1.1  rmind static inline void
    348       1.1  rmind sched_newts(struct lwp *l)
    349       1.1  rmind {
    350       1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    351       1.1  rmind 
    352       1.1  rmind 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    353       1.1  rmind }
    354       1.1  rmind 
    355       1.1  rmind /*
    356       1.1  rmind  * Control of the runqueue.
    357       1.1  rmind  */
    358       1.1  rmind 
    359       1.1  rmind static inline void *
    360       1.1  rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
    361       1.1  rmind {
    362       1.1  rmind 
    363       1.1  rmind 	KASSERT(prio < PRI_COUNT);
    364      1.10     ad 	return (prio <= PRI_HIGHEST_TS) ?
    365      1.10     ad 	    &ci_rq->r_ts_queue[prio].q_head :
    366      1.10     ad 	    &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
    367       1.1  rmind }
    368       1.1  rmind 
    369       1.1  rmind void
    370       1.1  rmind sched_enqueue(struct lwp *l, bool swtch)
    371       1.1  rmind {
    372       1.1  rmind 	runqueue_t *ci_rq;
    373       1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    374       1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    375       1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    376       1.1  rmind 
    377       1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    378       1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    379       1.1  rmind 
    380       1.1  rmind 	/* Update the last run time on switch */
    381      1.11  rmind 	if (__predict_true(swtch == true)) {
    382       1.1  rmind 		sil->sl_lrtime = hardclock_ticks;
    383       1.1  rmind 		sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
    384       1.8  rmind 	} else if (sil->sl_lrtime == 0)
    385       1.8  rmind 		sil->sl_lrtime = hardclock_ticks;
    386       1.1  rmind 
    387       1.1  rmind 	/* Enqueue the thread */
    388       1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    389       1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    390       1.1  rmind 		u_int i;
    391       1.1  rmind 		uint32_t q;
    392       1.1  rmind 
    393       1.1  rmind 		/* Mark bit */
    394       1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    395      1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    396      1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) == 0);
    397      1.10     ad 		ci_rq->r_bitmap[i] |= q;
    398       1.1  rmind 	}
    399       1.1  rmind 	TAILQ_INSERT_TAIL(q_head, l, l_runq);
    400       1.1  rmind 	ci_rq->r_count++;
    401       1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    402       1.1  rmind 		ci_rq->r_mcount++;
    403       1.1  rmind 
    404       1.1  rmind 	/*
    405       1.1  rmind 	 * Update the value of highest priority in the runqueue,
    406       1.1  rmind 	 * if priority of this thread is higher.
    407       1.1  rmind 	 */
    408      1.10     ad 	if (eprio > ci_rq->r_highest_pri)
    409       1.1  rmind 		ci_rq->r_highest_pri = eprio;
    410       1.1  rmind 
    411       1.1  rmind 	sched_newts(l);
    412       1.1  rmind }
    413       1.1  rmind 
    414       1.1  rmind void
    415       1.1  rmind sched_dequeue(struct lwp *l)
    416       1.1  rmind {
    417       1.1  rmind 	runqueue_t *ci_rq;
    418       1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    419       1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    420       1.1  rmind 
    421       1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    422       1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    423      1.10     ad 	KASSERT(eprio <= ci_rq->r_highest_pri);
    424       1.1  rmind 	KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
    425       1.1  rmind 	KASSERT(ci_rq->r_count > 0);
    426       1.1  rmind 
    427       1.1  rmind 	ci_rq->r_count--;
    428       1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    429       1.1  rmind 		ci_rq->r_mcount--;
    430       1.1  rmind 
    431       1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    432       1.1  rmind 	TAILQ_REMOVE(q_head, l, l_runq);
    433       1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    434       1.1  rmind 		u_int i;
    435       1.1  rmind 		uint32_t q;
    436       1.1  rmind 
    437       1.1  rmind 		/* Unmark bit */
    438       1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    439      1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    440      1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) != 0);
    441      1.10     ad 		ci_rq->r_bitmap[i] &= ~q;
    442       1.1  rmind 
    443       1.1  rmind 		/*
    444       1.1  rmind 		 * Update the value of highest priority in the runqueue, in a
    445       1.1  rmind 		 * case it was a last thread in the queue of highest priority.
    446       1.1  rmind 		 */
    447       1.1  rmind 		if (eprio != ci_rq->r_highest_pri)
    448       1.1  rmind 			return;
    449       1.1  rmind 
    450       1.1  rmind 		do {
    451       1.1  rmind 			q = ffs(ci_rq->r_bitmap[i]);
    452       1.1  rmind 			if (q) {
    453       1.1  rmind 				ci_rq->r_highest_pri =
    454      1.10     ad 				    (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
    455       1.1  rmind 				return;
    456       1.1  rmind 			}
    457      1.10     ad 		} while (i--);
    458       1.1  rmind 
    459      1.10     ad 		/* If not found - set the lowest value */
    460      1.10     ad 		ci_rq->r_highest_pri = 0;
    461       1.1  rmind 	}
    462       1.1  rmind }
    463       1.1  rmind 
    464       1.1  rmind void
    465       1.1  rmind sched_slept(struct lwp *l)
    466       1.1  rmind {
    467       1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    468       1.1  rmind 
    469       1.1  rmind 	/* Save the time when thread has slept */
    470       1.1  rmind 	sil->sl_slept = hardclock_ticks;
    471       1.1  rmind 
    472       1.1  rmind 	/*
    473      1.10     ad 	 * If thread is in time-sharing queue and batch flag is not marked,
    474      1.10     ad 	 * increase the the priority, and run with the lower time-quantum.
    475       1.1  rmind 	 */
    476      1.10     ad 	if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
    477      1.10     ad 		KASSERT(l->l_class == SCHED_OTHER);
    478      1.10     ad 		l->l_priority++;
    479      1.10     ad 	}
    480       1.1  rmind }
    481       1.1  rmind 
    482       1.1  rmind void
    483       1.1  rmind sched_wakeup(struct lwp *l)
    484       1.1  rmind {
    485       1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    486       1.1  rmind 
    487       1.1  rmind 	/* Update sleep time delta */
    488       1.1  rmind 	sil->sl_slpsum += (l->l_slptime == 0) ?
    489       1.1  rmind 	    (hardclock_ticks - sil->sl_slept) : hz;
    490       1.1  rmind 
    491       1.1  rmind 	/* If thread was sleeping a second or more - set a high priority */
    492       1.1  rmind 	if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
    493      1.10     ad 		l->l_priority = high_pri[l->l_priority];
    494       1.1  rmind 
    495       1.1  rmind 	/* Also, consider looking for a better CPU to wake up */
    496       1.1  rmind 	if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
    497       1.1  rmind 		l->l_cpu = sched_takecpu(l);
    498       1.1  rmind }
    499       1.1  rmind 
    500       1.1  rmind void
    501       1.1  rmind sched_pstats_hook(struct lwp *l)
    502       1.1  rmind {
    503       1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    504      1.11  rmind 	pri_t prio;
    505      1.10     ad 	bool batch;
    506      1.10     ad 
    507      1.10     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    508      1.10     ad 	    l->l_stat == LSSUSPENDED)
    509      1.10     ad 		l->l_slptime++;
    510       1.1  rmind 
    511       1.1  rmind 	/*
    512       1.1  rmind 	 * Set that thread is more CPU-bound, if sum of run time exceeds the
    513      1.10     ad 	 * sum of sleep time.  Check if thread is CPU-bound a first time.
    514       1.1  rmind 	 */
    515      1.10     ad 	batch = (sil->sl_rtsum > sil->sl_slpsum);
    516      1.10     ad 	if (batch) {
    517      1.10     ad 		if ((sil->sl_flags & SL_BATCH) == 0)
    518      1.10     ad 			batch = false;
    519       1.1  rmind 		sil->sl_flags |= SL_BATCH;
    520      1.10     ad 	} else
    521       1.1  rmind 		sil->sl_flags &= ~SL_BATCH;
    522      1.10     ad 
    523      1.10     ad 	/* Reset the time sums */
    524       1.1  rmind 	sil->sl_slpsum = 0;
    525       1.1  rmind 	sil->sl_rtsum = 0;
    526       1.1  rmind 
    527      1.10     ad 	/* Estimate threads on time-sharing queue only */
    528      1.10     ad 	if (l->l_priority >= PRI_HIGHEST_TS)
    529       1.1  rmind 		return;
    530       1.1  rmind 
    531      1.10     ad 	/* If it is CPU-bound not a first time - decrease the priority */
    532      1.11  rmind 	prio = l->l_priority;
    533      1.11  rmind 	if (batch && prio != 0)
    534      1.11  rmind 		prio--;
    535      1.10     ad 
    536       1.1  rmind 	/* If thread was not ran a second or more - set a high priority */
    537      1.11  rmind 	if (l->l_stat == LSRUN) {
    538      1.11  rmind 		if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
    539      1.11  rmind 			prio = high_pri[prio];
    540      1.11  rmind 		/* Re-enqueue the thread if priority has changed */
    541      1.11  rmind 		if (prio != l->l_priority)
    542      1.11  rmind 			lwp_changepri(l, prio);
    543      1.11  rmind 	} else {
    544      1.11  rmind 		/* In other states, change the priority directly */
    545      1.11  rmind 		l->l_priority = prio;
    546      1.11  rmind 	}
    547       1.1  rmind }
    548       1.1  rmind 
    549       1.1  rmind /*
    550       1.1  rmind  * Migration and balancing.
    551       1.1  rmind  */
    552       1.1  rmind 
    553       1.1  rmind #ifdef MULTIPROCESSOR
    554       1.1  rmind 
    555       1.1  rmind /* Check if LWP can migrate to the chosen CPU */
    556       1.1  rmind static inline bool
    557       1.1  rmind sched_migratable(const struct lwp *l, const struct cpu_info *ci)
    558       1.1  rmind {
    559       1.1  rmind 
    560       1.1  rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    561       1.1  rmind 		return false;
    562       1.1  rmind 
    563       1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    564       1.1  rmind 		return true;
    565       1.1  rmind #if 0
    566       1.1  rmind 	return cpu_in_pset(ci, l->l_psid);
    567       1.1  rmind #else
    568       1.1  rmind 	return false;
    569       1.1  rmind #endif
    570       1.1  rmind }
    571       1.1  rmind 
    572       1.1  rmind /*
    573       1.1  rmind  * Estimate the migration of LWP to the other CPU.
    574       1.1  rmind  * Take and return the CPU, if migration is needed.
    575       1.1  rmind  */
    576       1.1  rmind struct cpu_info *
    577       1.1  rmind sched_takecpu(struct lwp *l)
    578       1.1  rmind {
    579       1.1  rmind 	struct cpu_info *ci, *tci = NULL;
    580       1.1  rmind 	struct schedstate_percpu *spc;
    581       1.1  rmind 	runqueue_t *ci_rq;
    582       1.1  rmind 	sched_info_lwp_t *sil;
    583       1.1  rmind 	CPU_INFO_ITERATOR cii;
    584       1.1  rmind 	pri_t eprio, lpri;
    585       1.1  rmind 
    586       1.1  rmind 	ci = l->l_cpu;
    587       1.1  rmind 	spc = &ci->ci_schedstate;
    588       1.1  rmind 	ci_rq = spc->spc_sched_info;
    589       1.1  rmind 
    590       1.1  rmind 	/* CPU of this thread is idling - run there */
    591       1.1  rmind 	if (ci_rq->r_count == 0)
    592       1.1  rmind 		return ci;
    593       1.1  rmind 
    594       1.1  rmind 	eprio = lwp_eprio(l);
    595       1.1  rmind 	sil = l->l_sched_info;
    596       1.1  rmind 
    597       1.1  rmind 	/* Stay if thread is cache-hot */
    598       1.1  rmind 	if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
    599      1.10     ad 	    CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
    600       1.1  rmind 		return ci;
    601       1.1  rmind 
    602       1.1  rmind 	/* Run on current CPU if priority of thread is higher */
    603       1.1  rmind 	ci = curcpu();
    604       1.1  rmind 	spc = &ci->ci_schedstate;
    605      1.10     ad 	if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
    606       1.1  rmind 		return ci;
    607       1.1  rmind 
    608       1.1  rmind 	/*
    609       1.1  rmind 	 * Look for the CPU with the lowest priority thread.  In case of
    610       1.1  rmind 	 * equal the priority - check the lower count of the threads.
    611       1.1  rmind 	 */
    612      1.10     ad 	lpri = PRI_COUNT;
    613       1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    614       1.1  rmind 		runqueue_t *ici_rq;
    615       1.1  rmind 		pri_t pri;
    616       1.1  rmind 
    617       1.1  rmind 		spc = &ci->ci_schedstate;
    618       1.1  rmind 		ici_rq = spc->spc_sched_info;
    619      1.10     ad 		pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
    620      1.10     ad 		if (pri > lpri)
    621       1.1  rmind 			continue;
    622       1.1  rmind 
    623      1.10     ad 		if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
    624       1.1  rmind 			continue;
    625       1.1  rmind 
    626       1.1  rmind 		if (sched_migratable(l, ci) == false)
    627       1.1  rmind 			continue;
    628       1.1  rmind 
    629       1.1  rmind 		lpri = pri;
    630       1.1  rmind 		tci = ci;
    631       1.1  rmind 		ci_rq = ici_rq;
    632       1.1  rmind 	}
    633       1.1  rmind 
    634      1.10     ad 	KASSERT(tci != NULL);
    635       1.1  rmind 	return tci;
    636       1.1  rmind }
    637       1.1  rmind 
    638       1.1  rmind /*
    639       1.1  rmind  * Tries to catch an LWP from the runqueue of other CPU.
    640       1.1  rmind  */
    641       1.1  rmind static struct lwp *
    642       1.1  rmind sched_catchlwp(void)
    643       1.1  rmind {
    644       1.1  rmind 	struct cpu_info *curci = curcpu(), *ci = worker_ci;
    645       1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    646       1.1  rmind 	runqueue_t *ci_rq;
    647       1.1  rmind 	struct lwp *l;
    648       1.1  rmind 
    649       1.1  rmind 	if (curci == ci)
    650       1.1  rmind 		return NULL;
    651       1.1  rmind 
    652       1.1  rmind 	/* Lockless check */
    653       1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    654       1.1  rmind 	if (ci_rq->r_count < min_catch)
    655       1.1  rmind 		return NULL;
    656       1.1  rmind 
    657       1.1  rmind 	/*
    658       1.1  rmind 	 * Double-lock the runqueues.
    659       1.1  rmind 	 */
    660       1.3  rmind 	if (curci < ci) {
    661       1.1  rmind 		spc_lock(ci);
    662       1.1  rmind 	} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
    663       1.1  rmind 		const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
    664       1.1  rmind 
    665       1.1  rmind 		spc_unlock(curci);
    666       1.1  rmind 		spc_lock(ci);
    667       1.1  rmind 		spc_lock(curci);
    668       1.1  rmind 
    669       1.1  rmind 		if (cur_rq->r_count) {
    670       1.1  rmind 			spc_unlock(ci);
    671       1.1  rmind 			return NULL;
    672       1.1  rmind 		}
    673       1.1  rmind 	}
    674       1.1  rmind 
    675       1.1  rmind 	if (ci_rq->r_count < min_catch) {
    676       1.1  rmind 		spc_unlock(ci);
    677       1.1  rmind 		return NULL;
    678       1.1  rmind 	}
    679       1.1  rmind 
    680       1.1  rmind 	/* Take the highest priority thread */
    681       1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    682       1.1  rmind 	l = TAILQ_FIRST(q_head);
    683       1.1  rmind 
    684       1.1  rmind 	for (;;) {
    685       1.1  rmind 		sched_info_lwp_t *sil;
    686       1.1  rmind 
    687       1.1  rmind 		/* Check the first and next result from the queue */
    688       1.1  rmind 		if (l == NULL)
    689       1.1  rmind 			break;
    690       1.1  rmind 
    691       1.1  rmind 		/* Look for threads, whose are allowed to migrate */
    692       1.1  rmind 		sil = l->l_sched_info;
    693       1.1  rmind 		if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
    694       1.1  rmind 		    sched_migratable(l, curci) == false) {
    695       1.1  rmind 			l = TAILQ_NEXT(l, l_runq);
    696       1.1  rmind 			continue;
    697       1.1  rmind 		}
    698       1.1  rmind 		/* Recheck if chosen thread is still on the runqueue */
    699       1.1  rmind 		if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
    700       1.1  rmind 			sched_dequeue(l);
    701       1.1  rmind 			l->l_cpu = curci;
    702       1.1  rmind 			lwp_setlock(l, curci->ci_schedstate.spc_mutex);
    703       1.1  rmind 			sched_enqueue(l, false);
    704       1.1  rmind 			break;
    705       1.1  rmind 		}
    706       1.1  rmind 		l = TAILQ_NEXT(l, l_runq);
    707       1.1  rmind 	}
    708       1.1  rmind 	spc_unlock(ci);
    709       1.1  rmind 
    710       1.1  rmind 	return l;
    711       1.1  rmind }
    712       1.1  rmind 
    713       1.1  rmind /*
    714       1.1  rmind  * Periodical calculations for balancing.
    715       1.1  rmind  */
    716       1.1  rmind static void
    717       1.1  rmind sched_balance(void *nocallout)
    718       1.1  rmind {
    719       1.1  rmind 	struct cpu_info *ci, *hci;
    720       1.1  rmind 	runqueue_t *ci_rq;
    721       1.1  rmind 	CPU_INFO_ITERATOR cii;
    722       1.1  rmind 	u_int highest;
    723       1.1  rmind 
    724       1.1  rmind 	hci = curcpu();
    725       1.1  rmind 	highest = 0;
    726       1.1  rmind 
    727       1.1  rmind 	/* Make lockless countings */
    728       1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    729       1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
    730       1.1  rmind 
    731       1.1  rmind 		/* Average count of the threads */
    732       1.1  rmind 		ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
    733       1.1  rmind 
    734       1.1  rmind 		/* Look for CPU with the highest average */
    735       1.1  rmind 		if (ci_rq->r_avgcount > highest) {
    736       1.1  rmind 			hci = ci;
    737       1.1  rmind 			highest = ci_rq->r_avgcount;
    738       1.1  rmind 		}
    739       1.1  rmind 	}
    740       1.1  rmind 
    741       1.1  rmind 	/* Update the worker */
    742       1.1  rmind 	worker_ci = hci;
    743       1.1  rmind 
    744       1.1  rmind 	if (nocallout == NULL)
    745       1.1  rmind 		callout_schedule(&balance_ch, balance_period);
    746       1.1  rmind }
    747       1.1  rmind 
    748       1.1  rmind #else
    749       1.1  rmind 
    750       1.1  rmind struct cpu_info *
    751       1.1  rmind sched_takecpu(struct lwp *l)
    752       1.1  rmind {
    753       1.1  rmind 
    754       1.1  rmind 	return l->l_cpu;
    755       1.1  rmind }
    756       1.1  rmind 
    757       1.1  rmind #endif	/* MULTIPROCESSOR */
    758       1.1  rmind 
    759       1.1  rmind /*
    760       1.1  rmind  * Scheduler mill.
    761       1.1  rmind  */
    762       1.1  rmind struct lwp *
    763       1.1  rmind sched_nextlwp(void)
    764       1.1  rmind {
    765       1.1  rmind 	struct cpu_info *ci = curcpu();
    766       1.1  rmind 	struct schedstate_percpu *spc;
    767       1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    768       1.1  rmind 	sched_info_lwp_t *sil;
    769       1.1  rmind 	runqueue_t *ci_rq;
    770       1.1  rmind 	struct lwp *l;
    771       1.1  rmind 
    772       1.1  rmind 	spc = &ci->ci_schedstate;
    773       1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    774       1.1  rmind 
    775       1.1  rmind #ifdef MULTIPROCESSOR
    776       1.1  rmind 	/* If runqueue is empty, try to catch some thread from other CPU */
    777      1.11  rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
    778       1.7  rmind 		if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
    779       1.1  rmind 			return NULL;
    780       1.1  rmind 	} else if (ci_rq->r_count == 0) {
    781       1.1  rmind 		/* Reset the counter, and call the balancer */
    782       1.1  rmind 		ci_rq->r_avgcount = 0;
    783       1.1  rmind 		sched_balance(ci);
    784       1.1  rmind 
    785       1.1  rmind 		/* The re-locking will be done inside */
    786       1.1  rmind 		return sched_catchlwp();
    787       1.1  rmind 	}
    788       1.1  rmind #else
    789       1.1  rmind 	if (ci_rq->r_count == 0)
    790       1.1  rmind 		return NULL;
    791       1.1  rmind #endif
    792       1.1  rmind 
    793       1.1  rmind 	/* Take the highest priority thread */
    794       1.1  rmind 	KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
    795       1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    796       1.1  rmind 	l = TAILQ_FIRST(q_head);
    797       1.1  rmind 	KASSERT(l != NULL);
    798       1.1  rmind 
    799       1.1  rmind 	/* Update the counters */
    800       1.1  rmind 	sil = l->l_sched_info;
    801       1.1  rmind 	KASSERT(sil->sl_timeslice >= min_ts);
    802       1.1  rmind 	KASSERT(sil->sl_timeslice <= max_ts);
    803       1.1  rmind 	spc->spc_ticks = sil->sl_timeslice;
    804       1.1  rmind 	sil->sl_rtime = hardclock_ticks;
    805       1.1  rmind 
    806       1.1  rmind 	return l;
    807       1.1  rmind }
    808       1.1  rmind 
    809       1.1  rmind bool
    810       1.1  rmind sched_curcpu_runnable_p(void)
    811       1.1  rmind {
    812       1.1  rmind 	const struct cpu_info *ci = curcpu();
    813       1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    814       1.1  rmind 
    815      1.11  rmind #ifndef __HAVE_FAST_SOFTINTS
    816      1.11  rmind 	if (ci->ci_data.cpu_softints)
    817      1.11  rmind 		return true;
    818      1.11  rmind #endif
    819      1.11  rmind 
    820       1.1  rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    821       1.7  rmind 		return (ci_rq->r_count - ci_rq->r_mcount);
    822       1.1  rmind 
    823       1.1  rmind 	return ci_rq->r_count;
    824       1.1  rmind }
    825       1.1  rmind 
    826       1.1  rmind /*
    827       1.1  rmind  * Time-driven events.
    828       1.1  rmind  */
    829       1.1  rmind 
    830       1.1  rmind /*
    831       1.1  rmind  * Called once per time-quantum.  This routine is CPU-local and runs at
    832       1.1  rmind  * IPL_SCHED, thus the locking is not needed.
    833       1.1  rmind  */
    834       1.1  rmind void
    835       1.1  rmind sched_tick(struct cpu_info *ci)
    836       1.1  rmind {
    837       1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    838       1.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    839       1.1  rmind 	struct lwp *l = curlwp;
    840       1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    841       1.1  rmind 
    842       1.2  rmind 	if (CURCPU_IDLE_P())
    843       1.2  rmind 		return;
    844       1.1  rmind 
    845      1.10     ad 	switch (l->l_class) {
    846       1.2  rmind 	case SCHED_FIFO:
    847       1.2  rmind 		/*
    848       1.2  rmind 		 * Update the time-quantum, and continue running,
    849       1.2  rmind 		 * if thread runs on FIFO real-time policy.
    850       1.2  rmind 		 */
    851       1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    852       1.1  rmind 		return;
    853       1.2  rmind 	case SCHED_OTHER:
    854      1.10     ad 		/*
    855      1.10     ad 		 * If thread is in time-sharing queue, decrease the priority,
    856      1.10     ad 		 * and run with a higher time-quantum.
    857      1.10     ad 		 */
    858      1.10     ad 		if (l->l_priority > PRI_HIGHEST_TS)
    859       1.2  rmind 			break;
    860      1.10     ad 		if (l->l_priority != 0)
    861      1.10     ad 			l->l_priority--;
    862       1.2  rmind 		break;
    863       1.1  rmind 	}
    864       1.1  rmind 
    865       1.1  rmind 	/*
    866       1.2  rmind 	 * If there are higher priority threads or threads in the same queue,
    867       1.2  rmind 	 * mark that thread should yield, otherwise, continue running.
    868       1.1  rmind 	 */
    869      1.10     ad 	if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
    870       1.1  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    871       1.1  rmind 		cpu_need_resched(ci, 0);
    872       1.1  rmind 	} else
    873       1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    874       1.1  rmind }
    875       1.1  rmind 
    876       1.1  rmind /*
    877       1.1  rmind  * Sysctl nodes and initialization.
    878       1.1  rmind  */
    879       1.1  rmind 
    880       1.1  rmind static int
    881       1.1  rmind sysctl_sched_mints(SYSCTLFN_ARGS)
    882       1.1  rmind {
    883       1.1  rmind 	struct sysctlnode node;
    884       1.1  rmind 	struct cpu_info *ci;
    885       1.1  rmind 	int error, newsize;
    886       1.1  rmind 	CPU_INFO_ITERATOR cii;
    887       1.1  rmind 
    888       1.1  rmind 	node = *rnode;
    889       1.1  rmind 	node.sysctl_data = &newsize;
    890       1.1  rmind 
    891       1.1  rmind 	newsize = hztoms(min_ts);
    892       1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    893       1.1  rmind 	if (error || newp == NULL)
    894       1.1  rmind 		return error;
    895       1.1  rmind 
    896       1.8  rmind 	newsize = mstohz(newsize);
    897       1.1  rmind 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    898       1.1  rmind 		return EINVAL;
    899       1.1  rmind 
    900       1.1  rmind 	/* It is safe to do this in such order */
    901       1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    902       1.1  rmind 		spc_lock(ci);
    903       1.1  rmind 
    904       1.8  rmind 	min_ts = newsize;
    905       1.1  rmind 	sched_precalcts();
    906       1.1  rmind 
    907       1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    908       1.1  rmind 		spc_unlock(ci);
    909       1.1  rmind 
    910       1.1  rmind 	return 0;
    911       1.1  rmind }
    912       1.1  rmind 
    913       1.1  rmind static int
    914       1.1  rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
    915       1.1  rmind {
    916       1.1  rmind 	struct sysctlnode node;
    917       1.1  rmind 	struct cpu_info *ci;
    918       1.1  rmind 	int error, newsize;
    919       1.1  rmind 	CPU_INFO_ITERATOR cii;
    920       1.1  rmind 
    921       1.1  rmind 	node = *rnode;
    922       1.1  rmind 	node.sysctl_data = &newsize;
    923       1.1  rmind 
    924       1.1  rmind 	newsize = hztoms(max_ts);
    925       1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    926       1.1  rmind 	if (error || newp == NULL)
    927       1.1  rmind 		return error;
    928       1.1  rmind 
    929       1.8  rmind 	newsize = mstohz(newsize);
    930       1.1  rmind 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    931       1.1  rmind 		return EINVAL;
    932       1.1  rmind 
    933       1.1  rmind 	/* It is safe to do this in such order */
    934       1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    935       1.1  rmind 		spc_lock(ci);
    936       1.1  rmind 
    937       1.8  rmind 	max_ts = newsize;
    938       1.1  rmind 	sched_precalcts();
    939       1.1  rmind 
    940       1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    941       1.1  rmind 		spc_unlock(ci);
    942       1.1  rmind 
    943       1.1  rmind 	return 0;
    944       1.1  rmind }
    945       1.1  rmind 
    946       1.1  rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    947       1.1  rmind {
    948       1.1  rmind 	const struct sysctlnode *node = NULL;
    949       1.1  rmind 
    950       1.1  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    951       1.1  rmind 		CTLFLAG_PERMANENT,
    952       1.1  rmind 		CTLTYPE_NODE, "kern", NULL,
    953       1.1  rmind 		NULL, 0, NULL, 0,
    954       1.1  rmind 		CTL_KERN, CTL_EOL);
    955       1.1  rmind 	sysctl_createv(clog, 0, NULL, &node,
    956       1.1  rmind 		CTLFLAG_PERMANENT,
    957       1.1  rmind 		CTLTYPE_NODE, "sched",
    958       1.1  rmind 		SYSCTL_DESCR("Scheduler options"),
    959       1.1  rmind 		NULL, 0, NULL, 0,
    960       1.1  rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    961       1.1  rmind 
    962       1.1  rmind 	if (node == NULL)
    963       1.1  rmind 		return;
    964       1.1  rmind 
    965       1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    966       1.1  rmind 		CTLFLAG_PERMANENT,
    967       1.1  rmind 		CTLTYPE_STRING, "name", NULL,
    968       1.1  rmind 		NULL, 0, __UNCONST("M2"), 0,
    969       1.1  rmind 		CTL_CREATE, CTL_EOL);
    970       1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    971       1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    972       1.1  rmind 		CTLTYPE_INT, "maxts",
    973       1.8  rmind 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
    974       1.1  rmind 		sysctl_sched_maxts, 0, &max_ts, 0,
    975       1.1  rmind 		CTL_CREATE, CTL_EOL);
    976       1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    977       1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    978       1.1  rmind 		CTLTYPE_INT, "mints",
    979       1.8  rmind 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
    980       1.1  rmind 		sysctl_sched_mints, 0, &min_ts, 0,
    981       1.1  rmind 		CTL_CREATE, CTL_EOL);
    982       1.1  rmind 
    983       1.1  rmind #ifdef MULTIPROCESSOR
    984       1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    985       1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    986       1.1  rmind 		CTLTYPE_INT, "cacheht_time",
    987       1.8  rmind 		SYSCTL_DESCR("Cache hotness time (in ticks)"),
    988       1.1  rmind 		NULL, 0, &cacheht_time, 0,
    989       1.1  rmind 		CTL_CREATE, CTL_EOL);
    990       1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    991       1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    992       1.9  rmind 		CTLTYPE_INT, "balance_period",
    993       1.9  rmind 		SYSCTL_DESCR("Balance period (in ticks)"),
    994       1.1  rmind 		NULL, 0, &balance_period, 0,
    995       1.1  rmind 		CTL_CREATE, CTL_EOL);
    996       1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    997       1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    998       1.1  rmind 		CTLTYPE_INT, "min_catch",
    999       1.8  rmind 		SYSCTL_DESCR("Minimal count of the threads for catching"),
   1000       1.1  rmind 		NULL, 0, &min_catch, 0,
   1001       1.1  rmind 		CTL_CREATE, CTL_EOL);
   1002       1.1  rmind #endif
   1003       1.1  rmind }
   1004       1.1  rmind 
   1005       1.1  rmind /*
   1006       1.1  rmind  * Debugging.
   1007       1.1  rmind  */
   1008       1.1  rmind 
   1009       1.1  rmind #ifdef DDB
   1010       1.1  rmind 
   1011       1.1  rmind void
   1012       1.1  rmind sched_print_runqueue(void (*pr)(const char *, ...))
   1013       1.1  rmind {
   1014       1.1  rmind 	runqueue_t *ci_rq;
   1015       1.1  rmind 	sched_info_lwp_t *sil;
   1016       1.1  rmind 	struct lwp *l;
   1017       1.1  rmind 	struct proc *p;
   1018       1.1  rmind 	int i;
   1019       1.1  rmind 
   1020       1.1  rmind 	struct cpu_info *ci;
   1021       1.1  rmind 	CPU_INFO_ITERATOR cii;
   1022       1.1  rmind 
   1023       1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
   1024       1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
   1025       1.1  rmind 
   1026       1.1  rmind 		(*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
   1027       1.1  rmind 		(*pr)(" pid.lid = %d.%d, threads count = %u, "
   1028       1.1  rmind 		    "avgcount = %u, highest pri = %d\n",
   1029       1.1  rmind 		    ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
   1030       1.1  rmind 		    ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
   1031      1.10     ad 		i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
   1032       1.1  rmind 		do {
   1033      1.10     ad 			uint32_t q;
   1034      1.10     ad 			q = ci_rq->r_bitmap[i];
   1035      1.10     ad 			(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
   1036      1.10     ad 		} while (i--);
   1037       1.1  rmind 	}
   1038       1.1  rmind 
   1039       1.1  rmind 	(*pr)("   %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
   1040      1.10     ad 	    "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
   1041       1.1  rmind 
   1042       1.1  rmind 	PROCLIST_FOREACH(p, &allproc) {
   1043       1.1  rmind 		(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
   1044       1.1  rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1045       1.1  rmind 			sil = l->l_sched_info;
   1046       1.1  rmind 			ci = l->l_cpu;
   1047       1.1  rmind 			(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
   1048       1.1  rmind 			    "%u ST=%d RT=%d %d\n",
   1049      1.10     ad 			    (int)l->l_lid, l->l_priority, lwp_eprio(l),
   1050       1.1  rmind 			    l->l_flag, l->l_stat == LSRUN ? "RQ" :
   1051       1.1  rmind 			    (l->l_stat == LSSLEEP ? "SQ" : "-"),
   1052       1.1  rmind 			    sil->sl_timeslice, l, ci->ci_cpuid,
   1053       1.1  rmind 			    (u_int)(hardclock_ticks - sil->sl_lrtime),
   1054       1.1  rmind 			    sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
   1055       1.1  rmind 		}
   1056       1.1  rmind 	}
   1057       1.1  rmind }
   1058       1.1  rmind 
   1059       1.1  rmind #endif /* defined(DDB) */
   1060