Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.13.4.2
      1  1.13.4.1  bouyer /*	$NetBSD: sched_m2.c,v 1.13.4.2 2008/01/19 12:15:24 bouyer Exp $	*/
      2       1.1   rmind 
      3       1.1   rmind /*
      4  1.13.4.2  bouyer  * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5      1.12   rmind  * All rights reserved.
      6       1.1   rmind  *
      7       1.1   rmind  * Redistribution and use in source and binary forms, with or without
      8       1.1   rmind  * modification, are permitted provided that the following conditions
      9       1.1   rmind  * are met:
     10       1.1   rmind  * 1. Redistributions of source code must retain the above copyright
     11       1.1   rmind  *    notice, this list of conditions and the following disclaimer.
     12       1.1   rmind  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1   rmind  *    notice, this list of conditions and the following disclaimer in the
     14       1.1   rmind  *    documentation and/or other materials provided with the distribution.
     15       1.1   rmind  *
     16       1.1   rmind  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17       1.1   rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.1   rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.1   rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.1   rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.1   rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.1   rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.1   rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.1   rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.1   rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.1   rmind  * POSSIBILITY OF SUCH DAMAGE.
     27       1.1   rmind  */
     28       1.1   rmind 
     29       1.1   rmind /*
     30       1.1   rmind  * TODO:
     31       1.1   rmind  *  - Implementation of fair share queue;
     32       1.1   rmind  *  - Support for NUMA;
     33       1.1   rmind  */
     34       1.1   rmind 
     35       1.1   rmind #include <sys/cdefs.h>
     36  1.13.4.1  bouyer __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.13.4.2 2008/01/19 12:15:24 bouyer Exp $");
     37       1.1   rmind 
     38       1.1   rmind #include <sys/param.h>
     39       1.1   rmind 
     40       1.8   rmind #include <sys/bitops.h>
     41       1.1   rmind #include <sys/cpu.h>
     42       1.1   rmind #include <sys/callout.h>
     43       1.1   rmind #include <sys/errno.h>
     44       1.1   rmind #include <sys/kernel.h>
     45       1.1   rmind #include <sys/kmem.h>
     46       1.1   rmind #include <sys/lwp.h>
     47       1.1   rmind #include <sys/mutex.h>
     48       1.1   rmind #include <sys/pool.h>
     49       1.1   rmind #include <sys/proc.h>
     50  1.13.4.2  bouyer #include <sys/pset.h>
     51       1.1   rmind #include <sys/resource.h>
     52       1.1   rmind #include <sys/resourcevar.h>
     53       1.1   rmind #include <sys/sched.h>
     54       1.1   rmind #include <sys/syscallargs.h>
     55       1.1   rmind #include <sys/sysctl.h>
     56       1.1   rmind #include <sys/types.h>
     57       1.1   rmind 
     58       1.1   rmind /*
     59      1.10      ad  * Priority related defintions.
     60       1.1   rmind  */
     61      1.10      ad #define	PRI_TS_COUNT	(NPRI_USER)
     62      1.10      ad #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     63      1.10      ad #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     64      1.10      ad 
     65      1.11   rmind #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     66      1.10      ad 
     67      1.10      ad const int schedppq = 1;
     68       1.1   rmind 
     69       1.1   rmind /*
     70       1.1   rmind  * Bits per map.
     71       1.1   rmind  */
     72      1.10      ad #define	BITMAP_BITS	(32)
     73      1.10      ad #define	BITMAP_SHIFT	(5)
     74      1.11   rmind #define	BITMAP_MSB	(0x80000000U)
     75      1.10      ad #define	BITMAP_MASK	(BITMAP_BITS - 1)
     76       1.1   rmind 
     77       1.1   rmind /*
     78       1.1   rmind  * Time-slices and priorities.
     79       1.1   rmind  */
     80       1.1   rmind static u_int	min_ts;			/* Minimal time-slice */
     81       1.1   rmind static u_int	max_ts;			/* Maximal time-slice */
     82       1.1   rmind static u_int	rt_ts;			/* Real-time time-slice */
     83       1.1   rmind static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     84       1.1   rmind static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     85       1.1   rmind 
     86       1.1   rmind /*
     87       1.1   rmind  * Migration and balancing.
     88       1.1   rmind  */
     89       1.1   rmind #ifdef MULTIPROCESSOR
     90  1.13.4.2  bouyer 
     91       1.1   rmind static u_int	cacheht_time;		/* Cache hotness time */
     92       1.1   rmind static u_int	min_catch;		/* Minimal LWP count for catching */
     93       1.1   rmind 
     94       1.1   rmind static u_int		balance_period;	/* Balance period */
     95       1.1   rmind static struct callout	balance_ch;	/* Callout of balancer */
     96       1.1   rmind 
     97       1.1   rmind static struct cpu_info * volatile worker_ci;
     98       1.1   rmind 
     99       1.1   rmind #endif
    100       1.1   rmind 
    101       1.1   rmind /*
    102       1.1   rmind  * Structures, runqueue.
    103       1.1   rmind  */
    104       1.1   rmind 
    105       1.1   rmind typedef struct {
    106       1.1   rmind 	TAILQ_HEAD(, lwp) q_head;
    107       1.1   rmind } queue_t;
    108       1.1   rmind 
    109       1.1   rmind typedef struct {
    110       1.1   rmind 	/* Lock and bitmap */
    111       1.1   rmind 	kmutex_t	r_rq_mutex;
    112      1.10      ad 	uint32_t	r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
    113       1.1   rmind 	/* Counters */
    114       1.1   rmind 	u_int		r_count;	/* Count of the threads */
    115       1.1   rmind 	pri_t		r_highest_pri;	/* Highest priority */
    116       1.1   rmind 	u_int		r_avgcount;	/* Average count of threads */
    117       1.1   rmind 	u_int		r_mcount;	/* Count of migratable threads */
    118       1.1   rmind 	/* Runqueues */
    119       1.1   rmind 	queue_t		r_rt_queue[PRI_RT_COUNT];
    120       1.1   rmind 	queue_t		r_ts_queue[PRI_TS_COUNT];
    121       1.1   rmind } runqueue_t;
    122       1.1   rmind 
    123       1.1   rmind typedef struct {
    124       1.1   rmind 	u_int		sl_flags;
    125       1.1   rmind 	u_int		sl_timeslice;	/* Time-slice of thread */
    126       1.1   rmind 	u_int		sl_slept;	/* Saved sleep time for sleep sum */
    127       1.1   rmind 	u_int		sl_slpsum;	/* Sum of sleep time */
    128       1.1   rmind 	u_int		sl_rtime;	/* Saved start time of run */
    129       1.1   rmind 	u_int		sl_rtsum;	/* Sum of the run time */
    130       1.1   rmind 	u_int		sl_lrtime;	/* Last run time */
    131       1.1   rmind } sched_info_lwp_t;
    132       1.1   rmind 
    133       1.1   rmind /* Flags */
    134       1.1   rmind #define	SL_BATCH	0x01
    135       1.1   rmind 
    136       1.1   rmind /* Pool of the scheduler-specific structures for threads */
    137       1.1   rmind static struct pool	sil_pool;
    138       1.1   rmind 
    139       1.1   rmind /*
    140       1.1   rmind  * Prototypes.
    141       1.1   rmind  */
    142       1.1   rmind 
    143       1.1   rmind static inline void *	sched_getrq(runqueue_t *, const pri_t);
    144       1.1   rmind static inline void	sched_newts(struct lwp *);
    145       1.1   rmind static void		sched_precalcts(void);
    146       1.1   rmind 
    147       1.1   rmind #ifdef MULTIPROCESSOR
    148       1.1   rmind static struct lwp *	sched_catchlwp(void);
    149       1.1   rmind static void		sched_balance(void *);
    150       1.1   rmind #endif
    151       1.1   rmind 
    152       1.1   rmind /*
    153       1.1   rmind  * Initialization and setup.
    154       1.1   rmind  */
    155       1.1   rmind 
    156       1.1   rmind void
    157       1.1   rmind sched_rqinit(void)
    158       1.1   rmind {
    159       1.1   rmind 	struct cpu_info *ci = curcpu();
    160       1.1   rmind 
    161       1.1   rmind 	if (hz < 100) {
    162       1.1   rmind 		panic("sched_rqinit: value of HZ is too low\n");
    163       1.1   rmind 	}
    164       1.1   rmind 
    165       1.1   rmind 	/* Default timing ranges */
    166       1.1   rmind 	min_ts = mstohz(50);			/* ~50ms  */
    167       1.1   rmind 	max_ts = mstohz(150);			/* ~150ms */
    168       1.1   rmind 	rt_ts = mstohz(100);			/* ~100ms */
    169       1.1   rmind 	sched_precalcts();
    170       1.1   rmind 
    171       1.1   rmind #ifdef MULTIPROCESSOR
    172       1.1   rmind 	/* Balancing */
    173       1.1   rmind 	worker_ci = ci;
    174       1.1   rmind 	cacheht_time = mstohz(5);		/* ~5 ms  */
    175       1.1   rmind 	balance_period = mstohz(300);		/* ~300ms */
    176       1.1   rmind 	min_catch = ~0;
    177       1.1   rmind #endif
    178       1.1   rmind 
    179       1.1   rmind 	/* Pool of the scheduler-specific structures */
    180       1.1   rmind 	pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
    181       1.1   rmind 	    "lwpsd", &pool_allocator_nointr, IPL_NONE);
    182       1.1   rmind 
    183       1.1   rmind 	/* Attach the primary CPU here */
    184       1.1   rmind 	sched_cpuattach(ci);
    185       1.1   rmind 
    186       1.1   rmind 	/* Initialize the scheduler structure of the primary LWP */
    187       1.1   rmind 	lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
    188      1.10      ad 	sched_lwp_fork(NULL, &lwp0);
    189       1.1   rmind 	sched_newts(&lwp0);
    190       1.1   rmind }
    191       1.1   rmind 
    192       1.1   rmind void
    193       1.1   rmind sched_setup(void)
    194       1.1   rmind {
    195       1.1   rmind 
    196       1.1   rmind #ifdef MULTIPROCESSOR
    197       1.1   rmind 	/* Minimal count of LWPs for catching: log2(count of CPUs) */
    198       1.8   rmind 	min_catch = min(ilog2(ncpu), 4);
    199       1.1   rmind 
    200       1.1   rmind 	/* Initialize balancing callout and run it */
    201       1.1   rmind 	callout_init(&balance_ch, CALLOUT_MPSAFE);
    202       1.1   rmind 	callout_setfunc(&balance_ch, sched_balance, NULL);
    203       1.1   rmind 	callout_schedule(&balance_ch, balance_period);
    204       1.1   rmind #endif
    205       1.1   rmind }
    206       1.1   rmind 
    207       1.1   rmind void
    208       1.1   rmind sched_cpuattach(struct cpu_info *ci)
    209       1.1   rmind {
    210       1.1   rmind 	runqueue_t *ci_rq;
    211       1.1   rmind 	void *rq_ptr;
    212       1.1   rmind 	u_int i, size;
    213       1.1   rmind 
    214       1.1   rmind 	/*
    215       1.1   rmind 	 * Allocate the run queue.
    216       1.1   rmind 	 * XXX: Estimate cache behaviour more..
    217       1.1   rmind 	 */
    218       1.1   rmind 	size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
    219  1.13.4.1  bouyer 	rq_ptr = kmem_zalloc(size, KM_SLEEP);
    220       1.1   rmind 	if (rq_ptr == NULL) {
    221       1.1   rmind 		panic("scheduler: could not allocate the runqueue");
    222       1.1   rmind 	}
    223       1.1   rmind 	/* XXX: Save the original pointer for future.. */
    224       1.1   rmind 	ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
    225       1.1   rmind 
    226       1.1   rmind 	/* Initialize run queues */
    227      1.13      ad 	mutex_init(&ci_rq->r_rq_mutex, MUTEX_DEFAULT, IPL_SCHED);
    228       1.1   rmind 	for (i = 0; i < PRI_RT_COUNT; i++)
    229       1.1   rmind 		TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
    230       1.1   rmind 	for (i = 0; i < PRI_TS_COUNT; i++)
    231       1.1   rmind 		TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
    232      1.10      ad 	ci_rq->r_highest_pri = 0;
    233       1.1   rmind 
    234       1.1   rmind 	ci->ci_schedstate.spc_sched_info = ci_rq;
    235       1.1   rmind 	ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
    236       1.1   rmind }
    237       1.1   rmind 
    238       1.1   rmind /* Pre-calculate the time-slices for the priorities */
    239       1.1   rmind static void
    240       1.1   rmind sched_precalcts(void)
    241       1.1   rmind {
    242       1.1   rmind 	pri_t p;
    243       1.1   rmind 
    244      1.10      ad 	/* Time-sharing range */
    245      1.10      ad 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    246      1.10      ad 		ts_map[p] = max_ts -
    247      1.10      ad 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    248      1.10      ad 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    249      1.10      ad 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    250      1.10      ad 	}
    251      1.10      ad 
    252      1.10      ad 	/* Real-time range */
    253      1.10      ad 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    254       1.1   rmind 		ts_map[p] = rt_ts;
    255       1.1   rmind 		high_pri[p] = p;
    256       1.1   rmind 	}
    257       1.1   rmind }
    258       1.1   rmind 
    259       1.1   rmind /*
    260       1.1   rmind  * Hooks.
    261       1.1   rmind  */
    262       1.1   rmind 
    263       1.1   rmind void
    264       1.1   rmind sched_proc_fork(struct proc *parent, struct proc *child)
    265       1.1   rmind {
    266       1.1   rmind 	struct lwp *l;
    267       1.1   rmind 
    268       1.1   rmind 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    269       1.1   rmind 		lwp_lock(l);
    270       1.1   rmind 		sched_newts(l);
    271       1.1   rmind 		lwp_unlock(l);
    272       1.1   rmind 	}
    273       1.1   rmind }
    274       1.1   rmind 
    275       1.1   rmind void
    276       1.1   rmind sched_proc_exit(struct proc *child, struct proc *parent)
    277       1.1   rmind {
    278       1.1   rmind 
    279       1.1   rmind 	/* Dummy */
    280       1.1   rmind }
    281       1.1   rmind 
    282       1.1   rmind void
    283      1.10      ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    284       1.1   rmind {
    285       1.1   rmind 
    286      1.10      ad 	KASSERT(l2->l_sched_info == NULL);
    287      1.10      ad 	l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
    288      1.10      ad 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    289       1.1   rmind }
    290       1.1   rmind 
    291       1.1   rmind void
    292       1.1   rmind sched_lwp_exit(struct lwp *l)
    293       1.1   rmind {
    294       1.1   rmind 
    295       1.1   rmind 	KASSERT(l->l_sched_info != NULL);
    296       1.1   rmind 	pool_put(&sil_pool, l->l_sched_info);
    297       1.1   rmind 	l->l_sched_info = NULL;
    298       1.1   rmind }
    299       1.1   rmind 
    300       1.1   rmind void
    301      1.10      ad sched_lwp_collect(struct lwp *l)
    302      1.10      ad {
    303      1.10      ad 
    304      1.10      ad }
    305      1.10      ad 
    306      1.10      ad void
    307       1.1   rmind sched_setrunnable(struct lwp *l)
    308       1.1   rmind {
    309       1.1   rmind 
    310       1.1   rmind 	/* Dummy */
    311       1.1   rmind }
    312       1.1   rmind 
    313       1.1   rmind void
    314       1.1   rmind sched_schedclock(struct lwp *l)
    315       1.1   rmind {
    316       1.1   rmind 
    317       1.1   rmind 	/* Dummy */
    318       1.1   rmind }
    319       1.1   rmind 
    320       1.1   rmind /*
    321       1.1   rmind  * Priorities and time-slice.
    322       1.1   rmind  */
    323       1.1   rmind 
    324       1.1   rmind void
    325       1.1   rmind sched_nice(struct proc *p, int prio)
    326       1.1   rmind {
    327       1.1   rmind 
    328  1.13.4.2  bouyer 	/* TODO: implement as SCHED_IA */
    329       1.1   rmind }
    330       1.1   rmind 
    331       1.1   rmind /* Recalculate the time-slice */
    332       1.1   rmind static inline void
    333       1.1   rmind sched_newts(struct lwp *l)
    334       1.1   rmind {
    335       1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    336       1.1   rmind 
    337       1.1   rmind 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    338       1.1   rmind }
    339       1.1   rmind 
    340       1.1   rmind /*
    341       1.1   rmind  * Control of the runqueue.
    342       1.1   rmind  */
    343       1.1   rmind 
    344       1.1   rmind static inline void *
    345       1.1   rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
    346       1.1   rmind {
    347       1.1   rmind 
    348       1.1   rmind 	KASSERT(prio < PRI_COUNT);
    349      1.10      ad 	return (prio <= PRI_HIGHEST_TS) ?
    350      1.10      ad 	    &ci_rq->r_ts_queue[prio].q_head :
    351      1.10      ad 	    &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
    352       1.1   rmind }
    353       1.1   rmind 
    354       1.1   rmind void
    355       1.1   rmind sched_enqueue(struct lwp *l, bool swtch)
    356       1.1   rmind {
    357       1.1   rmind 	runqueue_t *ci_rq;
    358       1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    359       1.1   rmind 	TAILQ_HEAD(, lwp) *q_head;
    360       1.1   rmind 	const pri_t eprio = lwp_eprio(l);
    361       1.1   rmind 
    362       1.1   rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    363       1.1   rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    364       1.1   rmind 
    365       1.1   rmind 	/* Update the last run time on switch */
    366      1.11   rmind 	if (__predict_true(swtch == true)) {
    367       1.1   rmind 		sil->sl_lrtime = hardclock_ticks;
    368       1.1   rmind 		sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
    369       1.8   rmind 	} else if (sil->sl_lrtime == 0)
    370       1.8   rmind 		sil->sl_lrtime = hardclock_ticks;
    371       1.1   rmind 
    372       1.1   rmind 	/* Enqueue the thread */
    373       1.1   rmind 	q_head = sched_getrq(ci_rq, eprio);
    374       1.1   rmind 	if (TAILQ_EMPTY(q_head)) {
    375       1.1   rmind 		u_int i;
    376       1.1   rmind 		uint32_t q;
    377       1.1   rmind 
    378       1.1   rmind 		/* Mark bit */
    379       1.1   rmind 		i = eprio >> BITMAP_SHIFT;
    380      1.10      ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    381      1.10      ad 		KASSERT((ci_rq->r_bitmap[i] & q) == 0);
    382      1.10      ad 		ci_rq->r_bitmap[i] |= q;
    383       1.1   rmind 	}
    384       1.1   rmind 	TAILQ_INSERT_TAIL(q_head, l, l_runq);
    385       1.1   rmind 	ci_rq->r_count++;
    386       1.1   rmind 	if ((l->l_flag & LW_BOUND) == 0)
    387       1.1   rmind 		ci_rq->r_mcount++;
    388       1.1   rmind 
    389       1.1   rmind 	/*
    390       1.1   rmind 	 * Update the value of highest priority in the runqueue,
    391       1.1   rmind 	 * if priority of this thread is higher.
    392       1.1   rmind 	 */
    393      1.10      ad 	if (eprio > ci_rq->r_highest_pri)
    394       1.1   rmind 		ci_rq->r_highest_pri = eprio;
    395       1.1   rmind 
    396       1.1   rmind 	sched_newts(l);
    397       1.1   rmind }
    398       1.1   rmind 
    399       1.1   rmind void
    400       1.1   rmind sched_dequeue(struct lwp *l)
    401       1.1   rmind {
    402       1.1   rmind 	runqueue_t *ci_rq;
    403       1.1   rmind 	TAILQ_HEAD(, lwp) *q_head;
    404       1.1   rmind 	const pri_t eprio = lwp_eprio(l);
    405       1.1   rmind 
    406       1.1   rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    407       1.1   rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    408  1.13.4.2  bouyer 
    409      1.10      ad 	KASSERT(eprio <= ci_rq->r_highest_pri);
    410       1.1   rmind 	KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
    411       1.1   rmind 	KASSERT(ci_rq->r_count > 0);
    412       1.1   rmind 
    413       1.1   rmind 	ci_rq->r_count--;
    414       1.1   rmind 	if ((l->l_flag & LW_BOUND) == 0)
    415       1.1   rmind 		ci_rq->r_mcount--;
    416       1.1   rmind 
    417       1.1   rmind 	q_head = sched_getrq(ci_rq, eprio);
    418       1.1   rmind 	TAILQ_REMOVE(q_head, l, l_runq);
    419       1.1   rmind 	if (TAILQ_EMPTY(q_head)) {
    420       1.1   rmind 		u_int i;
    421       1.1   rmind 		uint32_t q;
    422       1.1   rmind 
    423       1.1   rmind 		/* Unmark bit */
    424       1.1   rmind 		i = eprio >> BITMAP_SHIFT;
    425      1.10      ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    426      1.10      ad 		KASSERT((ci_rq->r_bitmap[i] & q) != 0);
    427      1.10      ad 		ci_rq->r_bitmap[i] &= ~q;
    428       1.1   rmind 
    429       1.1   rmind 		/*
    430       1.1   rmind 		 * Update the value of highest priority in the runqueue, in a
    431       1.1   rmind 		 * case it was a last thread in the queue of highest priority.
    432       1.1   rmind 		 */
    433       1.1   rmind 		if (eprio != ci_rq->r_highest_pri)
    434       1.1   rmind 			return;
    435       1.1   rmind 
    436       1.1   rmind 		do {
    437       1.1   rmind 			q = ffs(ci_rq->r_bitmap[i]);
    438       1.1   rmind 			if (q) {
    439       1.1   rmind 				ci_rq->r_highest_pri =
    440      1.10      ad 				    (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
    441       1.1   rmind 				return;
    442       1.1   rmind 			}
    443      1.10      ad 		} while (i--);
    444       1.1   rmind 
    445      1.10      ad 		/* If not found - set the lowest value */
    446      1.10      ad 		ci_rq->r_highest_pri = 0;
    447       1.1   rmind 	}
    448       1.1   rmind }
    449       1.1   rmind 
    450       1.1   rmind void
    451       1.1   rmind sched_slept(struct lwp *l)
    452       1.1   rmind {
    453       1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    454       1.1   rmind 
    455       1.1   rmind 	/* Save the time when thread has slept */
    456       1.1   rmind 	sil->sl_slept = hardclock_ticks;
    457       1.1   rmind 
    458       1.1   rmind 	/*
    459      1.10      ad 	 * If thread is in time-sharing queue and batch flag is not marked,
    460      1.10      ad 	 * increase the the priority, and run with the lower time-quantum.
    461       1.1   rmind 	 */
    462  1.13.4.2  bouyer 	if (l->l_priority < PRI_HIGHEST_TS &&
    463  1.13.4.2  bouyer 	    (sil->sl_flags & SL_BATCH) == 0) {
    464      1.10      ad 		KASSERT(l->l_class == SCHED_OTHER);
    465      1.10      ad 		l->l_priority++;
    466      1.10      ad 	}
    467       1.1   rmind }
    468       1.1   rmind 
    469       1.1   rmind void
    470       1.1   rmind sched_wakeup(struct lwp *l)
    471       1.1   rmind {
    472       1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    473       1.1   rmind 
    474       1.1   rmind 	/* Update sleep time delta */
    475       1.1   rmind 	sil->sl_slpsum += (l->l_slptime == 0) ?
    476       1.1   rmind 	    (hardclock_ticks - sil->sl_slept) : hz;
    477       1.1   rmind 
    478       1.1   rmind 	/* If thread was sleeping a second or more - set a high priority */
    479       1.1   rmind 	if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
    480      1.10      ad 		l->l_priority = high_pri[l->l_priority];
    481       1.1   rmind 
    482       1.1   rmind 	/* Also, consider looking for a better CPU to wake up */
    483       1.1   rmind 	if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
    484       1.1   rmind 		l->l_cpu = sched_takecpu(l);
    485       1.1   rmind }
    486       1.1   rmind 
    487       1.1   rmind void
    488       1.1   rmind sched_pstats_hook(struct lwp *l)
    489       1.1   rmind {
    490       1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    491      1.11   rmind 	pri_t prio;
    492      1.10      ad 	bool batch;
    493      1.10      ad 
    494      1.10      ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    495      1.10      ad 	    l->l_stat == LSSUSPENDED)
    496      1.10      ad 		l->l_slptime++;
    497       1.1   rmind 
    498       1.1   rmind 	/*
    499       1.1   rmind 	 * Set that thread is more CPU-bound, if sum of run time exceeds the
    500      1.10      ad 	 * sum of sleep time.  Check if thread is CPU-bound a first time.
    501       1.1   rmind 	 */
    502      1.10      ad 	batch = (sil->sl_rtsum > sil->sl_slpsum);
    503      1.10      ad 	if (batch) {
    504      1.10      ad 		if ((sil->sl_flags & SL_BATCH) == 0)
    505      1.10      ad 			batch = false;
    506       1.1   rmind 		sil->sl_flags |= SL_BATCH;
    507      1.10      ad 	} else
    508       1.1   rmind 		sil->sl_flags &= ~SL_BATCH;
    509      1.10      ad 
    510      1.10      ad 	/* Reset the time sums */
    511       1.1   rmind 	sil->sl_slpsum = 0;
    512       1.1   rmind 	sil->sl_rtsum = 0;
    513       1.1   rmind 
    514      1.10      ad 	/* Estimate threads on time-sharing queue only */
    515      1.10      ad 	if (l->l_priority >= PRI_HIGHEST_TS)
    516       1.1   rmind 		return;
    517  1.13.4.2  bouyer 	KASSERT(l->l_class == SCHED_OTHER);
    518       1.1   rmind 
    519      1.10      ad 	/* If it is CPU-bound not a first time - decrease the priority */
    520      1.11   rmind 	prio = l->l_priority;
    521      1.11   rmind 	if (batch && prio != 0)
    522      1.11   rmind 		prio--;
    523      1.10      ad 
    524       1.1   rmind 	/* If thread was not ran a second or more - set a high priority */
    525      1.11   rmind 	if (l->l_stat == LSRUN) {
    526      1.11   rmind 		if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
    527      1.11   rmind 			prio = high_pri[prio];
    528      1.11   rmind 		/* Re-enqueue the thread if priority has changed */
    529      1.11   rmind 		if (prio != l->l_priority)
    530      1.11   rmind 			lwp_changepri(l, prio);
    531      1.11   rmind 	} else {
    532      1.11   rmind 		/* In other states, change the priority directly */
    533      1.11   rmind 		l->l_priority = prio;
    534      1.11   rmind 	}
    535       1.1   rmind }
    536       1.1   rmind 
    537       1.1   rmind /*
    538       1.1   rmind  * Migration and balancing.
    539       1.1   rmind  */
    540       1.1   rmind 
    541       1.1   rmind #ifdef MULTIPROCESSOR
    542       1.1   rmind 
    543  1.13.4.2  bouyer /* Estimate if LWP is cache-hot */
    544  1.13.4.2  bouyer static inline bool
    545  1.13.4.2  bouyer lwp_cache_hot(const struct lwp *l)
    546  1.13.4.2  bouyer {
    547  1.13.4.2  bouyer 	const sched_info_lwp_t *sil = l->l_sched_info;
    548  1.13.4.2  bouyer 
    549  1.13.4.2  bouyer 	if (l->l_slptime || sil->sl_lrtime == 0)
    550  1.13.4.2  bouyer 		return false;
    551  1.13.4.2  bouyer 
    552  1.13.4.2  bouyer 	return (hardclock_ticks - sil->sl_lrtime < cacheht_time);
    553  1.13.4.2  bouyer }
    554  1.13.4.2  bouyer 
    555       1.1   rmind /* Check if LWP can migrate to the chosen CPU */
    556       1.1   rmind static inline bool
    557  1.13.4.2  bouyer sched_migratable(const struct lwp *l, struct cpu_info *ci)
    558       1.1   rmind {
    559  1.13.4.2  bouyer 	const struct schedstate_percpu *spc = &ci->ci_schedstate;
    560       1.1   rmind 
    561  1.13.4.2  bouyer 	/* CPU is offline */
    562  1.13.4.2  bouyer 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
    563       1.1   rmind 		return false;
    564       1.1   rmind 
    565  1.13.4.2  bouyer 	/* Affinity bind */
    566  1.13.4.2  bouyer 	if (__predict_false(l->l_flag & LW_AFFINITY))
    567  1.13.4.2  bouyer 		return CPU_ISSET(cpu_index(ci), &l->l_affinity);
    568  1.13.4.2  bouyer 
    569  1.13.4.2  bouyer 	/* Processor-set */
    570  1.13.4.2  bouyer 	return (spc->spc_psid == l->l_psid);
    571       1.1   rmind }
    572       1.1   rmind 
    573       1.1   rmind /*
    574       1.1   rmind  * Estimate the migration of LWP to the other CPU.
    575       1.1   rmind  * Take and return the CPU, if migration is needed.
    576       1.1   rmind  */
    577       1.1   rmind struct cpu_info *
    578       1.1   rmind sched_takecpu(struct lwp *l)
    579       1.1   rmind {
    580  1.13.4.2  bouyer 	struct cpu_info *ci, *tci;
    581       1.1   rmind 	struct schedstate_percpu *spc;
    582       1.1   rmind 	runqueue_t *ci_rq;
    583       1.1   rmind 	CPU_INFO_ITERATOR cii;
    584       1.1   rmind 	pri_t eprio, lpri;
    585       1.1   rmind 
    586  1.13.4.2  bouyer 	KASSERT(lwp_locked(l, NULL));
    587  1.13.4.2  bouyer 
    588       1.1   rmind 	ci = l->l_cpu;
    589       1.1   rmind 	spc = &ci->ci_schedstate;
    590       1.1   rmind 	ci_rq = spc->spc_sched_info;
    591       1.1   rmind 
    592  1.13.4.2  bouyer 	/* If thread is strictly bound, do not estimate other CPUs */
    593  1.13.4.2  bouyer 	if (l->l_flag & LW_BOUND)
    594  1.13.4.2  bouyer 		return ci;
    595  1.13.4.2  bouyer 
    596       1.1   rmind 	/* CPU of this thread is idling - run there */
    597       1.1   rmind 	if (ci_rq->r_count == 0)
    598       1.1   rmind 		return ci;
    599       1.1   rmind 
    600       1.1   rmind 	eprio = lwp_eprio(l);
    601       1.1   rmind 
    602       1.1   rmind 	/* Stay if thread is cache-hot */
    603  1.13.4.2  bouyer 	if (__predict_true(l->l_stat != LSIDL) &&
    604  1.13.4.2  bouyer 	    lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
    605       1.1   rmind 		return ci;
    606       1.1   rmind 
    607       1.1   rmind 	/* Run on current CPU if priority of thread is higher */
    608       1.1   rmind 	ci = curcpu();
    609       1.1   rmind 	spc = &ci->ci_schedstate;
    610      1.10      ad 	if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
    611       1.1   rmind 		return ci;
    612       1.1   rmind 
    613       1.1   rmind 	/*
    614       1.1   rmind 	 * Look for the CPU with the lowest priority thread.  In case of
    615       1.1   rmind 	 * equal the priority - check the lower count of the threads.
    616       1.1   rmind 	 */
    617  1.13.4.2  bouyer 	tci = l->l_cpu;
    618      1.10      ad 	lpri = PRI_COUNT;
    619       1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    620       1.1   rmind 		runqueue_t *ici_rq;
    621       1.1   rmind 		pri_t pri;
    622       1.1   rmind 
    623       1.1   rmind 		spc = &ci->ci_schedstate;
    624       1.1   rmind 		ici_rq = spc->spc_sched_info;
    625      1.10      ad 		pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
    626      1.10      ad 		if (pri > lpri)
    627       1.1   rmind 			continue;
    628       1.1   rmind 
    629  1.13.4.2  bouyer 		if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
    630       1.1   rmind 			continue;
    631       1.1   rmind 
    632  1.13.4.2  bouyer 		if (!sched_migratable(l, ci))
    633       1.1   rmind 			continue;
    634       1.1   rmind 
    635       1.1   rmind 		lpri = pri;
    636       1.1   rmind 		tci = ci;
    637       1.1   rmind 		ci_rq = ici_rq;
    638       1.1   rmind 	}
    639       1.1   rmind 	return tci;
    640       1.1   rmind }
    641       1.1   rmind 
    642       1.1   rmind /*
    643       1.1   rmind  * Tries to catch an LWP from the runqueue of other CPU.
    644       1.1   rmind  */
    645       1.1   rmind static struct lwp *
    646       1.1   rmind sched_catchlwp(void)
    647       1.1   rmind {
    648       1.1   rmind 	struct cpu_info *curci = curcpu(), *ci = worker_ci;
    649       1.1   rmind 	TAILQ_HEAD(, lwp) *q_head;
    650       1.1   rmind 	runqueue_t *ci_rq;
    651       1.1   rmind 	struct lwp *l;
    652       1.1   rmind 
    653       1.1   rmind 	if (curci == ci)
    654       1.1   rmind 		return NULL;
    655       1.1   rmind 
    656       1.1   rmind 	/* Lockless check */
    657       1.1   rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    658       1.1   rmind 	if (ci_rq->r_count < min_catch)
    659       1.1   rmind 		return NULL;
    660       1.1   rmind 
    661       1.1   rmind 	/*
    662       1.1   rmind 	 * Double-lock the runqueues.
    663       1.1   rmind 	 */
    664       1.3   rmind 	if (curci < ci) {
    665       1.1   rmind 		spc_lock(ci);
    666       1.1   rmind 	} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
    667       1.1   rmind 		const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
    668       1.1   rmind 
    669       1.1   rmind 		spc_unlock(curci);
    670       1.1   rmind 		spc_lock(ci);
    671       1.1   rmind 		spc_lock(curci);
    672       1.1   rmind 
    673       1.1   rmind 		if (cur_rq->r_count) {
    674       1.1   rmind 			spc_unlock(ci);
    675       1.1   rmind 			return NULL;
    676       1.1   rmind 		}
    677       1.1   rmind 	}
    678       1.1   rmind 
    679       1.1   rmind 	if (ci_rq->r_count < min_catch) {
    680       1.1   rmind 		spc_unlock(ci);
    681       1.1   rmind 		return NULL;
    682       1.1   rmind 	}
    683       1.1   rmind 
    684       1.1   rmind 	/* Take the highest priority thread */
    685       1.1   rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    686       1.1   rmind 	l = TAILQ_FIRST(q_head);
    687       1.1   rmind 
    688       1.1   rmind 	for (;;) {
    689       1.1   rmind 		/* Check the first and next result from the queue */
    690       1.1   rmind 		if (l == NULL)
    691       1.1   rmind 			break;
    692       1.1   rmind 
    693       1.1   rmind 		/* Look for threads, whose are allowed to migrate */
    694  1.13.4.2  bouyer 		if ((l->l_flag & LW_SYSTEM) || lwp_cache_hot(l) ||
    695  1.13.4.2  bouyer 		    !sched_migratable(l, curci)) {
    696       1.1   rmind 			l = TAILQ_NEXT(l, l_runq);
    697       1.1   rmind 			continue;
    698       1.1   rmind 		}
    699       1.1   rmind 		/* Recheck if chosen thread is still on the runqueue */
    700       1.1   rmind 		if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
    701       1.1   rmind 			sched_dequeue(l);
    702       1.1   rmind 			l->l_cpu = curci;
    703       1.1   rmind 			lwp_setlock(l, curci->ci_schedstate.spc_mutex);
    704       1.1   rmind 			sched_enqueue(l, false);
    705       1.1   rmind 			break;
    706       1.1   rmind 		}
    707       1.1   rmind 		l = TAILQ_NEXT(l, l_runq);
    708       1.1   rmind 	}
    709       1.1   rmind 	spc_unlock(ci);
    710       1.1   rmind 
    711       1.1   rmind 	return l;
    712       1.1   rmind }
    713       1.1   rmind 
    714       1.1   rmind /*
    715       1.1   rmind  * Periodical calculations for balancing.
    716       1.1   rmind  */
    717       1.1   rmind static void
    718       1.1   rmind sched_balance(void *nocallout)
    719       1.1   rmind {
    720       1.1   rmind 	struct cpu_info *ci, *hci;
    721       1.1   rmind 	runqueue_t *ci_rq;
    722       1.1   rmind 	CPU_INFO_ITERATOR cii;
    723       1.1   rmind 	u_int highest;
    724       1.1   rmind 
    725       1.1   rmind 	hci = curcpu();
    726       1.1   rmind 	highest = 0;
    727       1.1   rmind 
    728       1.1   rmind 	/* Make lockless countings */
    729       1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    730       1.1   rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
    731       1.1   rmind 
    732       1.1   rmind 		/* Average count of the threads */
    733       1.1   rmind 		ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
    734       1.1   rmind 
    735       1.1   rmind 		/* Look for CPU with the highest average */
    736       1.1   rmind 		if (ci_rq->r_avgcount > highest) {
    737       1.1   rmind 			hci = ci;
    738       1.1   rmind 			highest = ci_rq->r_avgcount;
    739       1.1   rmind 		}
    740       1.1   rmind 	}
    741       1.1   rmind 
    742       1.1   rmind 	/* Update the worker */
    743       1.1   rmind 	worker_ci = hci;
    744       1.1   rmind 
    745       1.1   rmind 	if (nocallout == NULL)
    746       1.1   rmind 		callout_schedule(&balance_ch, balance_period);
    747       1.1   rmind }
    748       1.1   rmind 
    749       1.1   rmind #else
    750       1.1   rmind 
    751       1.1   rmind struct cpu_info *
    752       1.1   rmind sched_takecpu(struct lwp *l)
    753       1.1   rmind {
    754       1.1   rmind 
    755       1.1   rmind 	return l->l_cpu;
    756       1.1   rmind }
    757       1.1   rmind 
    758       1.1   rmind #endif	/* MULTIPROCESSOR */
    759       1.1   rmind 
    760       1.1   rmind /*
    761       1.1   rmind  * Scheduler mill.
    762       1.1   rmind  */
    763       1.1   rmind struct lwp *
    764       1.1   rmind sched_nextlwp(void)
    765       1.1   rmind {
    766       1.1   rmind 	struct cpu_info *ci = curcpu();
    767       1.1   rmind 	struct schedstate_percpu *spc;
    768       1.1   rmind 	TAILQ_HEAD(, lwp) *q_head;
    769       1.1   rmind 	sched_info_lwp_t *sil;
    770       1.1   rmind 	runqueue_t *ci_rq;
    771       1.1   rmind 	struct lwp *l;
    772       1.1   rmind 
    773       1.1   rmind 	spc = &ci->ci_schedstate;
    774       1.1   rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    775       1.1   rmind 
    776       1.1   rmind #ifdef MULTIPROCESSOR
    777       1.1   rmind 	/* If runqueue is empty, try to catch some thread from other CPU */
    778      1.11   rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
    779       1.7   rmind 		if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
    780       1.1   rmind 			return NULL;
    781       1.1   rmind 	} else if (ci_rq->r_count == 0) {
    782       1.1   rmind 		/* Reset the counter, and call the balancer */
    783       1.1   rmind 		ci_rq->r_avgcount = 0;
    784       1.1   rmind 		sched_balance(ci);
    785       1.1   rmind 
    786       1.1   rmind 		/* The re-locking will be done inside */
    787       1.1   rmind 		return sched_catchlwp();
    788       1.1   rmind 	}
    789       1.1   rmind #else
    790       1.1   rmind 	if (ci_rq->r_count == 0)
    791       1.1   rmind 		return NULL;
    792       1.1   rmind #endif
    793       1.1   rmind 
    794       1.1   rmind 	/* Take the highest priority thread */
    795       1.1   rmind 	KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
    796       1.1   rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    797       1.1   rmind 	l = TAILQ_FIRST(q_head);
    798       1.1   rmind 	KASSERT(l != NULL);
    799       1.1   rmind 
    800       1.1   rmind 	/* Update the counters */
    801       1.1   rmind 	sil = l->l_sched_info;
    802       1.1   rmind 	KASSERT(sil->sl_timeslice >= min_ts);
    803       1.1   rmind 	KASSERT(sil->sl_timeslice <= max_ts);
    804       1.1   rmind 	spc->spc_ticks = sil->sl_timeslice;
    805       1.1   rmind 	sil->sl_rtime = hardclock_ticks;
    806       1.1   rmind 
    807       1.1   rmind 	return l;
    808       1.1   rmind }
    809       1.1   rmind 
    810       1.1   rmind bool
    811       1.1   rmind sched_curcpu_runnable_p(void)
    812       1.1   rmind {
    813       1.1   rmind 	const struct cpu_info *ci = curcpu();
    814       1.1   rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    815       1.1   rmind 
    816      1.11   rmind #ifndef __HAVE_FAST_SOFTINTS
    817      1.11   rmind 	if (ci->ci_data.cpu_softints)
    818      1.11   rmind 		return true;
    819      1.11   rmind #endif
    820      1.11   rmind 
    821       1.1   rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    822       1.7   rmind 		return (ci_rq->r_count - ci_rq->r_mcount);
    823       1.1   rmind 
    824       1.1   rmind 	return ci_rq->r_count;
    825       1.1   rmind }
    826       1.1   rmind 
    827       1.1   rmind /*
    828       1.1   rmind  * Time-driven events.
    829       1.1   rmind  */
    830       1.1   rmind 
    831       1.1   rmind /*
    832       1.1   rmind  * Called once per time-quantum.  This routine is CPU-local and runs at
    833       1.1   rmind  * IPL_SCHED, thus the locking is not needed.
    834       1.1   rmind  */
    835       1.1   rmind void
    836       1.1   rmind sched_tick(struct cpu_info *ci)
    837       1.1   rmind {
    838       1.1   rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    839       1.1   rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    840       1.1   rmind 	struct lwp *l = curlwp;
    841  1.13.4.2  bouyer 	const sched_info_lwp_t *sil = l->l_sched_info;
    842       1.1   rmind 
    843       1.2   rmind 	if (CURCPU_IDLE_P())
    844       1.2   rmind 		return;
    845       1.1   rmind 
    846      1.10      ad 	switch (l->l_class) {
    847       1.2   rmind 	case SCHED_FIFO:
    848       1.2   rmind 		/*
    849       1.2   rmind 		 * Update the time-quantum, and continue running,
    850       1.2   rmind 		 * if thread runs on FIFO real-time policy.
    851       1.2   rmind 		 */
    852  1.13.4.2  bouyer 		KASSERT(l->l_priority > PRI_HIGHEST_TS);
    853       1.1   rmind 		spc->spc_ticks = sil->sl_timeslice;
    854       1.1   rmind 		return;
    855       1.2   rmind 	case SCHED_OTHER:
    856      1.10      ad 		/*
    857      1.10      ad 		 * If thread is in time-sharing queue, decrease the priority,
    858      1.10      ad 		 * and run with a higher time-quantum.
    859      1.10      ad 		 */
    860  1.13.4.2  bouyer 		KASSERT(l->l_priority <= PRI_HIGHEST_TS);
    861      1.10      ad 		if (l->l_priority != 0)
    862      1.10      ad 			l->l_priority--;
    863       1.2   rmind 		break;
    864       1.1   rmind 	}
    865       1.1   rmind 
    866       1.1   rmind 	/*
    867       1.2   rmind 	 * If there are higher priority threads or threads in the same queue,
    868       1.2   rmind 	 * mark that thread should yield, otherwise, continue running.
    869       1.1   rmind 	 */
    870  1.13.4.2  bouyer 	if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
    871       1.1   rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    872       1.1   rmind 		cpu_need_resched(ci, 0);
    873       1.1   rmind 	} else
    874       1.1   rmind 		spc->spc_ticks = sil->sl_timeslice;
    875       1.1   rmind }
    876       1.1   rmind 
    877       1.1   rmind /*
    878       1.1   rmind  * Sysctl nodes and initialization.
    879       1.1   rmind  */
    880       1.1   rmind 
    881       1.1   rmind static int
    882  1.13.4.2  bouyer sysctl_sched_rtts(SYSCTLFN_ARGS)
    883  1.13.4.2  bouyer {
    884  1.13.4.2  bouyer 	struct sysctlnode node;
    885  1.13.4.2  bouyer 	int rttsms = hztoms(rt_ts);
    886  1.13.4.2  bouyer 
    887  1.13.4.2  bouyer 	node = *rnode;
    888  1.13.4.2  bouyer 	node.sysctl_data = &rttsms;
    889  1.13.4.2  bouyer 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    890  1.13.4.2  bouyer }
    891  1.13.4.2  bouyer 
    892  1.13.4.2  bouyer static int
    893       1.1   rmind sysctl_sched_mints(SYSCTLFN_ARGS)
    894       1.1   rmind {
    895       1.1   rmind 	struct sysctlnode node;
    896       1.1   rmind 	struct cpu_info *ci;
    897       1.1   rmind 	int error, newsize;
    898       1.1   rmind 	CPU_INFO_ITERATOR cii;
    899       1.1   rmind 
    900       1.1   rmind 	node = *rnode;
    901       1.1   rmind 	node.sysctl_data = &newsize;
    902       1.1   rmind 
    903       1.1   rmind 	newsize = hztoms(min_ts);
    904       1.1   rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    905       1.1   rmind 	if (error || newp == NULL)
    906       1.1   rmind 		return error;
    907       1.1   rmind 
    908       1.8   rmind 	newsize = mstohz(newsize);
    909       1.1   rmind 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    910       1.1   rmind 		return EINVAL;
    911       1.1   rmind 
    912       1.1   rmind 	/* It is safe to do this in such order */
    913       1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci))
    914       1.1   rmind 		spc_lock(ci);
    915       1.1   rmind 
    916       1.8   rmind 	min_ts = newsize;
    917       1.1   rmind 	sched_precalcts();
    918       1.1   rmind 
    919       1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci))
    920       1.1   rmind 		spc_unlock(ci);
    921       1.1   rmind 
    922       1.1   rmind 	return 0;
    923       1.1   rmind }
    924       1.1   rmind 
    925       1.1   rmind static int
    926       1.1   rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
    927       1.1   rmind {
    928       1.1   rmind 	struct sysctlnode node;
    929       1.1   rmind 	struct cpu_info *ci;
    930       1.1   rmind 	int error, newsize;
    931       1.1   rmind 	CPU_INFO_ITERATOR cii;
    932       1.1   rmind 
    933       1.1   rmind 	node = *rnode;
    934       1.1   rmind 	node.sysctl_data = &newsize;
    935       1.1   rmind 
    936       1.1   rmind 	newsize = hztoms(max_ts);
    937       1.1   rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    938       1.1   rmind 	if (error || newp == NULL)
    939       1.1   rmind 		return error;
    940       1.1   rmind 
    941       1.8   rmind 	newsize = mstohz(newsize);
    942       1.1   rmind 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    943       1.1   rmind 		return EINVAL;
    944       1.1   rmind 
    945       1.1   rmind 	/* It is safe to do this in such order */
    946       1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci))
    947       1.1   rmind 		spc_lock(ci);
    948       1.1   rmind 
    949       1.8   rmind 	max_ts = newsize;
    950       1.1   rmind 	sched_precalcts();
    951       1.1   rmind 
    952       1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci))
    953       1.1   rmind 		spc_unlock(ci);
    954       1.1   rmind 
    955       1.1   rmind 	return 0;
    956       1.1   rmind }
    957       1.1   rmind 
    958       1.1   rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    959       1.1   rmind {
    960       1.1   rmind 	const struct sysctlnode *node = NULL;
    961       1.1   rmind 
    962       1.1   rmind 	sysctl_createv(clog, 0, NULL, NULL,
    963       1.1   rmind 		CTLFLAG_PERMANENT,
    964       1.1   rmind 		CTLTYPE_NODE, "kern", NULL,
    965       1.1   rmind 		NULL, 0, NULL, 0,
    966       1.1   rmind 		CTL_KERN, CTL_EOL);
    967       1.1   rmind 	sysctl_createv(clog, 0, NULL, &node,
    968       1.1   rmind 		CTLFLAG_PERMANENT,
    969       1.1   rmind 		CTLTYPE_NODE, "sched",
    970       1.1   rmind 		SYSCTL_DESCR("Scheduler options"),
    971       1.1   rmind 		NULL, 0, NULL, 0,
    972       1.1   rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    973       1.1   rmind 
    974       1.1   rmind 	if (node == NULL)
    975       1.1   rmind 		return;
    976       1.1   rmind 
    977       1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
    978       1.1   rmind 		CTLFLAG_PERMANENT,
    979       1.1   rmind 		CTLTYPE_STRING, "name", NULL,
    980       1.1   rmind 		NULL, 0, __UNCONST("M2"), 0,
    981       1.1   rmind 		CTL_CREATE, CTL_EOL);
    982       1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
    983  1.13.4.2  bouyer 		CTLFLAG_PERMANENT,
    984  1.13.4.2  bouyer 		CTLTYPE_INT, "rtts",
    985  1.13.4.2  bouyer 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    986  1.13.4.2  bouyer 		sysctl_sched_rtts, 0, NULL, 0,
    987  1.13.4.2  bouyer 		CTL_CREATE, CTL_EOL);
    988  1.13.4.2  bouyer 	sysctl_createv(clog, 0, &node, NULL,
    989       1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    990       1.1   rmind 		CTLTYPE_INT, "maxts",
    991       1.8   rmind 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
    992       1.1   rmind 		sysctl_sched_maxts, 0, &max_ts, 0,
    993       1.1   rmind 		CTL_CREATE, CTL_EOL);
    994       1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
    995       1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    996       1.1   rmind 		CTLTYPE_INT, "mints",
    997       1.8   rmind 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
    998       1.1   rmind 		sysctl_sched_mints, 0, &min_ts, 0,
    999       1.1   rmind 		CTL_CREATE, CTL_EOL);
   1000       1.1   rmind 
   1001       1.1   rmind #ifdef MULTIPROCESSOR
   1002       1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1003       1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1004       1.1   rmind 		CTLTYPE_INT, "cacheht_time",
   1005       1.8   rmind 		SYSCTL_DESCR("Cache hotness time (in ticks)"),
   1006       1.1   rmind 		NULL, 0, &cacheht_time, 0,
   1007       1.1   rmind 		CTL_CREATE, CTL_EOL);
   1008       1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1009       1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1010       1.9   rmind 		CTLTYPE_INT, "balance_period",
   1011       1.9   rmind 		SYSCTL_DESCR("Balance period (in ticks)"),
   1012       1.1   rmind 		NULL, 0, &balance_period, 0,
   1013       1.1   rmind 		CTL_CREATE, CTL_EOL);
   1014       1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1015       1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1016       1.1   rmind 		CTLTYPE_INT, "min_catch",
   1017       1.8   rmind 		SYSCTL_DESCR("Minimal count of the threads for catching"),
   1018       1.1   rmind 		NULL, 0, &min_catch, 0,
   1019       1.1   rmind 		CTL_CREATE, CTL_EOL);
   1020       1.1   rmind #endif
   1021       1.1   rmind }
   1022       1.1   rmind 
   1023       1.1   rmind /*
   1024       1.1   rmind  * Debugging.
   1025       1.1   rmind  */
   1026       1.1   rmind 
   1027       1.1   rmind #ifdef DDB
   1028       1.1   rmind 
   1029       1.1   rmind void
   1030       1.1   rmind sched_print_runqueue(void (*pr)(const char *, ...))
   1031       1.1   rmind {
   1032       1.1   rmind 	runqueue_t *ci_rq;
   1033       1.1   rmind 	sched_info_lwp_t *sil;
   1034       1.1   rmind 	struct lwp *l;
   1035       1.1   rmind 	struct proc *p;
   1036       1.1   rmind 	int i;
   1037       1.1   rmind 
   1038       1.1   rmind 	struct cpu_info *ci;
   1039       1.1   rmind 	CPU_INFO_ITERATOR cii;
   1040       1.1   rmind 
   1041       1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
   1042       1.1   rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
   1043       1.1   rmind 
   1044       1.1   rmind 		(*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
   1045       1.1   rmind 		(*pr)(" pid.lid = %d.%d, threads count = %u, "
   1046       1.1   rmind 		    "avgcount = %u, highest pri = %d\n",
   1047       1.1   rmind 		    ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
   1048       1.1   rmind 		    ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
   1049      1.10      ad 		i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
   1050       1.1   rmind 		do {
   1051      1.10      ad 			uint32_t q;
   1052      1.10      ad 			q = ci_rq->r_bitmap[i];
   1053      1.10      ad 			(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
   1054      1.10      ad 		} while (i--);
   1055       1.1   rmind 	}
   1056       1.1   rmind 
   1057       1.1   rmind 	(*pr)("   %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
   1058      1.10      ad 	    "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
   1059       1.1   rmind 
   1060       1.1   rmind 	PROCLIST_FOREACH(p, &allproc) {
   1061       1.1   rmind 		(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
   1062       1.1   rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1063       1.1   rmind 			sil = l->l_sched_info;
   1064       1.1   rmind 			ci = l->l_cpu;
   1065       1.1   rmind 			(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
   1066       1.1   rmind 			    "%u ST=%d RT=%d %d\n",
   1067      1.10      ad 			    (int)l->l_lid, l->l_priority, lwp_eprio(l),
   1068       1.1   rmind 			    l->l_flag, l->l_stat == LSRUN ? "RQ" :
   1069       1.1   rmind 			    (l->l_stat == LSSLEEP ? "SQ" : "-"),
   1070       1.1   rmind 			    sil->sl_timeslice, l, ci->ci_cpuid,
   1071       1.1   rmind 			    (u_int)(hardclock_ticks - sil->sl_lrtime),
   1072       1.1   rmind 			    sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
   1073       1.1   rmind 		}
   1074       1.1   rmind 	}
   1075       1.1   rmind }
   1076       1.1   rmind 
   1077  1.13.4.2  bouyer #endif
   1078