Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.18
      1  1.18  rmind /*	$NetBSD: sched_m2.c,v 1.18 2008/01/15 18:41:37 rmind Exp $	*/
      2   1.1  rmind 
      3   1.1  rmind /*
      4  1.15  rmind  * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  1.12  rmind  * All rights reserved.
      6   1.1  rmind  *
      7   1.1  rmind  * Redistribution and use in source and binary forms, with or without
      8   1.1  rmind  * modification, are permitted provided that the following conditions
      9   1.1  rmind  * are met:
     10   1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rmind  *    documentation and/or other materials provided with the distribution.
     15   1.1  rmind  *
     16   1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17   1.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     27   1.1  rmind  */
     28   1.1  rmind 
     29   1.1  rmind /*
     30   1.1  rmind  * TODO:
     31   1.1  rmind  *  - Implementation of fair share queue;
     32   1.1  rmind  *  - Support for NUMA;
     33   1.1  rmind  */
     34   1.1  rmind 
     35   1.1  rmind #include <sys/cdefs.h>
     36  1.18  rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.18 2008/01/15 18:41:37 rmind Exp $");
     37   1.1  rmind 
     38   1.1  rmind #include <sys/param.h>
     39   1.1  rmind 
     40   1.8  rmind #include <sys/bitops.h>
     41   1.1  rmind #include <sys/cpu.h>
     42   1.1  rmind #include <sys/callout.h>
     43   1.1  rmind #include <sys/errno.h>
     44   1.1  rmind #include <sys/kernel.h>
     45   1.1  rmind #include <sys/kmem.h>
     46   1.1  rmind #include <sys/lwp.h>
     47   1.1  rmind #include <sys/mutex.h>
     48   1.1  rmind #include <sys/pool.h>
     49   1.1  rmind #include <sys/proc.h>
     50  1.15  rmind #include <sys/pset.h>
     51   1.1  rmind #include <sys/resource.h>
     52   1.1  rmind #include <sys/resourcevar.h>
     53   1.1  rmind #include <sys/sched.h>
     54   1.1  rmind #include <sys/syscallargs.h>
     55   1.1  rmind #include <sys/sysctl.h>
     56   1.1  rmind #include <sys/types.h>
     57   1.1  rmind 
     58   1.1  rmind /*
     59  1.10     ad  * Priority related defintions.
     60   1.1  rmind  */
     61  1.10     ad #define	PRI_TS_COUNT	(NPRI_USER)
     62  1.10     ad #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     63  1.10     ad #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     64  1.10     ad 
     65  1.11  rmind #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     66  1.10     ad 
     67  1.10     ad const int schedppq = 1;
     68   1.1  rmind 
     69   1.1  rmind /*
     70   1.1  rmind  * Bits per map.
     71   1.1  rmind  */
     72  1.10     ad #define	BITMAP_BITS	(32)
     73  1.10     ad #define	BITMAP_SHIFT	(5)
     74  1.11  rmind #define	BITMAP_MSB	(0x80000000U)
     75  1.10     ad #define	BITMAP_MASK	(BITMAP_BITS - 1)
     76   1.1  rmind 
     77   1.1  rmind /*
     78   1.1  rmind  * Time-slices and priorities.
     79   1.1  rmind  */
     80   1.1  rmind static u_int	min_ts;			/* Minimal time-slice */
     81   1.1  rmind static u_int	max_ts;			/* Maximal time-slice */
     82   1.1  rmind static u_int	rt_ts;			/* Real-time time-slice */
     83   1.1  rmind static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     84   1.1  rmind static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     85   1.1  rmind 
     86   1.1  rmind /*
     87   1.1  rmind  * Migration and balancing.
     88   1.1  rmind  */
     89   1.1  rmind #ifdef MULTIPROCESSOR
     90  1.15  rmind 
     91   1.1  rmind static u_int	cacheht_time;		/* Cache hotness time */
     92   1.1  rmind static u_int	min_catch;		/* Minimal LWP count for catching */
     93   1.1  rmind 
     94   1.1  rmind static u_int		balance_period;	/* Balance period */
     95   1.1  rmind static struct callout	balance_ch;	/* Callout of balancer */
     96   1.1  rmind 
     97   1.1  rmind static struct cpu_info * volatile worker_ci;
     98   1.1  rmind 
     99   1.1  rmind #endif
    100   1.1  rmind 
    101   1.1  rmind /*
    102   1.1  rmind  * Structures, runqueue.
    103   1.1  rmind  */
    104   1.1  rmind 
    105   1.1  rmind typedef struct {
    106   1.1  rmind 	TAILQ_HEAD(, lwp) q_head;
    107   1.1  rmind } queue_t;
    108   1.1  rmind 
    109   1.1  rmind typedef struct {
    110   1.1  rmind 	/* Lock and bitmap */
    111   1.1  rmind 	kmutex_t	r_rq_mutex;
    112  1.10     ad 	uint32_t	r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
    113   1.1  rmind 	/* Counters */
    114   1.1  rmind 	u_int		r_count;	/* Count of the threads */
    115   1.1  rmind 	pri_t		r_highest_pri;	/* Highest priority */
    116   1.1  rmind 	u_int		r_avgcount;	/* Average count of threads */
    117   1.1  rmind 	u_int		r_mcount;	/* Count of migratable threads */
    118   1.1  rmind 	/* Runqueues */
    119   1.1  rmind 	queue_t		r_rt_queue[PRI_RT_COUNT];
    120   1.1  rmind 	queue_t		r_ts_queue[PRI_TS_COUNT];
    121   1.1  rmind } runqueue_t;
    122   1.1  rmind 
    123   1.1  rmind typedef struct {
    124   1.1  rmind 	u_int		sl_flags;
    125   1.1  rmind 	u_int		sl_timeslice;	/* Time-slice of thread */
    126   1.1  rmind 	u_int		sl_slept;	/* Saved sleep time for sleep sum */
    127   1.1  rmind 	u_int		sl_slpsum;	/* Sum of sleep time */
    128   1.1  rmind 	u_int		sl_rtime;	/* Saved start time of run */
    129   1.1  rmind 	u_int		sl_rtsum;	/* Sum of the run time */
    130   1.1  rmind 	u_int		sl_lrtime;	/* Last run time */
    131   1.1  rmind } sched_info_lwp_t;
    132   1.1  rmind 
    133   1.1  rmind /* Flags */
    134   1.1  rmind #define	SL_BATCH	0x01
    135   1.1  rmind 
    136   1.1  rmind /* Pool of the scheduler-specific structures for threads */
    137   1.1  rmind static struct pool	sil_pool;
    138   1.1  rmind 
    139   1.1  rmind /*
    140   1.1  rmind  * Prototypes.
    141   1.1  rmind  */
    142   1.1  rmind 
    143   1.1  rmind static inline void *	sched_getrq(runqueue_t *, const pri_t);
    144   1.1  rmind static inline void	sched_newts(struct lwp *);
    145   1.1  rmind static void		sched_precalcts(void);
    146   1.1  rmind 
    147   1.1  rmind #ifdef MULTIPROCESSOR
    148   1.1  rmind static struct lwp *	sched_catchlwp(void);
    149   1.1  rmind static void		sched_balance(void *);
    150   1.1  rmind #endif
    151   1.1  rmind 
    152   1.1  rmind /*
    153   1.1  rmind  * Initialization and setup.
    154   1.1  rmind  */
    155   1.1  rmind 
    156   1.1  rmind void
    157   1.1  rmind sched_rqinit(void)
    158   1.1  rmind {
    159   1.1  rmind 	struct cpu_info *ci = curcpu();
    160   1.1  rmind 
    161   1.1  rmind 	if (hz < 100) {
    162   1.1  rmind 		panic("sched_rqinit: value of HZ is too low\n");
    163   1.1  rmind 	}
    164   1.1  rmind 
    165   1.1  rmind 	/* Default timing ranges */
    166   1.1  rmind 	min_ts = mstohz(50);			/* ~50ms  */
    167   1.1  rmind 	max_ts = mstohz(150);			/* ~150ms */
    168   1.1  rmind 	rt_ts = mstohz(100);			/* ~100ms */
    169   1.1  rmind 	sched_precalcts();
    170   1.1  rmind 
    171   1.1  rmind #ifdef MULTIPROCESSOR
    172   1.1  rmind 	/* Balancing */
    173   1.1  rmind 	worker_ci = ci;
    174   1.1  rmind 	cacheht_time = mstohz(5);		/* ~5 ms  */
    175   1.1  rmind 	balance_period = mstohz(300);		/* ~300ms */
    176   1.1  rmind 	min_catch = ~0;
    177   1.1  rmind #endif
    178   1.1  rmind 
    179   1.1  rmind 	/* Pool of the scheduler-specific structures */
    180   1.1  rmind 	pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
    181   1.1  rmind 	    "lwpsd", &pool_allocator_nointr, IPL_NONE);
    182   1.1  rmind 
    183   1.1  rmind 	/* Attach the primary CPU here */
    184   1.1  rmind 	sched_cpuattach(ci);
    185   1.1  rmind 
    186   1.1  rmind 	/* Initialize the scheduler structure of the primary LWP */
    187   1.1  rmind 	lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
    188  1.10     ad 	sched_lwp_fork(NULL, &lwp0);
    189   1.1  rmind 	sched_newts(&lwp0);
    190   1.1  rmind }
    191   1.1  rmind 
    192   1.1  rmind void
    193   1.1  rmind sched_setup(void)
    194   1.1  rmind {
    195   1.1  rmind 
    196   1.1  rmind #ifdef MULTIPROCESSOR
    197   1.1  rmind 	/* Minimal count of LWPs for catching: log2(count of CPUs) */
    198   1.8  rmind 	min_catch = min(ilog2(ncpu), 4);
    199   1.1  rmind 
    200   1.1  rmind 	/* Initialize balancing callout and run it */
    201   1.1  rmind 	callout_init(&balance_ch, CALLOUT_MPSAFE);
    202   1.1  rmind 	callout_setfunc(&balance_ch, sched_balance, NULL);
    203   1.1  rmind 	callout_schedule(&balance_ch, balance_period);
    204   1.1  rmind #endif
    205   1.1  rmind }
    206   1.1  rmind 
    207   1.1  rmind void
    208   1.1  rmind sched_cpuattach(struct cpu_info *ci)
    209   1.1  rmind {
    210   1.1  rmind 	runqueue_t *ci_rq;
    211   1.1  rmind 	void *rq_ptr;
    212   1.1  rmind 	u_int i, size;
    213   1.1  rmind 
    214   1.1  rmind 	/*
    215   1.1  rmind 	 * Allocate the run queue.
    216   1.1  rmind 	 * XXX: Estimate cache behaviour more..
    217   1.1  rmind 	 */
    218   1.1  rmind 	size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
    219  1.14     ad 	rq_ptr = kmem_zalloc(size, KM_SLEEP);
    220   1.1  rmind 	if (rq_ptr == NULL) {
    221   1.1  rmind 		panic("scheduler: could not allocate the runqueue");
    222   1.1  rmind 	}
    223   1.1  rmind 	/* XXX: Save the original pointer for future.. */
    224   1.1  rmind 	ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
    225   1.1  rmind 
    226   1.1  rmind 	/* Initialize run queues */
    227  1.13     ad 	mutex_init(&ci_rq->r_rq_mutex, MUTEX_DEFAULT, IPL_SCHED);
    228   1.1  rmind 	for (i = 0; i < PRI_RT_COUNT; i++)
    229   1.1  rmind 		TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
    230   1.1  rmind 	for (i = 0; i < PRI_TS_COUNT; i++)
    231   1.1  rmind 		TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
    232  1.10     ad 	ci_rq->r_highest_pri = 0;
    233   1.1  rmind 
    234   1.1  rmind 	ci->ci_schedstate.spc_sched_info = ci_rq;
    235   1.1  rmind 	ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
    236   1.1  rmind }
    237   1.1  rmind 
    238   1.1  rmind /* Pre-calculate the time-slices for the priorities */
    239   1.1  rmind static void
    240   1.1  rmind sched_precalcts(void)
    241   1.1  rmind {
    242   1.1  rmind 	pri_t p;
    243   1.1  rmind 
    244  1.10     ad 	/* Time-sharing range */
    245  1.10     ad 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    246  1.10     ad 		ts_map[p] = max_ts -
    247  1.10     ad 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    248  1.10     ad 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    249  1.10     ad 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    250  1.10     ad 	}
    251  1.10     ad 
    252  1.10     ad 	/* Real-time range */
    253  1.10     ad 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    254   1.1  rmind 		ts_map[p] = rt_ts;
    255   1.1  rmind 		high_pri[p] = p;
    256   1.1  rmind 	}
    257   1.1  rmind }
    258   1.1  rmind 
    259   1.1  rmind /*
    260   1.1  rmind  * Hooks.
    261   1.1  rmind  */
    262   1.1  rmind 
    263   1.1  rmind void
    264   1.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    265   1.1  rmind {
    266   1.1  rmind 	struct lwp *l;
    267   1.1  rmind 
    268   1.1  rmind 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    269   1.1  rmind 		lwp_lock(l);
    270   1.1  rmind 		sched_newts(l);
    271   1.1  rmind 		lwp_unlock(l);
    272   1.1  rmind 	}
    273   1.1  rmind }
    274   1.1  rmind 
    275   1.1  rmind void
    276   1.1  rmind sched_proc_exit(struct proc *child, struct proc *parent)
    277   1.1  rmind {
    278   1.1  rmind 
    279   1.1  rmind 	/* Dummy */
    280   1.1  rmind }
    281   1.1  rmind 
    282   1.1  rmind void
    283  1.10     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    284   1.1  rmind {
    285   1.1  rmind 
    286  1.10     ad 	KASSERT(l2->l_sched_info == NULL);
    287  1.10     ad 	l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
    288  1.10     ad 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    289   1.1  rmind }
    290   1.1  rmind 
    291   1.1  rmind void
    292   1.1  rmind sched_lwp_exit(struct lwp *l)
    293   1.1  rmind {
    294   1.1  rmind 
    295   1.1  rmind 	KASSERT(l->l_sched_info != NULL);
    296   1.1  rmind 	pool_put(&sil_pool, l->l_sched_info);
    297   1.1  rmind 	l->l_sched_info = NULL;
    298   1.1  rmind }
    299   1.1  rmind 
    300   1.1  rmind void
    301  1.10     ad sched_lwp_collect(struct lwp *l)
    302  1.10     ad {
    303  1.10     ad 
    304  1.10     ad }
    305  1.10     ad 
    306  1.10     ad void
    307   1.1  rmind sched_setrunnable(struct lwp *l)
    308   1.1  rmind {
    309   1.1  rmind 
    310   1.1  rmind 	/* Dummy */
    311   1.1  rmind }
    312   1.1  rmind 
    313   1.1  rmind void
    314   1.1  rmind sched_schedclock(struct lwp *l)
    315   1.1  rmind {
    316   1.1  rmind 
    317   1.1  rmind 	/* Dummy */
    318   1.1  rmind }
    319   1.1  rmind 
    320   1.1  rmind /*
    321   1.1  rmind  * Priorities and time-slice.
    322   1.1  rmind  */
    323   1.1  rmind 
    324   1.1  rmind void
    325   1.1  rmind sched_nice(struct proc *p, int prio)
    326   1.1  rmind {
    327   1.1  rmind 
    328  1.17  rmind 	/* TODO: implement as SCHED_IA */
    329   1.1  rmind }
    330   1.1  rmind 
    331   1.1  rmind /* Recalculate the time-slice */
    332   1.1  rmind static inline void
    333   1.1  rmind sched_newts(struct lwp *l)
    334   1.1  rmind {
    335   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    336   1.1  rmind 
    337   1.1  rmind 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    338   1.1  rmind }
    339   1.1  rmind 
    340   1.1  rmind /*
    341   1.1  rmind  * Control of the runqueue.
    342   1.1  rmind  */
    343   1.1  rmind 
    344   1.1  rmind static inline void *
    345   1.1  rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
    346   1.1  rmind {
    347   1.1  rmind 
    348   1.1  rmind 	KASSERT(prio < PRI_COUNT);
    349  1.10     ad 	return (prio <= PRI_HIGHEST_TS) ?
    350  1.10     ad 	    &ci_rq->r_ts_queue[prio].q_head :
    351  1.10     ad 	    &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
    352   1.1  rmind }
    353   1.1  rmind 
    354   1.1  rmind void
    355   1.1  rmind sched_enqueue(struct lwp *l, bool swtch)
    356   1.1  rmind {
    357   1.1  rmind 	runqueue_t *ci_rq;
    358   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    359   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    360   1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    361   1.1  rmind 
    362   1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    363   1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    364   1.1  rmind 
    365   1.1  rmind 	/* Update the last run time on switch */
    366  1.11  rmind 	if (__predict_true(swtch == true)) {
    367   1.1  rmind 		sil->sl_lrtime = hardclock_ticks;
    368   1.1  rmind 		sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
    369   1.8  rmind 	} else if (sil->sl_lrtime == 0)
    370   1.8  rmind 		sil->sl_lrtime = hardclock_ticks;
    371   1.1  rmind 
    372   1.1  rmind 	/* Enqueue the thread */
    373   1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    374   1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    375   1.1  rmind 		u_int i;
    376   1.1  rmind 		uint32_t q;
    377   1.1  rmind 
    378   1.1  rmind 		/* Mark bit */
    379   1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    380  1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    381  1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) == 0);
    382  1.10     ad 		ci_rq->r_bitmap[i] |= q;
    383   1.1  rmind 	}
    384   1.1  rmind 	TAILQ_INSERT_TAIL(q_head, l, l_runq);
    385   1.1  rmind 	ci_rq->r_count++;
    386   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    387   1.1  rmind 		ci_rq->r_mcount++;
    388   1.1  rmind 
    389   1.1  rmind 	/*
    390   1.1  rmind 	 * Update the value of highest priority in the runqueue,
    391   1.1  rmind 	 * if priority of this thread is higher.
    392   1.1  rmind 	 */
    393  1.10     ad 	if (eprio > ci_rq->r_highest_pri)
    394   1.1  rmind 		ci_rq->r_highest_pri = eprio;
    395   1.1  rmind 
    396   1.1  rmind 	sched_newts(l);
    397   1.1  rmind }
    398   1.1  rmind 
    399   1.1  rmind void
    400   1.1  rmind sched_dequeue(struct lwp *l)
    401   1.1  rmind {
    402   1.1  rmind 	runqueue_t *ci_rq;
    403   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    404   1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    405   1.1  rmind 
    406   1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    407   1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    408  1.15  rmind 
    409  1.10     ad 	KASSERT(eprio <= ci_rq->r_highest_pri);
    410   1.1  rmind 	KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
    411   1.1  rmind 	KASSERT(ci_rq->r_count > 0);
    412   1.1  rmind 
    413   1.1  rmind 	ci_rq->r_count--;
    414   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    415   1.1  rmind 		ci_rq->r_mcount--;
    416   1.1  rmind 
    417   1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    418   1.1  rmind 	TAILQ_REMOVE(q_head, l, l_runq);
    419   1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    420   1.1  rmind 		u_int i;
    421   1.1  rmind 		uint32_t q;
    422   1.1  rmind 
    423   1.1  rmind 		/* Unmark bit */
    424   1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    425  1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    426  1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) != 0);
    427  1.10     ad 		ci_rq->r_bitmap[i] &= ~q;
    428   1.1  rmind 
    429   1.1  rmind 		/*
    430   1.1  rmind 		 * Update the value of highest priority in the runqueue, in a
    431   1.1  rmind 		 * case it was a last thread in the queue of highest priority.
    432   1.1  rmind 		 */
    433   1.1  rmind 		if (eprio != ci_rq->r_highest_pri)
    434   1.1  rmind 			return;
    435   1.1  rmind 
    436   1.1  rmind 		do {
    437   1.1  rmind 			q = ffs(ci_rq->r_bitmap[i]);
    438   1.1  rmind 			if (q) {
    439   1.1  rmind 				ci_rq->r_highest_pri =
    440  1.10     ad 				    (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
    441   1.1  rmind 				return;
    442   1.1  rmind 			}
    443  1.10     ad 		} while (i--);
    444   1.1  rmind 
    445  1.10     ad 		/* If not found - set the lowest value */
    446  1.10     ad 		ci_rq->r_highest_pri = 0;
    447   1.1  rmind 	}
    448   1.1  rmind }
    449   1.1  rmind 
    450   1.1  rmind void
    451   1.1  rmind sched_slept(struct lwp *l)
    452   1.1  rmind {
    453   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    454   1.1  rmind 
    455   1.1  rmind 	/* Save the time when thread has slept */
    456   1.1  rmind 	sil->sl_slept = hardclock_ticks;
    457   1.1  rmind 
    458   1.1  rmind 	/*
    459  1.10     ad 	 * If thread is in time-sharing queue and batch flag is not marked,
    460  1.10     ad 	 * increase the the priority, and run with the lower time-quantum.
    461   1.1  rmind 	 */
    462  1.18  rmind 	if (l->l_priority < PRI_HIGHEST_TS &&
    463  1.16  rmind 	    (sil->sl_flags & SL_BATCH) == 0) {
    464  1.10     ad 		KASSERT(l->l_class == SCHED_OTHER);
    465  1.10     ad 		l->l_priority++;
    466  1.10     ad 	}
    467   1.1  rmind }
    468   1.1  rmind 
    469   1.1  rmind void
    470   1.1  rmind sched_wakeup(struct lwp *l)
    471   1.1  rmind {
    472   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    473   1.1  rmind 
    474   1.1  rmind 	/* Update sleep time delta */
    475   1.1  rmind 	sil->sl_slpsum += (l->l_slptime == 0) ?
    476   1.1  rmind 	    (hardclock_ticks - sil->sl_slept) : hz;
    477   1.1  rmind 
    478   1.1  rmind 	/* If thread was sleeping a second or more - set a high priority */
    479   1.1  rmind 	if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
    480  1.10     ad 		l->l_priority = high_pri[l->l_priority];
    481   1.1  rmind 
    482   1.1  rmind 	/* Also, consider looking for a better CPU to wake up */
    483   1.1  rmind 	if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
    484   1.1  rmind 		l->l_cpu = sched_takecpu(l);
    485   1.1  rmind }
    486   1.1  rmind 
    487   1.1  rmind void
    488   1.1  rmind sched_pstats_hook(struct lwp *l)
    489   1.1  rmind {
    490   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    491  1.11  rmind 	pri_t prio;
    492  1.10     ad 	bool batch;
    493  1.10     ad 
    494  1.10     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    495  1.10     ad 	    l->l_stat == LSSUSPENDED)
    496  1.10     ad 		l->l_slptime++;
    497   1.1  rmind 
    498   1.1  rmind 	/*
    499   1.1  rmind 	 * Set that thread is more CPU-bound, if sum of run time exceeds the
    500  1.10     ad 	 * sum of sleep time.  Check if thread is CPU-bound a first time.
    501   1.1  rmind 	 */
    502  1.10     ad 	batch = (sil->sl_rtsum > sil->sl_slpsum);
    503  1.10     ad 	if (batch) {
    504  1.10     ad 		if ((sil->sl_flags & SL_BATCH) == 0)
    505  1.10     ad 			batch = false;
    506   1.1  rmind 		sil->sl_flags |= SL_BATCH;
    507  1.10     ad 	} else
    508   1.1  rmind 		sil->sl_flags &= ~SL_BATCH;
    509  1.10     ad 
    510  1.10     ad 	/* Reset the time sums */
    511   1.1  rmind 	sil->sl_slpsum = 0;
    512   1.1  rmind 	sil->sl_rtsum = 0;
    513   1.1  rmind 
    514  1.10     ad 	/* Estimate threads on time-sharing queue only */
    515  1.10     ad 	if (l->l_priority >= PRI_HIGHEST_TS)
    516   1.1  rmind 		return;
    517  1.16  rmind 	KASSERT(l->l_class == SCHED_OTHER);
    518   1.1  rmind 
    519  1.10     ad 	/* If it is CPU-bound not a first time - decrease the priority */
    520  1.11  rmind 	prio = l->l_priority;
    521  1.11  rmind 	if (batch && prio != 0)
    522  1.11  rmind 		prio--;
    523  1.10     ad 
    524   1.1  rmind 	/* If thread was not ran a second or more - set a high priority */
    525  1.11  rmind 	if (l->l_stat == LSRUN) {
    526  1.11  rmind 		if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
    527  1.11  rmind 			prio = high_pri[prio];
    528  1.11  rmind 		/* Re-enqueue the thread if priority has changed */
    529  1.11  rmind 		if (prio != l->l_priority)
    530  1.11  rmind 			lwp_changepri(l, prio);
    531  1.11  rmind 	} else {
    532  1.11  rmind 		/* In other states, change the priority directly */
    533  1.11  rmind 		l->l_priority = prio;
    534  1.11  rmind 	}
    535   1.1  rmind }
    536   1.1  rmind 
    537   1.1  rmind /*
    538   1.1  rmind  * Migration and balancing.
    539   1.1  rmind  */
    540   1.1  rmind 
    541   1.1  rmind #ifdef MULTIPROCESSOR
    542   1.1  rmind 
    543  1.16  rmind /* Estimate if LWP is cache-hot */
    544  1.16  rmind static inline bool
    545  1.16  rmind lwp_cache_hot(const struct lwp *l)
    546  1.16  rmind {
    547  1.16  rmind 	const sched_info_lwp_t *sil = l->l_sched_info;
    548  1.16  rmind 
    549  1.16  rmind 	if (l->l_slptime || sil->sl_lrtime == 0)
    550  1.16  rmind 		return false;
    551  1.16  rmind 
    552  1.16  rmind 	return (hardclock_ticks - sil->sl_lrtime < cacheht_time);
    553  1.16  rmind }
    554  1.16  rmind 
    555   1.1  rmind /* Check if LWP can migrate to the chosen CPU */
    556   1.1  rmind static inline bool
    557  1.15  rmind sched_migratable(const struct lwp *l, struct cpu_info *ci)
    558   1.1  rmind {
    559  1.15  rmind 	const struct schedstate_percpu *spc = &ci->ci_schedstate;
    560   1.1  rmind 
    561  1.15  rmind 	/* CPU is offline */
    562  1.15  rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
    563   1.1  rmind 		return false;
    564   1.1  rmind 
    565  1.15  rmind 	/* Affinity bind */
    566  1.15  rmind 	if (__predict_false(l->l_flag & LW_AFFINITY))
    567  1.15  rmind 		return CPU_ISSET(cpu_index(ci), &l->l_affinity);
    568  1.15  rmind 
    569  1.15  rmind 	/* Processor-set */
    570  1.15  rmind 	return (spc->spc_psid == l->l_psid);
    571   1.1  rmind }
    572   1.1  rmind 
    573   1.1  rmind /*
    574   1.1  rmind  * Estimate the migration of LWP to the other CPU.
    575   1.1  rmind  * Take and return the CPU, if migration is needed.
    576   1.1  rmind  */
    577   1.1  rmind struct cpu_info *
    578   1.1  rmind sched_takecpu(struct lwp *l)
    579   1.1  rmind {
    580  1.15  rmind 	struct cpu_info *ci, *tci;
    581   1.1  rmind 	struct schedstate_percpu *spc;
    582   1.1  rmind 	runqueue_t *ci_rq;
    583   1.1  rmind 	CPU_INFO_ITERATOR cii;
    584   1.1  rmind 	pri_t eprio, lpri;
    585   1.1  rmind 
    586  1.15  rmind 	KASSERT(lwp_locked(l, NULL));
    587  1.15  rmind 
    588   1.1  rmind 	ci = l->l_cpu;
    589   1.1  rmind 	spc = &ci->ci_schedstate;
    590   1.1  rmind 	ci_rq = spc->spc_sched_info;
    591   1.1  rmind 
    592  1.15  rmind 	/* If thread is strictly bound, do not estimate other CPUs */
    593  1.15  rmind 	if (l->l_flag & LW_BOUND)
    594  1.15  rmind 		return ci;
    595  1.15  rmind 
    596   1.1  rmind 	/* CPU of this thread is idling - run there */
    597   1.1  rmind 	if (ci_rq->r_count == 0)
    598   1.1  rmind 		return ci;
    599   1.1  rmind 
    600   1.1  rmind 	eprio = lwp_eprio(l);
    601   1.1  rmind 
    602   1.1  rmind 	/* Stay if thread is cache-hot */
    603  1.16  rmind 	if (__predict_true(l->l_stat != LSIDL) &&
    604  1.16  rmind 	    lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
    605   1.1  rmind 		return ci;
    606   1.1  rmind 
    607   1.1  rmind 	/* Run on current CPU if priority of thread is higher */
    608   1.1  rmind 	ci = curcpu();
    609   1.1  rmind 	spc = &ci->ci_schedstate;
    610  1.10     ad 	if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
    611   1.1  rmind 		return ci;
    612   1.1  rmind 
    613   1.1  rmind 	/*
    614   1.1  rmind 	 * Look for the CPU with the lowest priority thread.  In case of
    615   1.1  rmind 	 * equal the priority - check the lower count of the threads.
    616   1.1  rmind 	 */
    617  1.15  rmind 	tci = l->l_cpu;
    618  1.10     ad 	lpri = PRI_COUNT;
    619   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    620   1.1  rmind 		runqueue_t *ici_rq;
    621   1.1  rmind 		pri_t pri;
    622   1.1  rmind 
    623   1.1  rmind 		spc = &ci->ci_schedstate;
    624   1.1  rmind 		ici_rq = spc->spc_sched_info;
    625  1.10     ad 		pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
    626  1.10     ad 		if (pri > lpri)
    627   1.1  rmind 			continue;
    628   1.1  rmind 
    629  1.15  rmind 		if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
    630   1.1  rmind 			continue;
    631   1.1  rmind 
    632  1.15  rmind 		if (!sched_migratable(l, ci))
    633   1.1  rmind 			continue;
    634   1.1  rmind 
    635   1.1  rmind 		lpri = pri;
    636   1.1  rmind 		tci = ci;
    637   1.1  rmind 		ci_rq = ici_rq;
    638   1.1  rmind 	}
    639   1.1  rmind 	return tci;
    640   1.1  rmind }
    641   1.1  rmind 
    642   1.1  rmind /*
    643   1.1  rmind  * Tries to catch an LWP from the runqueue of other CPU.
    644   1.1  rmind  */
    645   1.1  rmind static struct lwp *
    646   1.1  rmind sched_catchlwp(void)
    647   1.1  rmind {
    648   1.1  rmind 	struct cpu_info *curci = curcpu(), *ci = worker_ci;
    649   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    650   1.1  rmind 	runqueue_t *ci_rq;
    651   1.1  rmind 	struct lwp *l;
    652   1.1  rmind 
    653   1.1  rmind 	if (curci == ci)
    654   1.1  rmind 		return NULL;
    655   1.1  rmind 
    656   1.1  rmind 	/* Lockless check */
    657   1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    658   1.1  rmind 	if (ci_rq->r_count < min_catch)
    659   1.1  rmind 		return NULL;
    660   1.1  rmind 
    661   1.1  rmind 	/*
    662   1.1  rmind 	 * Double-lock the runqueues.
    663   1.1  rmind 	 */
    664   1.3  rmind 	if (curci < ci) {
    665   1.1  rmind 		spc_lock(ci);
    666   1.1  rmind 	} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
    667   1.1  rmind 		const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
    668   1.1  rmind 
    669   1.1  rmind 		spc_unlock(curci);
    670   1.1  rmind 		spc_lock(ci);
    671   1.1  rmind 		spc_lock(curci);
    672   1.1  rmind 
    673   1.1  rmind 		if (cur_rq->r_count) {
    674   1.1  rmind 			spc_unlock(ci);
    675   1.1  rmind 			return NULL;
    676   1.1  rmind 		}
    677   1.1  rmind 	}
    678   1.1  rmind 
    679   1.1  rmind 	if (ci_rq->r_count < min_catch) {
    680   1.1  rmind 		spc_unlock(ci);
    681   1.1  rmind 		return NULL;
    682   1.1  rmind 	}
    683   1.1  rmind 
    684   1.1  rmind 	/* Take the highest priority thread */
    685   1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    686   1.1  rmind 	l = TAILQ_FIRST(q_head);
    687   1.1  rmind 
    688   1.1  rmind 	for (;;) {
    689   1.1  rmind 		/* Check the first and next result from the queue */
    690   1.1  rmind 		if (l == NULL)
    691   1.1  rmind 			break;
    692   1.1  rmind 
    693   1.1  rmind 		/* Look for threads, whose are allowed to migrate */
    694  1.16  rmind 		if ((l->l_flag & LW_SYSTEM) || lwp_cache_hot(l) ||
    695  1.15  rmind 		    !sched_migratable(l, curci)) {
    696   1.1  rmind 			l = TAILQ_NEXT(l, l_runq);
    697   1.1  rmind 			continue;
    698   1.1  rmind 		}
    699   1.1  rmind 		/* Recheck if chosen thread is still on the runqueue */
    700   1.1  rmind 		if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
    701   1.1  rmind 			sched_dequeue(l);
    702   1.1  rmind 			l->l_cpu = curci;
    703   1.1  rmind 			lwp_setlock(l, curci->ci_schedstate.spc_mutex);
    704   1.1  rmind 			sched_enqueue(l, false);
    705   1.1  rmind 			break;
    706   1.1  rmind 		}
    707   1.1  rmind 		l = TAILQ_NEXT(l, l_runq);
    708   1.1  rmind 	}
    709   1.1  rmind 	spc_unlock(ci);
    710   1.1  rmind 
    711   1.1  rmind 	return l;
    712   1.1  rmind }
    713   1.1  rmind 
    714   1.1  rmind /*
    715   1.1  rmind  * Periodical calculations for balancing.
    716   1.1  rmind  */
    717   1.1  rmind static void
    718   1.1  rmind sched_balance(void *nocallout)
    719   1.1  rmind {
    720   1.1  rmind 	struct cpu_info *ci, *hci;
    721   1.1  rmind 	runqueue_t *ci_rq;
    722   1.1  rmind 	CPU_INFO_ITERATOR cii;
    723   1.1  rmind 	u_int highest;
    724   1.1  rmind 
    725   1.1  rmind 	hci = curcpu();
    726   1.1  rmind 	highest = 0;
    727   1.1  rmind 
    728   1.1  rmind 	/* Make lockless countings */
    729   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    730   1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
    731   1.1  rmind 
    732   1.1  rmind 		/* Average count of the threads */
    733   1.1  rmind 		ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
    734   1.1  rmind 
    735   1.1  rmind 		/* Look for CPU with the highest average */
    736   1.1  rmind 		if (ci_rq->r_avgcount > highest) {
    737   1.1  rmind 			hci = ci;
    738   1.1  rmind 			highest = ci_rq->r_avgcount;
    739   1.1  rmind 		}
    740   1.1  rmind 	}
    741   1.1  rmind 
    742   1.1  rmind 	/* Update the worker */
    743   1.1  rmind 	worker_ci = hci;
    744   1.1  rmind 
    745   1.1  rmind 	if (nocallout == NULL)
    746   1.1  rmind 		callout_schedule(&balance_ch, balance_period);
    747   1.1  rmind }
    748   1.1  rmind 
    749   1.1  rmind #else
    750   1.1  rmind 
    751   1.1  rmind struct cpu_info *
    752   1.1  rmind sched_takecpu(struct lwp *l)
    753   1.1  rmind {
    754   1.1  rmind 
    755   1.1  rmind 	return l->l_cpu;
    756   1.1  rmind }
    757   1.1  rmind 
    758   1.1  rmind #endif	/* MULTIPROCESSOR */
    759   1.1  rmind 
    760   1.1  rmind /*
    761   1.1  rmind  * Scheduler mill.
    762   1.1  rmind  */
    763   1.1  rmind struct lwp *
    764   1.1  rmind sched_nextlwp(void)
    765   1.1  rmind {
    766   1.1  rmind 	struct cpu_info *ci = curcpu();
    767   1.1  rmind 	struct schedstate_percpu *spc;
    768   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    769   1.1  rmind 	sched_info_lwp_t *sil;
    770   1.1  rmind 	runqueue_t *ci_rq;
    771   1.1  rmind 	struct lwp *l;
    772   1.1  rmind 
    773   1.1  rmind 	spc = &ci->ci_schedstate;
    774   1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    775   1.1  rmind 
    776   1.1  rmind #ifdef MULTIPROCESSOR
    777   1.1  rmind 	/* If runqueue is empty, try to catch some thread from other CPU */
    778  1.11  rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
    779   1.7  rmind 		if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
    780   1.1  rmind 			return NULL;
    781   1.1  rmind 	} else if (ci_rq->r_count == 0) {
    782   1.1  rmind 		/* Reset the counter, and call the balancer */
    783   1.1  rmind 		ci_rq->r_avgcount = 0;
    784   1.1  rmind 		sched_balance(ci);
    785   1.1  rmind 
    786   1.1  rmind 		/* The re-locking will be done inside */
    787   1.1  rmind 		return sched_catchlwp();
    788   1.1  rmind 	}
    789   1.1  rmind #else
    790   1.1  rmind 	if (ci_rq->r_count == 0)
    791   1.1  rmind 		return NULL;
    792   1.1  rmind #endif
    793   1.1  rmind 
    794   1.1  rmind 	/* Take the highest priority thread */
    795   1.1  rmind 	KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
    796   1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    797   1.1  rmind 	l = TAILQ_FIRST(q_head);
    798   1.1  rmind 	KASSERT(l != NULL);
    799   1.1  rmind 
    800   1.1  rmind 	/* Update the counters */
    801   1.1  rmind 	sil = l->l_sched_info;
    802   1.1  rmind 	KASSERT(sil->sl_timeslice >= min_ts);
    803   1.1  rmind 	KASSERT(sil->sl_timeslice <= max_ts);
    804   1.1  rmind 	spc->spc_ticks = sil->sl_timeslice;
    805   1.1  rmind 	sil->sl_rtime = hardclock_ticks;
    806   1.1  rmind 
    807   1.1  rmind 	return l;
    808   1.1  rmind }
    809   1.1  rmind 
    810   1.1  rmind bool
    811   1.1  rmind sched_curcpu_runnable_p(void)
    812   1.1  rmind {
    813   1.1  rmind 	const struct cpu_info *ci = curcpu();
    814   1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    815   1.1  rmind 
    816  1.11  rmind #ifndef __HAVE_FAST_SOFTINTS
    817  1.11  rmind 	if (ci->ci_data.cpu_softints)
    818  1.11  rmind 		return true;
    819  1.11  rmind #endif
    820  1.11  rmind 
    821   1.1  rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    822   1.7  rmind 		return (ci_rq->r_count - ci_rq->r_mcount);
    823   1.1  rmind 
    824   1.1  rmind 	return ci_rq->r_count;
    825   1.1  rmind }
    826   1.1  rmind 
    827   1.1  rmind /*
    828   1.1  rmind  * Time-driven events.
    829   1.1  rmind  */
    830   1.1  rmind 
    831   1.1  rmind /*
    832   1.1  rmind  * Called once per time-quantum.  This routine is CPU-local and runs at
    833   1.1  rmind  * IPL_SCHED, thus the locking is not needed.
    834   1.1  rmind  */
    835   1.1  rmind void
    836   1.1  rmind sched_tick(struct cpu_info *ci)
    837   1.1  rmind {
    838   1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    839   1.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    840   1.1  rmind 	struct lwp *l = curlwp;
    841  1.16  rmind 	const sched_info_lwp_t *sil = l->l_sched_info;
    842   1.1  rmind 
    843   1.2  rmind 	if (CURCPU_IDLE_P())
    844   1.2  rmind 		return;
    845   1.1  rmind 
    846  1.10     ad 	switch (l->l_class) {
    847   1.2  rmind 	case SCHED_FIFO:
    848   1.2  rmind 		/*
    849   1.2  rmind 		 * Update the time-quantum, and continue running,
    850   1.2  rmind 		 * if thread runs on FIFO real-time policy.
    851   1.2  rmind 		 */
    852  1.16  rmind 		KASSERT(l->l_priority > PRI_HIGHEST_TS);
    853   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    854   1.1  rmind 		return;
    855   1.2  rmind 	case SCHED_OTHER:
    856  1.10     ad 		/*
    857  1.10     ad 		 * If thread is in time-sharing queue, decrease the priority,
    858  1.10     ad 		 * and run with a higher time-quantum.
    859  1.10     ad 		 */
    860  1.16  rmind 		KASSERT(l->l_priority <= PRI_HIGHEST_TS);
    861  1.10     ad 		if (l->l_priority != 0)
    862  1.10     ad 			l->l_priority--;
    863   1.2  rmind 		break;
    864   1.1  rmind 	}
    865   1.1  rmind 
    866   1.1  rmind 	/*
    867   1.2  rmind 	 * If there are higher priority threads or threads in the same queue,
    868   1.2  rmind 	 * mark that thread should yield, otherwise, continue running.
    869   1.1  rmind 	 */
    870  1.15  rmind 	if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
    871   1.1  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    872   1.1  rmind 		cpu_need_resched(ci, 0);
    873   1.1  rmind 	} else
    874   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    875   1.1  rmind }
    876   1.1  rmind 
    877   1.1  rmind /*
    878   1.1  rmind  * Sysctl nodes and initialization.
    879   1.1  rmind  */
    880   1.1  rmind 
    881   1.1  rmind static int
    882  1.15  rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    883  1.15  rmind {
    884  1.15  rmind 	struct sysctlnode node;
    885  1.15  rmind 	int rttsms = hztoms(rt_ts);
    886  1.15  rmind 
    887  1.15  rmind 	node = *rnode;
    888  1.15  rmind 	node.sysctl_data = &rttsms;
    889  1.15  rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    890  1.15  rmind }
    891  1.15  rmind 
    892  1.15  rmind static int
    893   1.1  rmind sysctl_sched_mints(SYSCTLFN_ARGS)
    894   1.1  rmind {
    895   1.1  rmind 	struct sysctlnode node;
    896   1.1  rmind 	struct cpu_info *ci;
    897   1.1  rmind 	int error, newsize;
    898   1.1  rmind 	CPU_INFO_ITERATOR cii;
    899   1.1  rmind 
    900   1.1  rmind 	node = *rnode;
    901   1.1  rmind 	node.sysctl_data = &newsize;
    902   1.1  rmind 
    903   1.1  rmind 	newsize = hztoms(min_ts);
    904   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    905   1.1  rmind 	if (error || newp == NULL)
    906   1.1  rmind 		return error;
    907   1.1  rmind 
    908   1.8  rmind 	newsize = mstohz(newsize);
    909   1.1  rmind 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    910   1.1  rmind 		return EINVAL;
    911   1.1  rmind 
    912   1.1  rmind 	/* It is safe to do this in such order */
    913   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    914   1.1  rmind 		spc_lock(ci);
    915   1.1  rmind 
    916   1.8  rmind 	min_ts = newsize;
    917   1.1  rmind 	sched_precalcts();
    918   1.1  rmind 
    919   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    920   1.1  rmind 		spc_unlock(ci);
    921   1.1  rmind 
    922   1.1  rmind 	return 0;
    923   1.1  rmind }
    924   1.1  rmind 
    925   1.1  rmind static int
    926   1.1  rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
    927   1.1  rmind {
    928   1.1  rmind 	struct sysctlnode node;
    929   1.1  rmind 	struct cpu_info *ci;
    930   1.1  rmind 	int error, newsize;
    931   1.1  rmind 	CPU_INFO_ITERATOR cii;
    932   1.1  rmind 
    933   1.1  rmind 	node = *rnode;
    934   1.1  rmind 	node.sysctl_data = &newsize;
    935   1.1  rmind 
    936   1.1  rmind 	newsize = hztoms(max_ts);
    937   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    938   1.1  rmind 	if (error || newp == NULL)
    939   1.1  rmind 		return error;
    940   1.1  rmind 
    941   1.8  rmind 	newsize = mstohz(newsize);
    942   1.1  rmind 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    943   1.1  rmind 		return EINVAL;
    944   1.1  rmind 
    945   1.1  rmind 	/* It is safe to do this in such order */
    946   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    947   1.1  rmind 		spc_lock(ci);
    948   1.1  rmind 
    949   1.8  rmind 	max_ts = newsize;
    950   1.1  rmind 	sched_precalcts();
    951   1.1  rmind 
    952   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    953   1.1  rmind 		spc_unlock(ci);
    954   1.1  rmind 
    955   1.1  rmind 	return 0;
    956   1.1  rmind }
    957   1.1  rmind 
    958   1.1  rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    959   1.1  rmind {
    960   1.1  rmind 	const struct sysctlnode *node = NULL;
    961   1.1  rmind 
    962   1.1  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    963   1.1  rmind 		CTLFLAG_PERMANENT,
    964   1.1  rmind 		CTLTYPE_NODE, "kern", NULL,
    965   1.1  rmind 		NULL, 0, NULL, 0,
    966   1.1  rmind 		CTL_KERN, CTL_EOL);
    967   1.1  rmind 	sysctl_createv(clog, 0, NULL, &node,
    968   1.1  rmind 		CTLFLAG_PERMANENT,
    969   1.1  rmind 		CTLTYPE_NODE, "sched",
    970   1.1  rmind 		SYSCTL_DESCR("Scheduler options"),
    971   1.1  rmind 		NULL, 0, NULL, 0,
    972   1.1  rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    973   1.1  rmind 
    974   1.1  rmind 	if (node == NULL)
    975   1.1  rmind 		return;
    976   1.1  rmind 
    977   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    978   1.1  rmind 		CTLFLAG_PERMANENT,
    979   1.1  rmind 		CTLTYPE_STRING, "name", NULL,
    980   1.1  rmind 		NULL, 0, __UNCONST("M2"), 0,
    981   1.1  rmind 		CTL_CREATE, CTL_EOL);
    982   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    983  1.15  rmind 		CTLFLAG_PERMANENT,
    984  1.15  rmind 		CTLTYPE_INT, "rtts",
    985  1.15  rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    986  1.15  rmind 		sysctl_sched_rtts, 0, NULL, 0,
    987  1.15  rmind 		CTL_CREATE, CTL_EOL);
    988  1.15  rmind 	sysctl_createv(clog, 0, &node, NULL,
    989   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    990   1.1  rmind 		CTLTYPE_INT, "maxts",
    991   1.8  rmind 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
    992   1.1  rmind 		sysctl_sched_maxts, 0, &max_ts, 0,
    993   1.1  rmind 		CTL_CREATE, CTL_EOL);
    994   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    995   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    996   1.1  rmind 		CTLTYPE_INT, "mints",
    997   1.8  rmind 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
    998   1.1  rmind 		sysctl_sched_mints, 0, &min_ts, 0,
    999   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1000   1.1  rmind 
   1001   1.1  rmind #ifdef MULTIPROCESSOR
   1002   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
   1003   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1004   1.1  rmind 		CTLTYPE_INT, "cacheht_time",
   1005   1.8  rmind 		SYSCTL_DESCR("Cache hotness time (in ticks)"),
   1006   1.1  rmind 		NULL, 0, &cacheht_time, 0,
   1007   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1008   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
   1009   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1010   1.9  rmind 		CTLTYPE_INT, "balance_period",
   1011   1.9  rmind 		SYSCTL_DESCR("Balance period (in ticks)"),
   1012   1.1  rmind 		NULL, 0, &balance_period, 0,
   1013   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1014   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
   1015   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1016   1.1  rmind 		CTLTYPE_INT, "min_catch",
   1017   1.8  rmind 		SYSCTL_DESCR("Minimal count of the threads for catching"),
   1018   1.1  rmind 		NULL, 0, &min_catch, 0,
   1019   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1020   1.1  rmind #endif
   1021   1.1  rmind }
   1022   1.1  rmind 
   1023   1.1  rmind /*
   1024   1.1  rmind  * Debugging.
   1025   1.1  rmind  */
   1026   1.1  rmind 
   1027   1.1  rmind #ifdef DDB
   1028   1.1  rmind 
   1029   1.1  rmind void
   1030   1.1  rmind sched_print_runqueue(void (*pr)(const char *, ...))
   1031   1.1  rmind {
   1032   1.1  rmind 	runqueue_t *ci_rq;
   1033   1.1  rmind 	sched_info_lwp_t *sil;
   1034   1.1  rmind 	struct lwp *l;
   1035   1.1  rmind 	struct proc *p;
   1036   1.1  rmind 	int i;
   1037   1.1  rmind 
   1038   1.1  rmind 	struct cpu_info *ci;
   1039   1.1  rmind 	CPU_INFO_ITERATOR cii;
   1040   1.1  rmind 
   1041   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
   1042   1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
   1043   1.1  rmind 
   1044   1.1  rmind 		(*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
   1045   1.1  rmind 		(*pr)(" pid.lid = %d.%d, threads count = %u, "
   1046   1.1  rmind 		    "avgcount = %u, highest pri = %d\n",
   1047   1.1  rmind 		    ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
   1048   1.1  rmind 		    ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
   1049  1.10     ad 		i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
   1050   1.1  rmind 		do {
   1051  1.10     ad 			uint32_t q;
   1052  1.10     ad 			q = ci_rq->r_bitmap[i];
   1053  1.10     ad 			(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
   1054  1.10     ad 		} while (i--);
   1055   1.1  rmind 	}
   1056   1.1  rmind 
   1057   1.1  rmind 	(*pr)("   %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
   1058  1.10     ad 	    "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
   1059   1.1  rmind 
   1060   1.1  rmind 	PROCLIST_FOREACH(p, &allproc) {
   1061   1.1  rmind 		(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
   1062   1.1  rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1063   1.1  rmind 			sil = l->l_sched_info;
   1064   1.1  rmind 			ci = l->l_cpu;
   1065   1.1  rmind 			(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
   1066   1.1  rmind 			    "%u ST=%d RT=%d %d\n",
   1067  1.10     ad 			    (int)l->l_lid, l->l_priority, lwp_eprio(l),
   1068   1.1  rmind 			    l->l_flag, l->l_stat == LSRUN ? "RQ" :
   1069   1.1  rmind 			    (l->l_stat == LSSLEEP ? "SQ" : "-"),
   1070   1.1  rmind 			    sil->sl_timeslice, l, ci->ci_cpuid,
   1071   1.1  rmind 			    (u_int)(hardclock_ticks - sil->sl_lrtime),
   1072   1.1  rmind 			    sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
   1073   1.1  rmind 		}
   1074   1.1  rmind 	}
   1075   1.1  rmind }
   1076   1.1  rmind 
   1077  1.16  rmind #endif
   1078