sched_m2.c revision 1.18 1 1.18 rmind /* $NetBSD: sched_m2.c,v 1.18 2008/01/15 18:41:37 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*
4 1.15 rmind * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 1.12 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * Redistribution and use in source and binary forms, with or without
8 1.1 rmind * modification, are permitted provided that the following conditions
9 1.1 rmind * are met:
10 1.1 rmind * 1. Redistributions of source code must retain the above copyright
11 1.1 rmind * notice, this list of conditions and the following disclaimer.
12 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer in the
14 1.1 rmind * documentation and/or other materials provided with the distribution.
15 1.1 rmind *
16 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
27 1.1 rmind */
28 1.1 rmind
29 1.1 rmind /*
30 1.1 rmind * TODO:
31 1.1 rmind * - Implementation of fair share queue;
32 1.1 rmind * - Support for NUMA;
33 1.1 rmind */
34 1.1 rmind
35 1.1 rmind #include <sys/cdefs.h>
36 1.18 rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.18 2008/01/15 18:41:37 rmind Exp $");
37 1.1 rmind
38 1.1 rmind #include <sys/param.h>
39 1.1 rmind
40 1.8 rmind #include <sys/bitops.h>
41 1.1 rmind #include <sys/cpu.h>
42 1.1 rmind #include <sys/callout.h>
43 1.1 rmind #include <sys/errno.h>
44 1.1 rmind #include <sys/kernel.h>
45 1.1 rmind #include <sys/kmem.h>
46 1.1 rmind #include <sys/lwp.h>
47 1.1 rmind #include <sys/mutex.h>
48 1.1 rmind #include <sys/pool.h>
49 1.1 rmind #include <sys/proc.h>
50 1.15 rmind #include <sys/pset.h>
51 1.1 rmind #include <sys/resource.h>
52 1.1 rmind #include <sys/resourcevar.h>
53 1.1 rmind #include <sys/sched.h>
54 1.1 rmind #include <sys/syscallargs.h>
55 1.1 rmind #include <sys/sysctl.h>
56 1.1 rmind #include <sys/types.h>
57 1.1 rmind
58 1.1 rmind /*
59 1.10 ad * Priority related defintions.
60 1.1 rmind */
61 1.10 ad #define PRI_TS_COUNT (NPRI_USER)
62 1.10 ad #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
63 1.10 ad #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
64 1.10 ad
65 1.11 rmind #define PRI_HIGHEST_TS (MAXPRI_USER)
66 1.10 ad
67 1.10 ad const int schedppq = 1;
68 1.1 rmind
69 1.1 rmind /*
70 1.1 rmind * Bits per map.
71 1.1 rmind */
72 1.10 ad #define BITMAP_BITS (32)
73 1.10 ad #define BITMAP_SHIFT (5)
74 1.11 rmind #define BITMAP_MSB (0x80000000U)
75 1.10 ad #define BITMAP_MASK (BITMAP_BITS - 1)
76 1.1 rmind
77 1.1 rmind /*
78 1.1 rmind * Time-slices and priorities.
79 1.1 rmind */
80 1.1 rmind static u_int min_ts; /* Minimal time-slice */
81 1.1 rmind static u_int max_ts; /* Maximal time-slice */
82 1.1 rmind static u_int rt_ts; /* Real-time time-slice */
83 1.1 rmind static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
84 1.1 rmind static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
85 1.1 rmind
86 1.1 rmind /*
87 1.1 rmind * Migration and balancing.
88 1.1 rmind */
89 1.1 rmind #ifdef MULTIPROCESSOR
90 1.15 rmind
91 1.1 rmind static u_int cacheht_time; /* Cache hotness time */
92 1.1 rmind static u_int min_catch; /* Minimal LWP count for catching */
93 1.1 rmind
94 1.1 rmind static u_int balance_period; /* Balance period */
95 1.1 rmind static struct callout balance_ch; /* Callout of balancer */
96 1.1 rmind
97 1.1 rmind static struct cpu_info * volatile worker_ci;
98 1.1 rmind
99 1.1 rmind #endif
100 1.1 rmind
101 1.1 rmind /*
102 1.1 rmind * Structures, runqueue.
103 1.1 rmind */
104 1.1 rmind
105 1.1 rmind typedef struct {
106 1.1 rmind TAILQ_HEAD(, lwp) q_head;
107 1.1 rmind } queue_t;
108 1.1 rmind
109 1.1 rmind typedef struct {
110 1.1 rmind /* Lock and bitmap */
111 1.1 rmind kmutex_t r_rq_mutex;
112 1.10 ad uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
113 1.1 rmind /* Counters */
114 1.1 rmind u_int r_count; /* Count of the threads */
115 1.1 rmind pri_t r_highest_pri; /* Highest priority */
116 1.1 rmind u_int r_avgcount; /* Average count of threads */
117 1.1 rmind u_int r_mcount; /* Count of migratable threads */
118 1.1 rmind /* Runqueues */
119 1.1 rmind queue_t r_rt_queue[PRI_RT_COUNT];
120 1.1 rmind queue_t r_ts_queue[PRI_TS_COUNT];
121 1.1 rmind } runqueue_t;
122 1.1 rmind
123 1.1 rmind typedef struct {
124 1.1 rmind u_int sl_flags;
125 1.1 rmind u_int sl_timeslice; /* Time-slice of thread */
126 1.1 rmind u_int sl_slept; /* Saved sleep time for sleep sum */
127 1.1 rmind u_int sl_slpsum; /* Sum of sleep time */
128 1.1 rmind u_int sl_rtime; /* Saved start time of run */
129 1.1 rmind u_int sl_rtsum; /* Sum of the run time */
130 1.1 rmind u_int sl_lrtime; /* Last run time */
131 1.1 rmind } sched_info_lwp_t;
132 1.1 rmind
133 1.1 rmind /* Flags */
134 1.1 rmind #define SL_BATCH 0x01
135 1.1 rmind
136 1.1 rmind /* Pool of the scheduler-specific structures for threads */
137 1.1 rmind static struct pool sil_pool;
138 1.1 rmind
139 1.1 rmind /*
140 1.1 rmind * Prototypes.
141 1.1 rmind */
142 1.1 rmind
143 1.1 rmind static inline void * sched_getrq(runqueue_t *, const pri_t);
144 1.1 rmind static inline void sched_newts(struct lwp *);
145 1.1 rmind static void sched_precalcts(void);
146 1.1 rmind
147 1.1 rmind #ifdef MULTIPROCESSOR
148 1.1 rmind static struct lwp * sched_catchlwp(void);
149 1.1 rmind static void sched_balance(void *);
150 1.1 rmind #endif
151 1.1 rmind
152 1.1 rmind /*
153 1.1 rmind * Initialization and setup.
154 1.1 rmind */
155 1.1 rmind
156 1.1 rmind void
157 1.1 rmind sched_rqinit(void)
158 1.1 rmind {
159 1.1 rmind struct cpu_info *ci = curcpu();
160 1.1 rmind
161 1.1 rmind if (hz < 100) {
162 1.1 rmind panic("sched_rqinit: value of HZ is too low\n");
163 1.1 rmind }
164 1.1 rmind
165 1.1 rmind /* Default timing ranges */
166 1.1 rmind min_ts = mstohz(50); /* ~50ms */
167 1.1 rmind max_ts = mstohz(150); /* ~150ms */
168 1.1 rmind rt_ts = mstohz(100); /* ~100ms */
169 1.1 rmind sched_precalcts();
170 1.1 rmind
171 1.1 rmind #ifdef MULTIPROCESSOR
172 1.1 rmind /* Balancing */
173 1.1 rmind worker_ci = ci;
174 1.1 rmind cacheht_time = mstohz(5); /* ~5 ms */
175 1.1 rmind balance_period = mstohz(300); /* ~300ms */
176 1.1 rmind min_catch = ~0;
177 1.1 rmind #endif
178 1.1 rmind
179 1.1 rmind /* Pool of the scheduler-specific structures */
180 1.1 rmind pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
181 1.1 rmind "lwpsd", &pool_allocator_nointr, IPL_NONE);
182 1.1 rmind
183 1.1 rmind /* Attach the primary CPU here */
184 1.1 rmind sched_cpuattach(ci);
185 1.1 rmind
186 1.1 rmind /* Initialize the scheduler structure of the primary LWP */
187 1.1 rmind lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
188 1.10 ad sched_lwp_fork(NULL, &lwp0);
189 1.1 rmind sched_newts(&lwp0);
190 1.1 rmind }
191 1.1 rmind
192 1.1 rmind void
193 1.1 rmind sched_setup(void)
194 1.1 rmind {
195 1.1 rmind
196 1.1 rmind #ifdef MULTIPROCESSOR
197 1.1 rmind /* Minimal count of LWPs for catching: log2(count of CPUs) */
198 1.8 rmind min_catch = min(ilog2(ncpu), 4);
199 1.1 rmind
200 1.1 rmind /* Initialize balancing callout and run it */
201 1.1 rmind callout_init(&balance_ch, CALLOUT_MPSAFE);
202 1.1 rmind callout_setfunc(&balance_ch, sched_balance, NULL);
203 1.1 rmind callout_schedule(&balance_ch, balance_period);
204 1.1 rmind #endif
205 1.1 rmind }
206 1.1 rmind
207 1.1 rmind void
208 1.1 rmind sched_cpuattach(struct cpu_info *ci)
209 1.1 rmind {
210 1.1 rmind runqueue_t *ci_rq;
211 1.1 rmind void *rq_ptr;
212 1.1 rmind u_int i, size;
213 1.1 rmind
214 1.1 rmind /*
215 1.1 rmind * Allocate the run queue.
216 1.1 rmind * XXX: Estimate cache behaviour more..
217 1.1 rmind */
218 1.1 rmind size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
219 1.14 ad rq_ptr = kmem_zalloc(size, KM_SLEEP);
220 1.1 rmind if (rq_ptr == NULL) {
221 1.1 rmind panic("scheduler: could not allocate the runqueue");
222 1.1 rmind }
223 1.1 rmind /* XXX: Save the original pointer for future.. */
224 1.1 rmind ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
225 1.1 rmind
226 1.1 rmind /* Initialize run queues */
227 1.13 ad mutex_init(&ci_rq->r_rq_mutex, MUTEX_DEFAULT, IPL_SCHED);
228 1.1 rmind for (i = 0; i < PRI_RT_COUNT; i++)
229 1.1 rmind TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
230 1.1 rmind for (i = 0; i < PRI_TS_COUNT; i++)
231 1.1 rmind TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
232 1.10 ad ci_rq->r_highest_pri = 0;
233 1.1 rmind
234 1.1 rmind ci->ci_schedstate.spc_sched_info = ci_rq;
235 1.1 rmind ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
236 1.1 rmind }
237 1.1 rmind
238 1.1 rmind /* Pre-calculate the time-slices for the priorities */
239 1.1 rmind static void
240 1.1 rmind sched_precalcts(void)
241 1.1 rmind {
242 1.1 rmind pri_t p;
243 1.1 rmind
244 1.10 ad /* Time-sharing range */
245 1.10 ad for (p = 0; p <= PRI_HIGHEST_TS; p++) {
246 1.10 ad ts_map[p] = max_ts -
247 1.10 ad (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
248 1.10 ad high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
249 1.10 ad ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
250 1.10 ad }
251 1.10 ad
252 1.10 ad /* Real-time range */
253 1.10 ad for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
254 1.1 rmind ts_map[p] = rt_ts;
255 1.1 rmind high_pri[p] = p;
256 1.1 rmind }
257 1.1 rmind }
258 1.1 rmind
259 1.1 rmind /*
260 1.1 rmind * Hooks.
261 1.1 rmind */
262 1.1 rmind
263 1.1 rmind void
264 1.1 rmind sched_proc_fork(struct proc *parent, struct proc *child)
265 1.1 rmind {
266 1.1 rmind struct lwp *l;
267 1.1 rmind
268 1.1 rmind LIST_FOREACH(l, &child->p_lwps, l_sibling) {
269 1.1 rmind lwp_lock(l);
270 1.1 rmind sched_newts(l);
271 1.1 rmind lwp_unlock(l);
272 1.1 rmind }
273 1.1 rmind }
274 1.1 rmind
275 1.1 rmind void
276 1.1 rmind sched_proc_exit(struct proc *child, struct proc *parent)
277 1.1 rmind {
278 1.1 rmind
279 1.1 rmind /* Dummy */
280 1.1 rmind }
281 1.1 rmind
282 1.1 rmind void
283 1.10 ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
284 1.1 rmind {
285 1.1 rmind
286 1.10 ad KASSERT(l2->l_sched_info == NULL);
287 1.10 ad l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
288 1.10 ad memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
289 1.1 rmind }
290 1.1 rmind
291 1.1 rmind void
292 1.1 rmind sched_lwp_exit(struct lwp *l)
293 1.1 rmind {
294 1.1 rmind
295 1.1 rmind KASSERT(l->l_sched_info != NULL);
296 1.1 rmind pool_put(&sil_pool, l->l_sched_info);
297 1.1 rmind l->l_sched_info = NULL;
298 1.1 rmind }
299 1.1 rmind
300 1.1 rmind void
301 1.10 ad sched_lwp_collect(struct lwp *l)
302 1.10 ad {
303 1.10 ad
304 1.10 ad }
305 1.10 ad
306 1.10 ad void
307 1.1 rmind sched_setrunnable(struct lwp *l)
308 1.1 rmind {
309 1.1 rmind
310 1.1 rmind /* Dummy */
311 1.1 rmind }
312 1.1 rmind
313 1.1 rmind void
314 1.1 rmind sched_schedclock(struct lwp *l)
315 1.1 rmind {
316 1.1 rmind
317 1.1 rmind /* Dummy */
318 1.1 rmind }
319 1.1 rmind
320 1.1 rmind /*
321 1.1 rmind * Priorities and time-slice.
322 1.1 rmind */
323 1.1 rmind
324 1.1 rmind void
325 1.1 rmind sched_nice(struct proc *p, int prio)
326 1.1 rmind {
327 1.1 rmind
328 1.17 rmind /* TODO: implement as SCHED_IA */
329 1.1 rmind }
330 1.1 rmind
331 1.1 rmind /* Recalculate the time-slice */
332 1.1 rmind static inline void
333 1.1 rmind sched_newts(struct lwp *l)
334 1.1 rmind {
335 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
336 1.1 rmind
337 1.1 rmind sil->sl_timeslice = ts_map[lwp_eprio(l)];
338 1.1 rmind }
339 1.1 rmind
340 1.1 rmind /*
341 1.1 rmind * Control of the runqueue.
342 1.1 rmind */
343 1.1 rmind
344 1.1 rmind static inline void *
345 1.1 rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
346 1.1 rmind {
347 1.1 rmind
348 1.1 rmind KASSERT(prio < PRI_COUNT);
349 1.10 ad return (prio <= PRI_HIGHEST_TS) ?
350 1.10 ad &ci_rq->r_ts_queue[prio].q_head :
351 1.10 ad &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
352 1.1 rmind }
353 1.1 rmind
354 1.1 rmind void
355 1.1 rmind sched_enqueue(struct lwp *l, bool swtch)
356 1.1 rmind {
357 1.1 rmind runqueue_t *ci_rq;
358 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
359 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
360 1.1 rmind const pri_t eprio = lwp_eprio(l);
361 1.1 rmind
362 1.1 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
363 1.1 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
364 1.1 rmind
365 1.1 rmind /* Update the last run time on switch */
366 1.11 rmind if (__predict_true(swtch == true)) {
367 1.1 rmind sil->sl_lrtime = hardclock_ticks;
368 1.1 rmind sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
369 1.8 rmind } else if (sil->sl_lrtime == 0)
370 1.8 rmind sil->sl_lrtime = hardclock_ticks;
371 1.1 rmind
372 1.1 rmind /* Enqueue the thread */
373 1.1 rmind q_head = sched_getrq(ci_rq, eprio);
374 1.1 rmind if (TAILQ_EMPTY(q_head)) {
375 1.1 rmind u_int i;
376 1.1 rmind uint32_t q;
377 1.1 rmind
378 1.1 rmind /* Mark bit */
379 1.1 rmind i = eprio >> BITMAP_SHIFT;
380 1.10 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
381 1.10 ad KASSERT((ci_rq->r_bitmap[i] & q) == 0);
382 1.10 ad ci_rq->r_bitmap[i] |= q;
383 1.1 rmind }
384 1.1 rmind TAILQ_INSERT_TAIL(q_head, l, l_runq);
385 1.1 rmind ci_rq->r_count++;
386 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
387 1.1 rmind ci_rq->r_mcount++;
388 1.1 rmind
389 1.1 rmind /*
390 1.1 rmind * Update the value of highest priority in the runqueue,
391 1.1 rmind * if priority of this thread is higher.
392 1.1 rmind */
393 1.10 ad if (eprio > ci_rq->r_highest_pri)
394 1.1 rmind ci_rq->r_highest_pri = eprio;
395 1.1 rmind
396 1.1 rmind sched_newts(l);
397 1.1 rmind }
398 1.1 rmind
399 1.1 rmind void
400 1.1 rmind sched_dequeue(struct lwp *l)
401 1.1 rmind {
402 1.1 rmind runqueue_t *ci_rq;
403 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
404 1.1 rmind const pri_t eprio = lwp_eprio(l);
405 1.1 rmind
406 1.1 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
407 1.1 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
408 1.15 rmind
409 1.10 ad KASSERT(eprio <= ci_rq->r_highest_pri);
410 1.1 rmind KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
411 1.1 rmind KASSERT(ci_rq->r_count > 0);
412 1.1 rmind
413 1.1 rmind ci_rq->r_count--;
414 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
415 1.1 rmind ci_rq->r_mcount--;
416 1.1 rmind
417 1.1 rmind q_head = sched_getrq(ci_rq, eprio);
418 1.1 rmind TAILQ_REMOVE(q_head, l, l_runq);
419 1.1 rmind if (TAILQ_EMPTY(q_head)) {
420 1.1 rmind u_int i;
421 1.1 rmind uint32_t q;
422 1.1 rmind
423 1.1 rmind /* Unmark bit */
424 1.1 rmind i = eprio >> BITMAP_SHIFT;
425 1.10 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
426 1.10 ad KASSERT((ci_rq->r_bitmap[i] & q) != 0);
427 1.10 ad ci_rq->r_bitmap[i] &= ~q;
428 1.1 rmind
429 1.1 rmind /*
430 1.1 rmind * Update the value of highest priority in the runqueue, in a
431 1.1 rmind * case it was a last thread in the queue of highest priority.
432 1.1 rmind */
433 1.1 rmind if (eprio != ci_rq->r_highest_pri)
434 1.1 rmind return;
435 1.1 rmind
436 1.1 rmind do {
437 1.1 rmind q = ffs(ci_rq->r_bitmap[i]);
438 1.1 rmind if (q) {
439 1.1 rmind ci_rq->r_highest_pri =
440 1.10 ad (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
441 1.1 rmind return;
442 1.1 rmind }
443 1.10 ad } while (i--);
444 1.1 rmind
445 1.10 ad /* If not found - set the lowest value */
446 1.10 ad ci_rq->r_highest_pri = 0;
447 1.1 rmind }
448 1.1 rmind }
449 1.1 rmind
450 1.1 rmind void
451 1.1 rmind sched_slept(struct lwp *l)
452 1.1 rmind {
453 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
454 1.1 rmind
455 1.1 rmind /* Save the time when thread has slept */
456 1.1 rmind sil->sl_slept = hardclock_ticks;
457 1.1 rmind
458 1.1 rmind /*
459 1.10 ad * If thread is in time-sharing queue and batch flag is not marked,
460 1.10 ad * increase the the priority, and run with the lower time-quantum.
461 1.1 rmind */
462 1.18 rmind if (l->l_priority < PRI_HIGHEST_TS &&
463 1.16 rmind (sil->sl_flags & SL_BATCH) == 0) {
464 1.10 ad KASSERT(l->l_class == SCHED_OTHER);
465 1.10 ad l->l_priority++;
466 1.10 ad }
467 1.1 rmind }
468 1.1 rmind
469 1.1 rmind void
470 1.1 rmind sched_wakeup(struct lwp *l)
471 1.1 rmind {
472 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
473 1.1 rmind
474 1.1 rmind /* Update sleep time delta */
475 1.1 rmind sil->sl_slpsum += (l->l_slptime == 0) ?
476 1.1 rmind (hardclock_ticks - sil->sl_slept) : hz;
477 1.1 rmind
478 1.1 rmind /* If thread was sleeping a second or more - set a high priority */
479 1.1 rmind if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
480 1.10 ad l->l_priority = high_pri[l->l_priority];
481 1.1 rmind
482 1.1 rmind /* Also, consider looking for a better CPU to wake up */
483 1.1 rmind if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
484 1.1 rmind l->l_cpu = sched_takecpu(l);
485 1.1 rmind }
486 1.1 rmind
487 1.1 rmind void
488 1.1 rmind sched_pstats_hook(struct lwp *l)
489 1.1 rmind {
490 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
491 1.11 rmind pri_t prio;
492 1.10 ad bool batch;
493 1.10 ad
494 1.10 ad if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
495 1.10 ad l->l_stat == LSSUSPENDED)
496 1.10 ad l->l_slptime++;
497 1.1 rmind
498 1.1 rmind /*
499 1.1 rmind * Set that thread is more CPU-bound, if sum of run time exceeds the
500 1.10 ad * sum of sleep time. Check if thread is CPU-bound a first time.
501 1.1 rmind */
502 1.10 ad batch = (sil->sl_rtsum > sil->sl_slpsum);
503 1.10 ad if (batch) {
504 1.10 ad if ((sil->sl_flags & SL_BATCH) == 0)
505 1.10 ad batch = false;
506 1.1 rmind sil->sl_flags |= SL_BATCH;
507 1.10 ad } else
508 1.1 rmind sil->sl_flags &= ~SL_BATCH;
509 1.10 ad
510 1.10 ad /* Reset the time sums */
511 1.1 rmind sil->sl_slpsum = 0;
512 1.1 rmind sil->sl_rtsum = 0;
513 1.1 rmind
514 1.10 ad /* Estimate threads on time-sharing queue only */
515 1.10 ad if (l->l_priority >= PRI_HIGHEST_TS)
516 1.1 rmind return;
517 1.16 rmind KASSERT(l->l_class == SCHED_OTHER);
518 1.1 rmind
519 1.10 ad /* If it is CPU-bound not a first time - decrease the priority */
520 1.11 rmind prio = l->l_priority;
521 1.11 rmind if (batch && prio != 0)
522 1.11 rmind prio--;
523 1.10 ad
524 1.1 rmind /* If thread was not ran a second or more - set a high priority */
525 1.11 rmind if (l->l_stat == LSRUN) {
526 1.11 rmind if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
527 1.11 rmind prio = high_pri[prio];
528 1.11 rmind /* Re-enqueue the thread if priority has changed */
529 1.11 rmind if (prio != l->l_priority)
530 1.11 rmind lwp_changepri(l, prio);
531 1.11 rmind } else {
532 1.11 rmind /* In other states, change the priority directly */
533 1.11 rmind l->l_priority = prio;
534 1.11 rmind }
535 1.1 rmind }
536 1.1 rmind
537 1.1 rmind /*
538 1.1 rmind * Migration and balancing.
539 1.1 rmind */
540 1.1 rmind
541 1.1 rmind #ifdef MULTIPROCESSOR
542 1.1 rmind
543 1.16 rmind /* Estimate if LWP is cache-hot */
544 1.16 rmind static inline bool
545 1.16 rmind lwp_cache_hot(const struct lwp *l)
546 1.16 rmind {
547 1.16 rmind const sched_info_lwp_t *sil = l->l_sched_info;
548 1.16 rmind
549 1.16 rmind if (l->l_slptime || sil->sl_lrtime == 0)
550 1.16 rmind return false;
551 1.16 rmind
552 1.16 rmind return (hardclock_ticks - sil->sl_lrtime < cacheht_time);
553 1.16 rmind }
554 1.16 rmind
555 1.1 rmind /* Check if LWP can migrate to the chosen CPU */
556 1.1 rmind static inline bool
557 1.15 rmind sched_migratable(const struct lwp *l, struct cpu_info *ci)
558 1.1 rmind {
559 1.15 rmind const struct schedstate_percpu *spc = &ci->ci_schedstate;
560 1.1 rmind
561 1.15 rmind /* CPU is offline */
562 1.15 rmind if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
563 1.1 rmind return false;
564 1.1 rmind
565 1.15 rmind /* Affinity bind */
566 1.15 rmind if (__predict_false(l->l_flag & LW_AFFINITY))
567 1.15 rmind return CPU_ISSET(cpu_index(ci), &l->l_affinity);
568 1.15 rmind
569 1.15 rmind /* Processor-set */
570 1.15 rmind return (spc->spc_psid == l->l_psid);
571 1.1 rmind }
572 1.1 rmind
573 1.1 rmind /*
574 1.1 rmind * Estimate the migration of LWP to the other CPU.
575 1.1 rmind * Take and return the CPU, if migration is needed.
576 1.1 rmind */
577 1.1 rmind struct cpu_info *
578 1.1 rmind sched_takecpu(struct lwp *l)
579 1.1 rmind {
580 1.15 rmind struct cpu_info *ci, *tci;
581 1.1 rmind struct schedstate_percpu *spc;
582 1.1 rmind runqueue_t *ci_rq;
583 1.1 rmind CPU_INFO_ITERATOR cii;
584 1.1 rmind pri_t eprio, lpri;
585 1.1 rmind
586 1.15 rmind KASSERT(lwp_locked(l, NULL));
587 1.15 rmind
588 1.1 rmind ci = l->l_cpu;
589 1.1 rmind spc = &ci->ci_schedstate;
590 1.1 rmind ci_rq = spc->spc_sched_info;
591 1.1 rmind
592 1.15 rmind /* If thread is strictly bound, do not estimate other CPUs */
593 1.15 rmind if (l->l_flag & LW_BOUND)
594 1.15 rmind return ci;
595 1.15 rmind
596 1.1 rmind /* CPU of this thread is idling - run there */
597 1.1 rmind if (ci_rq->r_count == 0)
598 1.1 rmind return ci;
599 1.1 rmind
600 1.1 rmind eprio = lwp_eprio(l);
601 1.1 rmind
602 1.1 rmind /* Stay if thread is cache-hot */
603 1.16 rmind if (__predict_true(l->l_stat != LSIDL) &&
604 1.16 rmind lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
605 1.1 rmind return ci;
606 1.1 rmind
607 1.1 rmind /* Run on current CPU if priority of thread is higher */
608 1.1 rmind ci = curcpu();
609 1.1 rmind spc = &ci->ci_schedstate;
610 1.10 ad if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
611 1.1 rmind return ci;
612 1.1 rmind
613 1.1 rmind /*
614 1.1 rmind * Look for the CPU with the lowest priority thread. In case of
615 1.1 rmind * equal the priority - check the lower count of the threads.
616 1.1 rmind */
617 1.15 rmind tci = l->l_cpu;
618 1.10 ad lpri = PRI_COUNT;
619 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
620 1.1 rmind runqueue_t *ici_rq;
621 1.1 rmind pri_t pri;
622 1.1 rmind
623 1.1 rmind spc = &ci->ci_schedstate;
624 1.1 rmind ici_rq = spc->spc_sched_info;
625 1.10 ad pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
626 1.10 ad if (pri > lpri)
627 1.1 rmind continue;
628 1.1 rmind
629 1.15 rmind if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
630 1.1 rmind continue;
631 1.1 rmind
632 1.15 rmind if (!sched_migratable(l, ci))
633 1.1 rmind continue;
634 1.1 rmind
635 1.1 rmind lpri = pri;
636 1.1 rmind tci = ci;
637 1.1 rmind ci_rq = ici_rq;
638 1.1 rmind }
639 1.1 rmind return tci;
640 1.1 rmind }
641 1.1 rmind
642 1.1 rmind /*
643 1.1 rmind * Tries to catch an LWP from the runqueue of other CPU.
644 1.1 rmind */
645 1.1 rmind static struct lwp *
646 1.1 rmind sched_catchlwp(void)
647 1.1 rmind {
648 1.1 rmind struct cpu_info *curci = curcpu(), *ci = worker_ci;
649 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
650 1.1 rmind runqueue_t *ci_rq;
651 1.1 rmind struct lwp *l;
652 1.1 rmind
653 1.1 rmind if (curci == ci)
654 1.1 rmind return NULL;
655 1.1 rmind
656 1.1 rmind /* Lockless check */
657 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
658 1.1 rmind if (ci_rq->r_count < min_catch)
659 1.1 rmind return NULL;
660 1.1 rmind
661 1.1 rmind /*
662 1.1 rmind * Double-lock the runqueues.
663 1.1 rmind */
664 1.3 rmind if (curci < ci) {
665 1.1 rmind spc_lock(ci);
666 1.1 rmind } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
667 1.1 rmind const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
668 1.1 rmind
669 1.1 rmind spc_unlock(curci);
670 1.1 rmind spc_lock(ci);
671 1.1 rmind spc_lock(curci);
672 1.1 rmind
673 1.1 rmind if (cur_rq->r_count) {
674 1.1 rmind spc_unlock(ci);
675 1.1 rmind return NULL;
676 1.1 rmind }
677 1.1 rmind }
678 1.1 rmind
679 1.1 rmind if (ci_rq->r_count < min_catch) {
680 1.1 rmind spc_unlock(ci);
681 1.1 rmind return NULL;
682 1.1 rmind }
683 1.1 rmind
684 1.1 rmind /* Take the highest priority thread */
685 1.1 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
686 1.1 rmind l = TAILQ_FIRST(q_head);
687 1.1 rmind
688 1.1 rmind for (;;) {
689 1.1 rmind /* Check the first and next result from the queue */
690 1.1 rmind if (l == NULL)
691 1.1 rmind break;
692 1.1 rmind
693 1.1 rmind /* Look for threads, whose are allowed to migrate */
694 1.16 rmind if ((l->l_flag & LW_SYSTEM) || lwp_cache_hot(l) ||
695 1.15 rmind !sched_migratable(l, curci)) {
696 1.1 rmind l = TAILQ_NEXT(l, l_runq);
697 1.1 rmind continue;
698 1.1 rmind }
699 1.1 rmind /* Recheck if chosen thread is still on the runqueue */
700 1.1 rmind if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
701 1.1 rmind sched_dequeue(l);
702 1.1 rmind l->l_cpu = curci;
703 1.1 rmind lwp_setlock(l, curci->ci_schedstate.spc_mutex);
704 1.1 rmind sched_enqueue(l, false);
705 1.1 rmind break;
706 1.1 rmind }
707 1.1 rmind l = TAILQ_NEXT(l, l_runq);
708 1.1 rmind }
709 1.1 rmind spc_unlock(ci);
710 1.1 rmind
711 1.1 rmind return l;
712 1.1 rmind }
713 1.1 rmind
714 1.1 rmind /*
715 1.1 rmind * Periodical calculations for balancing.
716 1.1 rmind */
717 1.1 rmind static void
718 1.1 rmind sched_balance(void *nocallout)
719 1.1 rmind {
720 1.1 rmind struct cpu_info *ci, *hci;
721 1.1 rmind runqueue_t *ci_rq;
722 1.1 rmind CPU_INFO_ITERATOR cii;
723 1.1 rmind u_int highest;
724 1.1 rmind
725 1.1 rmind hci = curcpu();
726 1.1 rmind highest = 0;
727 1.1 rmind
728 1.1 rmind /* Make lockless countings */
729 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
730 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
731 1.1 rmind
732 1.1 rmind /* Average count of the threads */
733 1.1 rmind ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
734 1.1 rmind
735 1.1 rmind /* Look for CPU with the highest average */
736 1.1 rmind if (ci_rq->r_avgcount > highest) {
737 1.1 rmind hci = ci;
738 1.1 rmind highest = ci_rq->r_avgcount;
739 1.1 rmind }
740 1.1 rmind }
741 1.1 rmind
742 1.1 rmind /* Update the worker */
743 1.1 rmind worker_ci = hci;
744 1.1 rmind
745 1.1 rmind if (nocallout == NULL)
746 1.1 rmind callout_schedule(&balance_ch, balance_period);
747 1.1 rmind }
748 1.1 rmind
749 1.1 rmind #else
750 1.1 rmind
751 1.1 rmind struct cpu_info *
752 1.1 rmind sched_takecpu(struct lwp *l)
753 1.1 rmind {
754 1.1 rmind
755 1.1 rmind return l->l_cpu;
756 1.1 rmind }
757 1.1 rmind
758 1.1 rmind #endif /* MULTIPROCESSOR */
759 1.1 rmind
760 1.1 rmind /*
761 1.1 rmind * Scheduler mill.
762 1.1 rmind */
763 1.1 rmind struct lwp *
764 1.1 rmind sched_nextlwp(void)
765 1.1 rmind {
766 1.1 rmind struct cpu_info *ci = curcpu();
767 1.1 rmind struct schedstate_percpu *spc;
768 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
769 1.1 rmind sched_info_lwp_t *sil;
770 1.1 rmind runqueue_t *ci_rq;
771 1.1 rmind struct lwp *l;
772 1.1 rmind
773 1.1 rmind spc = &ci->ci_schedstate;
774 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
775 1.1 rmind
776 1.1 rmind #ifdef MULTIPROCESSOR
777 1.1 rmind /* If runqueue is empty, try to catch some thread from other CPU */
778 1.11 rmind if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
779 1.7 rmind if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
780 1.1 rmind return NULL;
781 1.1 rmind } else if (ci_rq->r_count == 0) {
782 1.1 rmind /* Reset the counter, and call the balancer */
783 1.1 rmind ci_rq->r_avgcount = 0;
784 1.1 rmind sched_balance(ci);
785 1.1 rmind
786 1.1 rmind /* The re-locking will be done inside */
787 1.1 rmind return sched_catchlwp();
788 1.1 rmind }
789 1.1 rmind #else
790 1.1 rmind if (ci_rq->r_count == 0)
791 1.1 rmind return NULL;
792 1.1 rmind #endif
793 1.1 rmind
794 1.1 rmind /* Take the highest priority thread */
795 1.1 rmind KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
796 1.1 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
797 1.1 rmind l = TAILQ_FIRST(q_head);
798 1.1 rmind KASSERT(l != NULL);
799 1.1 rmind
800 1.1 rmind /* Update the counters */
801 1.1 rmind sil = l->l_sched_info;
802 1.1 rmind KASSERT(sil->sl_timeslice >= min_ts);
803 1.1 rmind KASSERT(sil->sl_timeslice <= max_ts);
804 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
805 1.1 rmind sil->sl_rtime = hardclock_ticks;
806 1.1 rmind
807 1.1 rmind return l;
808 1.1 rmind }
809 1.1 rmind
810 1.1 rmind bool
811 1.1 rmind sched_curcpu_runnable_p(void)
812 1.1 rmind {
813 1.1 rmind const struct cpu_info *ci = curcpu();
814 1.1 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
815 1.1 rmind
816 1.11 rmind #ifndef __HAVE_FAST_SOFTINTS
817 1.11 rmind if (ci->ci_data.cpu_softints)
818 1.11 rmind return true;
819 1.11 rmind #endif
820 1.11 rmind
821 1.1 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
822 1.7 rmind return (ci_rq->r_count - ci_rq->r_mcount);
823 1.1 rmind
824 1.1 rmind return ci_rq->r_count;
825 1.1 rmind }
826 1.1 rmind
827 1.1 rmind /*
828 1.1 rmind * Time-driven events.
829 1.1 rmind */
830 1.1 rmind
831 1.1 rmind /*
832 1.1 rmind * Called once per time-quantum. This routine is CPU-local and runs at
833 1.1 rmind * IPL_SCHED, thus the locking is not needed.
834 1.1 rmind */
835 1.1 rmind void
836 1.1 rmind sched_tick(struct cpu_info *ci)
837 1.1 rmind {
838 1.1 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
839 1.1 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
840 1.1 rmind struct lwp *l = curlwp;
841 1.16 rmind const sched_info_lwp_t *sil = l->l_sched_info;
842 1.1 rmind
843 1.2 rmind if (CURCPU_IDLE_P())
844 1.2 rmind return;
845 1.1 rmind
846 1.10 ad switch (l->l_class) {
847 1.2 rmind case SCHED_FIFO:
848 1.2 rmind /*
849 1.2 rmind * Update the time-quantum, and continue running,
850 1.2 rmind * if thread runs on FIFO real-time policy.
851 1.2 rmind */
852 1.16 rmind KASSERT(l->l_priority > PRI_HIGHEST_TS);
853 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
854 1.1 rmind return;
855 1.2 rmind case SCHED_OTHER:
856 1.10 ad /*
857 1.10 ad * If thread is in time-sharing queue, decrease the priority,
858 1.10 ad * and run with a higher time-quantum.
859 1.10 ad */
860 1.16 rmind KASSERT(l->l_priority <= PRI_HIGHEST_TS);
861 1.10 ad if (l->l_priority != 0)
862 1.10 ad l->l_priority--;
863 1.2 rmind break;
864 1.1 rmind }
865 1.1 rmind
866 1.1 rmind /*
867 1.2 rmind * If there are higher priority threads or threads in the same queue,
868 1.2 rmind * mark that thread should yield, otherwise, continue running.
869 1.1 rmind */
870 1.15 rmind if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
871 1.1 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
872 1.1 rmind cpu_need_resched(ci, 0);
873 1.1 rmind } else
874 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
875 1.1 rmind }
876 1.1 rmind
877 1.1 rmind /*
878 1.1 rmind * Sysctl nodes and initialization.
879 1.1 rmind */
880 1.1 rmind
881 1.1 rmind static int
882 1.15 rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
883 1.15 rmind {
884 1.15 rmind struct sysctlnode node;
885 1.15 rmind int rttsms = hztoms(rt_ts);
886 1.15 rmind
887 1.15 rmind node = *rnode;
888 1.15 rmind node.sysctl_data = &rttsms;
889 1.15 rmind return sysctl_lookup(SYSCTLFN_CALL(&node));
890 1.15 rmind }
891 1.15 rmind
892 1.15 rmind static int
893 1.1 rmind sysctl_sched_mints(SYSCTLFN_ARGS)
894 1.1 rmind {
895 1.1 rmind struct sysctlnode node;
896 1.1 rmind struct cpu_info *ci;
897 1.1 rmind int error, newsize;
898 1.1 rmind CPU_INFO_ITERATOR cii;
899 1.1 rmind
900 1.1 rmind node = *rnode;
901 1.1 rmind node.sysctl_data = &newsize;
902 1.1 rmind
903 1.1 rmind newsize = hztoms(min_ts);
904 1.1 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
905 1.1 rmind if (error || newp == NULL)
906 1.1 rmind return error;
907 1.1 rmind
908 1.8 rmind newsize = mstohz(newsize);
909 1.1 rmind if (newsize < 1 || newsize > hz || newsize >= max_ts)
910 1.1 rmind return EINVAL;
911 1.1 rmind
912 1.1 rmind /* It is safe to do this in such order */
913 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
914 1.1 rmind spc_lock(ci);
915 1.1 rmind
916 1.8 rmind min_ts = newsize;
917 1.1 rmind sched_precalcts();
918 1.1 rmind
919 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
920 1.1 rmind spc_unlock(ci);
921 1.1 rmind
922 1.1 rmind return 0;
923 1.1 rmind }
924 1.1 rmind
925 1.1 rmind static int
926 1.1 rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
927 1.1 rmind {
928 1.1 rmind struct sysctlnode node;
929 1.1 rmind struct cpu_info *ci;
930 1.1 rmind int error, newsize;
931 1.1 rmind CPU_INFO_ITERATOR cii;
932 1.1 rmind
933 1.1 rmind node = *rnode;
934 1.1 rmind node.sysctl_data = &newsize;
935 1.1 rmind
936 1.1 rmind newsize = hztoms(max_ts);
937 1.1 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
938 1.1 rmind if (error || newp == NULL)
939 1.1 rmind return error;
940 1.1 rmind
941 1.8 rmind newsize = mstohz(newsize);
942 1.1 rmind if (newsize < 10 || newsize > hz || newsize <= min_ts)
943 1.1 rmind return EINVAL;
944 1.1 rmind
945 1.1 rmind /* It is safe to do this in such order */
946 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
947 1.1 rmind spc_lock(ci);
948 1.1 rmind
949 1.8 rmind max_ts = newsize;
950 1.1 rmind sched_precalcts();
951 1.1 rmind
952 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
953 1.1 rmind spc_unlock(ci);
954 1.1 rmind
955 1.1 rmind return 0;
956 1.1 rmind }
957 1.1 rmind
958 1.1 rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
959 1.1 rmind {
960 1.1 rmind const struct sysctlnode *node = NULL;
961 1.1 rmind
962 1.1 rmind sysctl_createv(clog, 0, NULL, NULL,
963 1.1 rmind CTLFLAG_PERMANENT,
964 1.1 rmind CTLTYPE_NODE, "kern", NULL,
965 1.1 rmind NULL, 0, NULL, 0,
966 1.1 rmind CTL_KERN, CTL_EOL);
967 1.1 rmind sysctl_createv(clog, 0, NULL, &node,
968 1.1 rmind CTLFLAG_PERMANENT,
969 1.1 rmind CTLTYPE_NODE, "sched",
970 1.1 rmind SYSCTL_DESCR("Scheduler options"),
971 1.1 rmind NULL, 0, NULL, 0,
972 1.1 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
973 1.1 rmind
974 1.1 rmind if (node == NULL)
975 1.1 rmind return;
976 1.1 rmind
977 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
978 1.1 rmind CTLFLAG_PERMANENT,
979 1.1 rmind CTLTYPE_STRING, "name", NULL,
980 1.1 rmind NULL, 0, __UNCONST("M2"), 0,
981 1.1 rmind CTL_CREATE, CTL_EOL);
982 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
983 1.15 rmind CTLFLAG_PERMANENT,
984 1.15 rmind CTLTYPE_INT, "rtts",
985 1.15 rmind SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
986 1.15 rmind sysctl_sched_rtts, 0, NULL, 0,
987 1.15 rmind CTL_CREATE, CTL_EOL);
988 1.15 rmind sysctl_createv(clog, 0, &node, NULL,
989 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
990 1.1 rmind CTLTYPE_INT, "maxts",
991 1.8 rmind SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
992 1.1 rmind sysctl_sched_maxts, 0, &max_ts, 0,
993 1.1 rmind CTL_CREATE, CTL_EOL);
994 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
995 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
996 1.1 rmind CTLTYPE_INT, "mints",
997 1.8 rmind SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
998 1.1 rmind sysctl_sched_mints, 0, &min_ts, 0,
999 1.1 rmind CTL_CREATE, CTL_EOL);
1000 1.1 rmind
1001 1.1 rmind #ifdef MULTIPROCESSOR
1002 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
1003 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1004 1.1 rmind CTLTYPE_INT, "cacheht_time",
1005 1.8 rmind SYSCTL_DESCR("Cache hotness time (in ticks)"),
1006 1.1 rmind NULL, 0, &cacheht_time, 0,
1007 1.1 rmind CTL_CREATE, CTL_EOL);
1008 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
1009 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1010 1.9 rmind CTLTYPE_INT, "balance_period",
1011 1.9 rmind SYSCTL_DESCR("Balance period (in ticks)"),
1012 1.1 rmind NULL, 0, &balance_period, 0,
1013 1.1 rmind CTL_CREATE, CTL_EOL);
1014 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
1015 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1016 1.1 rmind CTLTYPE_INT, "min_catch",
1017 1.8 rmind SYSCTL_DESCR("Minimal count of the threads for catching"),
1018 1.1 rmind NULL, 0, &min_catch, 0,
1019 1.1 rmind CTL_CREATE, CTL_EOL);
1020 1.1 rmind #endif
1021 1.1 rmind }
1022 1.1 rmind
1023 1.1 rmind /*
1024 1.1 rmind * Debugging.
1025 1.1 rmind */
1026 1.1 rmind
1027 1.1 rmind #ifdef DDB
1028 1.1 rmind
1029 1.1 rmind void
1030 1.1 rmind sched_print_runqueue(void (*pr)(const char *, ...))
1031 1.1 rmind {
1032 1.1 rmind runqueue_t *ci_rq;
1033 1.1 rmind sched_info_lwp_t *sil;
1034 1.1 rmind struct lwp *l;
1035 1.1 rmind struct proc *p;
1036 1.1 rmind int i;
1037 1.1 rmind
1038 1.1 rmind struct cpu_info *ci;
1039 1.1 rmind CPU_INFO_ITERATOR cii;
1040 1.1 rmind
1041 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
1042 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
1043 1.1 rmind
1044 1.1 rmind (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1045 1.1 rmind (*pr)(" pid.lid = %d.%d, threads count = %u, "
1046 1.1 rmind "avgcount = %u, highest pri = %d\n",
1047 1.1 rmind ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1048 1.1 rmind ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1049 1.10 ad i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1050 1.1 rmind do {
1051 1.10 ad uint32_t q;
1052 1.10 ad q = ci_rq->r_bitmap[i];
1053 1.10 ad (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1054 1.10 ad } while (i--);
1055 1.1 rmind }
1056 1.1 rmind
1057 1.1 rmind (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1058 1.10 ad "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1059 1.1 rmind
1060 1.1 rmind PROCLIST_FOREACH(p, &allproc) {
1061 1.1 rmind (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1062 1.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1063 1.1 rmind sil = l->l_sched_info;
1064 1.1 rmind ci = l->l_cpu;
1065 1.1 rmind (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1066 1.1 rmind "%u ST=%d RT=%d %d\n",
1067 1.10 ad (int)l->l_lid, l->l_priority, lwp_eprio(l),
1068 1.1 rmind l->l_flag, l->l_stat == LSRUN ? "RQ" :
1069 1.1 rmind (l->l_stat == LSSLEEP ? "SQ" : "-"),
1070 1.1 rmind sil->sl_timeslice, l, ci->ci_cpuid,
1071 1.1 rmind (u_int)(hardclock_ticks - sil->sl_lrtime),
1072 1.1 rmind sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1073 1.1 rmind }
1074 1.1 rmind }
1075 1.1 rmind }
1076 1.1 rmind
1077 1.16 rmind #endif
1078