Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.19
      1  1.19  rmind /*	$NetBSD: sched_m2.c,v 1.19 2008/01/31 00:46:55 rmind Exp $	*/
      2   1.1  rmind 
      3   1.1  rmind /*
      4  1.15  rmind  * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  1.12  rmind  * All rights reserved.
      6   1.1  rmind  *
      7   1.1  rmind  * Redistribution and use in source and binary forms, with or without
      8   1.1  rmind  * modification, are permitted provided that the following conditions
      9   1.1  rmind  * are met:
     10   1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rmind  *    documentation and/or other materials provided with the distribution.
     15   1.1  rmind  *
     16  1.19  rmind  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  1.19  rmind  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  1.19  rmind  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  1.19  rmind  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  1.19  rmind  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  1.19  rmind  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  1.19  rmind  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  1.19  rmind  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  1.19  rmind  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.19  rmind  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.19  rmind  * SUCH DAMAGE.
     27   1.1  rmind  */
     28   1.1  rmind 
     29   1.1  rmind /*
     30   1.1  rmind  * TODO:
     31   1.1  rmind  *  - Implementation of fair share queue;
     32   1.1  rmind  *  - Support for NUMA;
     33   1.1  rmind  */
     34   1.1  rmind 
     35   1.1  rmind #include <sys/cdefs.h>
     36  1.19  rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.19 2008/01/31 00:46:55 rmind Exp $");
     37   1.1  rmind 
     38   1.1  rmind #include <sys/param.h>
     39   1.1  rmind 
     40   1.8  rmind #include <sys/bitops.h>
     41   1.1  rmind #include <sys/cpu.h>
     42   1.1  rmind #include <sys/callout.h>
     43   1.1  rmind #include <sys/errno.h>
     44   1.1  rmind #include <sys/kernel.h>
     45   1.1  rmind #include <sys/kmem.h>
     46   1.1  rmind #include <sys/lwp.h>
     47   1.1  rmind #include <sys/mutex.h>
     48   1.1  rmind #include <sys/pool.h>
     49   1.1  rmind #include <sys/proc.h>
     50  1.15  rmind #include <sys/pset.h>
     51   1.1  rmind #include <sys/resource.h>
     52   1.1  rmind #include <sys/resourcevar.h>
     53   1.1  rmind #include <sys/sched.h>
     54   1.1  rmind #include <sys/syscallargs.h>
     55   1.1  rmind #include <sys/sysctl.h>
     56   1.1  rmind #include <sys/types.h>
     57   1.1  rmind 
     58   1.1  rmind /*
     59  1.10     ad  * Priority related defintions.
     60   1.1  rmind  */
     61  1.10     ad #define	PRI_TS_COUNT	(NPRI_USER)
     62  1.10     ad #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     63  1.10     ad #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     64  1.10     ad 
     65  1.11  rmind #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     66  1.10     ad 
     67  1.10     ad const int schedppq = 1;
     68   1.1  rmind 
     69   1.1  rmind /*
     70   1.1  rmind  * Bits per map.
     71   1.1  rmind  */
     72  1.10     ad #define	BITMAP_BITS	(32)
     73  1.10     ad #define	BITMAP_SHIFT	(5)
     74  1.11  rmind #define	BITMAP_MSB	(0x80000000U)
     75  1.10     ad #define	BITMAP_MASK	(BITMAP_BITS - 1)
     76   1.1  rmind 
     77   1.1  rmind /*
     78   1.1  rmind  * Time-slices and priorities.
     79   1.1  rmind  */
     80   1.1  rmind static u_int	min_ts;			/* Minimal time-slice */
     81   1.1  rmind static u_int	max_ts;			/* Maximal time-slice */
     82   1.1  rmind static u_int	rt_ts;			/* Real-time time-slice */
     83   1.1  rmind static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     84   1.1  rmind static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     85   1.1  rmind 
     86   1.1  rmind /*
     87   1.1  rmind  * Migration and balancing.
     88   1.1  rmind  */
     89   1.1  rmind #ifdef MULTIPROCESSOR
     90  1.15  rmind 
     91   1.1  rmind static u_int	cacheht_time;		/* Cache hotness time */
     92   1.1  rmind static u_int	min_catch;		/* Minimal LWP count for catching */
     93   1.1  rmind 
     94   1.1  rmind static u_int		balance_period;	/* Balance period */
     95   1.1  rmind static struct callout	balance_ch;	/* Callout of balancer */
     96   1.1  rmind 
     97   1.1  rmind static struct cpu_info * volatile worker_ci;
     98   1.1  rmind 
     99   1.1  rmind #endif
    100   1.1  rmind 
    101   1.1  rmind /*
    102   1.1  rmind  * Structures, runqueue.
    103   1.1  rmind  */
    104   1.1  rmind 
    105   1.1  rmind typedef struct {
    106   1.1  rmind 	TAILQ_HEAD(, lwp) q_head;
    107   1.1  rmind } queue_t;
    108   1.1  rmind 
    109   1.1  rmind typedef struct {
    110   1.1  rmind 	/* Lock and bitmap */
    111   1.1  rmind 	kmutex_t	r_rq_mutex;
    112  1.10     ad 	uint32_t	r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
    113   1.1  rmind 	/* Counters */
    114   1.1  rmind 	u_int		r_count;	/* Count of the threads */
    115   1.1  rmind 	pri_t		r_highest_pri;	/* Highest priority */
    116   1.1  rmind 	u_int		r_avgcount;	/* Average count of threads */
    117   1.1  rmind 	u_int		r_mcount;	/* Count of migratable threads */
    118   1.1  rmind 	/* Runqueues */
    119   1.1  rmind 	queue_t		r_rt_queue[PRI_RT_COUNT];
    120   1.1  rmind 	queue_t		r_ts_queue[PRI_TS_COUNT];
    121   1.1  rmind } runqueue_t;
    122   1.1  rmind 
    123   1.1  rmind typedef struct {
    124   1.1  rmind 	u_int		sl_flags;
    125   1.1  rmind 	u_int		sl_timeslice;	/* Time-slice of thread */
    126   1.1  rmind 	u_int		sl_slept;	/* Saved sleep time for sleep sum */
    127   1.1  rmind 	u_int		sl_slpsum;	/* Sum of sleep time */
    128   1.1  rmind 	u_int		sl_rtime;	/* Saved start time of run */
    129   1.1  rmind 	u_int		sl_rtsum;	/* Sum of the run time */
    130   1.1  rmind 	u_int		sl_lrtime;	/* Last run time */
    131   1.1  rmind } sched_info_lwp_t;
    132   1.1  rmind 
    133   1.1  rmind /* Flags */
    134   1.1  rmind #define	SL_BATCH	0x01
    135   1.1  rmind 
    136   1.1  rmind /* Pool of the scheduler-specific structures for threads */
    137  1.19  rmind static pool_cache_t	sil_pool;
    138   1.1  rmind 
    139   1.1  rmind /*
    140   1.1  rmind  * Prototypes.
    141   1.1  rmind  */
    142   1.1  rmind 
    143   1.1  rmind static inline void *	sched_getrq(runqueue_t *, const pri_t);
    144   1.1  rmind static inline void	sched_newts(struct lwp *);
    145   1.1  rmind static void		sched_precalcts(void);
    146   1.1  rmind 
    147   1.1  rmind #ifdef MULTIPROCESSOR
    148   1.1  rmind static struct lwp *	sched_catchlwp(void);
    149   1.1  rmind static void		sched_balance(void *);
    150   1.1  rmind #endif
    151   1.1  rmind 
    152   1.1  rmind /*
    153   1.1  rmind  * Initialization and setup.
    154   1.1  rmind  */
    155   1.1  rmind 
    156   1.1  rmind void
    157   1.1  rmind sched_rqinit(void)
    158   1.1  rmind {
    159   1.1  rmind 	struct cpu_info *ci = curcpu();
    160   1.1  rmind 
    161   1.1  rmind 	if (hz < 100) {
    162   1.1  rmind 		panic("sched_rqinit: value of HZ is too low\n");
    163   1.1  rmind 	}
    164   1.1  rmind 
    165   1.1  rmind 	/* Default timing ranges */
    166   1.1  rmind 	min_ts = mstohz(50);			/* ~50ms  */
    167   1.1  rmind 	max_ts = mstohz(150);			/* ~150ms */
    168   1.1  rmind 	rt_ts = mstohz(100);			/* ~100ms */
    169   1.1  rmind 	sched_precalcts();
    170   1.1  rmind 
    171   1.1  rmind #ifdef MULTIPROCESSOR
    172   1.1  rmind 	/* Balancing */
    173   1.1  rmind 	worker_ci = ci;
    174   1.1  rmind 	cacheht_time = mstohz(5);		/* ~5 ms  */
    175   1.1  rmind 	balance_period = mstohz(300);		/* ~300ms */
    176   1.1  rmind 	min_catch = ~0;
    177   1.1  rmind #endif
    178   1.1  rmind 
    179   1.1  rmind 	/* Pool of the scheduler-specific structures */
    180  1.19  rmind 	sil_pool = pool_cache_init(sizeof(sched_info_lwp_t), 0, 0, 0,
    181  1.19  rmind 	    "lwpsd", NULL, IPL_NONE, NULL, NULL, NULL);
    182   1.1  rmind 
    183   1.1  rmind 	/* Attach the primary CPU here */
    184   1.1  rmind 	sched_cpuattach(ci);
    185   1.1  rmind 
    186   1.1  rmind 	/* Initialize the scheduler structure of the primary LWP */
    187   1.1  rmind 	lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
    188  1.10     ad 	sched_lwp_fork(NULL, &lwp0);
    189   1.1  rmind 	sched_newts(&lwp0);
    190   1.1  rmind }
    191   1.1  rmind 
    192   1.1  rmind void
    193   1.1  rmind sched_setup(void)
    194   1.1  rmind {
    195   1.1  rmind 
    196   1.1  rmind #ifdef MULTIPROCESSOR
    197   1.1  rmind 	/* Minimal count of LWPs for catching: log2(count of CPUs) */
    198   1.8  rmind 	min_catch = min(ilog2(ncpu), 4);
    199   1.1  rmind 
    200   1.1  rmind 	/* Initialize balancing callout and run it */
    201   1.1  rmind 	callout_init(&balance_ch, CALLOUT_MPSAFE);
    202   1.1  rmind 	callout_setfunc(&balance_ch, sched_balance, NULL);
    203   1.1  rmind 	callout_schedule(&balance_ch, balance_period);
    204   1.1  rmind #endif
    205   1.1  rmind }
    206   1.1  rmind 
    207   1.1  rmind void
    208   1.1  rmind sched_cpuattach(struct cpu_info *ci)
    209   1.1  rmind {
    210   1.1  rmind 	runqueue_t *ci_rq;
    211   1.1  rmind 	void *rq_ptr;
    212   1.1  rmind 	u_int i, size;
    213   1.1  rmind 
    214  1.19  rmind 	/* Allocate the run queue */
    215  1.19  rmind 	size = roundup2(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
    216  1.14     ad 	rq_ptr = kmem_zalloc(size, KM_SLEEP);
    217   1.1  rmind 	if (rq_ptr == NULL) {
    218  1.19  rmind 		panic("sched_cpuattach: could not allocate the runqueue");
    219   1.1  rmind 	}
    220  1.19  rmind 	ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), CACHE_LINE_SIZE));
    221   1.1  rmind 
    222   1.1  rmind 	/* Initialize run queues */
    223  1.13     ad 	mutex_init(&ci_rq->r_rq_mutex, MUTEX_DEFAULT, IPL_SCHED);
    224   1.1  rmind 	for (i = 0; i < PRI_RT_COUNT; i++)
    225   1.1  rmind 		TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
    226   1.1  rmind 	for (i = 0; i < PRI_TS_COUNT; i++)
    227   1.1  rmind 		TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
    228  1.10     ad 	ci_rq->r_highest_pri = 0;
    229   1.1  rmind 
    230   1.1  rmind 	ci->ci_schedstate.spc_sched_info = ci_rq;
    231   1.1  rmind 	ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
    232   1.1  rmind }
    233   1.1  rmind 
    234   1.1  rmind /* Pre-calculate the time-slices for the priorities */
    235   1.1  rmind static void
    236   1.1  rmind sched_precalcts(void)
    237   1.1  rmind {
    238   1.1  rmind 	pri_t p;
    239   1.1  rmind 
    240  1.10     ad 	/* Time-sharing range */
    241  1.10     ad 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    242  1.10     ad 		ts_map[p] = max_ts -
    243  1.10     ad 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    244  1.10     ad 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    245  1.10     ad 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    246  1.10     ad 	}
    247  1.10     ad 
    248  1.10     ad 	/* Real-time range */
    249  1.10     ad 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    250   1.1  rmind 		ts_map[p] = rt_ts;
    251   1.1  rmind 		high_pri[p] = p;
    252   1.1  rmind 	}
    253   1.1  rmind }
    254   1.1  rmind 
    255   1.1  rmind /*
    256   1.1  rmind  * Hooks.
    257   1.1  rmind  */
    258   1.1  rmind 
    259   1.1  rmind void
    260   1.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    261   1.1  rmind {
    262   1.1  rmind 	struct lwp *l;
    263   1.1  rmind 
    264   1.1  rmind 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    265   1.1  rmind 		lwp_lock(l);
    266   1.1  rmind 		sched_newts(l);
    267   1.1  rmind 		lwp_unlock(l);
    268   1.1  rmind 	}
    269   1.1  rmind }
    270   1.1  rmind 
    271   1.1  rmind void
    272   1.1  rmind sched_proc_exit(struct proc *child, struct proc *parent)
    273   1.1  rmind {
    274   1.1  rmind 
    275   1.1  rmind 	/* Dummy */
    276   1.1  rmind }
    277   1.1  rmind 
    278   1.1  rmind void
    279  1.10     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    280   1.1  rmind {
    281   1.1  rmind 
    282  1.10     ad 	KASSERT(l2->l_sched_info == NULL);
    283  1.19  rmind 	l2->l_sched_info = pool_cache_get(sil_pool, PR_WAITOK);
    284  1.10     ad 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    285   1.1  rmind }
    286   1.1  rmind 
    287   1.1  rmind void
    288   1.1  rmind sched_lwp_exit(struct lwp *l)
    289   1.1  rmind {
    290   1.1  rmind 
    291   1.1  rmind 	KASSERT(l->l_sched_info != NULL);
    292  1.19  rmind 	pool_cache_put(sil_pool, l->l_sched_info);
    293   1.1  rmind 	l->l_sched_info = NULL;
    294   1.1  rmind }
    295   1.1  rmind 
    296   1.1  rmind void
    297  1.10     ad sched_lwp_collect(struct lwp *l)
    298  1.10     ad {
    299  1.10     ad 
    300  1.10     ad }
    301  1.10     ad 
    302  1.10     ad void
    303   1.1  rmind sched_setrunnable(struct lwp *l)
    304   1.1  rmind {
    305   1.1  rmind 
    306   1.1  rmind 	/* Dummy */
    307   1.1  rmind }
    308   1.1  rmind 
    309   1.1  rmind void
    310   1.1  rmind sched_schedclock(struct lwp *l)
    311   1.1  rmind {
    312   1.1  rmind 
    313   1.1  rmind 	/* Dummy */
    314   1.1  rmind }
    315   1.1  rmind 
    316   1.1  rmind /*
    317   1.1  rmind  * Priorities and time-slice.
    318   1.1  rmind  */
    319   1.1  rmind 
    320   1.1  rmind void
    321   1.1  rmind sched_nice(struct proc *p, int prio)
    322   1.1  rmind {
    323   1.1  rmind 
    324  1.17  rmind 	/* TODO: implement as SCHED_IA */
    325   1.1  rmind }
    326   1.1  rmind 
    327   1.1  rmind /* Recalculate the time-slice */
    328   1.1  rmind static inline void
    329   1.1  rmind sched_newts(struct lwp *l)
    330   1.1  rmind {
    331   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    332   1.1  rmind 
    333   1.1  rmind 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    334   1.1  rmind }
    335   1.1  rmind 
    336   1.1  rmind /*
    337   1.1  rmind  * Control of the runqueue.
    338   1.1  rmind  */
    339   1.1  rmind 
    340   1.1  rmind static inline void *
    341   1.1  rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
    342   1.1  rmind {
    343   1.1  rmind 
    344   1.1  rmind 	KASSERT(prio < PRI_COUNT);
    345  1.10     ad 	return (prio <= PRI_HIGHEST_TS) ?
    346  1.10     ad 	    &ci_rq->r_ts_queue[prio].q_head :
    347  1.10     ad 	    &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
    348   1.1  rmind }
    349   1.1  rmind 
    350   1.1  rmind void
    351   1.1  rmind sched_enqueue(struct lwp *l, bool swtch)
    352   1.1  rmind {
    353   1.1  rmind 	runqueue_t *ci_rq;
    354   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    355   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    356   1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    357   1.1  rmind 
    358   1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    359   1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    360   1.1  rmind 
    361   1.1  rmind 	/* Update the last run time on switch */
    362  1.11  rmind 	if (__predict_true(swtch == true)) {
    363   1.1  rmind 		sil->sl_lrtime = hardclock_ticks;
    364   1.1  rmind 		sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
    365   1.8  rmind 	} else if (sil->sl_lrtime == 0)
    366   1.8  rmind 		sil->sl_lrtime = hardclock_ticks;
    367   1.1  rmind 
    368   1.1  rmind 	/* Enqueue the thread */
    369   1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    370   1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    371   1.1  rmind 		u_int i;
    372   1.1  rmind 		uint32_t q;
    373   1.1  rmind 
    374   1.1  rmind 		/* Mark bit */
    375   1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    376  1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    377  1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) == 0);
    378  1.10     ad 		ci_rq->r_bitmap[i] |= q;
    379   1.1  rmind 	}
    380   1.1  rmind 	TAILQ_INSERT_TAIL(q_head, l, l_runq);
    381   1.1  rmind 	ci_rq->r_count++;
    382   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    383   1.1  rmind 		ci_rq->r_mcount++;
    384   1.1  rmind 
    385   1.1  rmind 	/*
    386   1.1  rmind 	 * Update the value of highest priority in the runqueue,
    387   1.1  rmind 	 * if priority of this thread is higher.
    388   1.1  rmind 	 */
    389  1.10     ad 	if (eprio > ci_rq->r_highest_pri)
    390   1.1  rmind 		ci_rq->r_highest_pri = eprio;
    391   1.1  rmind 
    392   1.1  rmind 	sched_newts(l);
    393   1.1  rmind }
    394   1.1  rmind 
    395   1.1  rmind void
    396   1.1  rmind sched_dequeue(struct lwp *l)
    397   1.1  rmind {
    398   1.1  rmind 	runqueue_t *ci_rq;
    399   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    400   1.1  rmind 	const pri_t eprio = lwp_eprio(l);
    401   1.1  rmind 
    402   1.1  rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    403   1.1  rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    404  1.15  rmind 
    405  1.10     ad 	KASSERT(eprio <= ci_rq->r_highest_pri);
    406   1.1  rmind 	KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
    407   1.1  rmind 	KASSERT(ci_rq->r_count > 0);
    408   1.1  rmind 
    409   1.1  rmind 	ci_rq->r_count--;
    410   1.1  rmind 	if ((l->l_flag & LW_BOUND) == 0)
    411   1.1  rmind 		ci_rq->r_mcount--;
    412   1.1  rmind 
    413   1.1  rmind 	q_head = sched_getrq(ci_rq, eprio);
    414   1.1  rmind 	TAILQ_REMOVE(q_head, l, l_runq);
    415   1.1  rmind 	if (TAILQ_EMPTY(q_head)) {
    416   1.1  rmind 		u_int i;
    417   1.1  rmind 		uint32_t q;
    418   1.1  rmind 
    419   1.1  rmind 		/* Unmark bit */
    420   1.1  rmind 		i = eprio >> BITMAP_SHIFT;
    421  1.10     ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    422  1.10     ad 		KASSERT((ci_rq->r_bitmap[i] & q) != 0);
    423  1.10     ad 		ci_rq->r_bitmap[i] &= ~q;
    424   1.1  rmind 
    425   1.1  rmind 		/*
    426   1.1  rmind 		 * Update the value of highest priority in the runqueue, in a
    427   1.1  rmind 		 * case it was a last thread in the queue of highest priority.
    428   1.1  rmind 		 */
    429   1.1  rmind 		if (eprio != ci_rq->r_highest_pri)
    430   1.1  rmind 			return;
    431   1.1  rmind 
    432   1.1  rmind 		do {
    433   1.1  rmind 			q = ffs(ci_rq->r_bitmap[i]);
    434   1.1  rmind 			if (q) {
    435   1.1  rmind 				ci_rq->r_highest_pri =
    436  1.10     ad 				    (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
    437   1.1  rmind 				return;
    438   1.1  rmind 			}
    439  1.10     ad 		} while (i--);
    440   1.1  rmind 
    441  1.10     ad 		/* If not found - set the lowest value */
    442  1.10     ad 		ci_rq->r_highest_pri = 0;
    443   1.1  rmind 	}
    444   1.1  rmind }
    445   1.1  rmind 
    446   1.1  rmind void
    447   1.1  rmind sched_slept(struct lwp *l)
    448   1.1  rmind {
    449   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    450   1.1  rmind 
    451   1.1  rmind 	/* Save the time when thread has slept */
    452   1.1  rmind 	sil->sl_slept = hardclock_ticks;
    453   1.1  rmind 
    454   1.1  rmind 	/*
    455  1.10     ad 	 * If thread is in time-sharing queue and batch flag is not marked,
    456  1.10     ad 	 * increase the the priority, and run with the lower time-quantum.
    457   1.1  rmind 	 */
    458  1.18  rmind 	if (l->l_priority < PRI_HIGHEST_TS &&
    459  1.16  rmind 	    (sil->sl_flags & SL_BATCH) == 0) {
    460  1.10     ad 		KASSERT(l->l_class == SCHED_OTHER);
    461  1.10     ad 		l->l_priority++;
    462  1.10     ad 	}
    463   1.1  rmind }
    464   1.1  rmind 
    465   1.1  rmind void
    466   1.1  rmind sched_wakeup(struct lwp *l)
    467   1.1  rmind {
    468   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    469   1.1  rmind 
    470   1.1  rmind 	/* Update sleep time delta */
    471   1.1  rmind 	sil->sl_slpsum += (l->l_slptime == 0) ?
    472   1.1  rmind 	    (hardclock_ticks - sil->sl_slept) : hz;
    473   1.1  rmind 
    474   1.1  rmind 	/* If thread was sleeping a second or more - set a high priority */
    475   1.1  rmind 	if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
    476  1.10     ad 		l->l_priority = high_pri[l->l_priority];
    477   1.1  rmind 
    478   1.1  rmind 	/* Also, consider looking for a better CPU to wake up */
    479   1.1  rmind 	if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
    480   1.1  rmind 		l->l_cpu = sched_takecpu(l);
    481   1.1  rmind }
    482   1.1  rmind 
    483   1.1  rmind void
    484   1.1  rmind sched_pstats_hook(struct lwp *l)
    485   1.1  rmind {
    486   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    487  1.11  rmind 	pri_t prio;
    488  1.10     ad 	bool batch;
    489  1.10     ad 
    490  1.10     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    491  1.10     ad 	    l->l_stat == LSSUSPENDED)
    492  1.10     ad 		l->l_slptime++;
    493   1.1  rmind 
    494   1.1  rmind 	/*
    495   1.1  rmind 	 * Set that thread is more CPU-bound, if sum of run time exceeds the
    496  1.10     ad 	 * sum of sleep time.  Check if thread is CPU-bound a first time.
    497   1.1  rmind 	 */
    498  1.10     ad 	batch = (sil->sl_rtsum > sil->sl_slpsum);
    499  1.10     ad 	if (batch) {
    500  1.10     ad 		if ((sil->sl_flags & SL_BATCH) == 0)
    501  1.10     ad 			batch = false;
    502   1.1  rmind 		sil->sl_flags |= SL_BATCH;
    503  1.10     ad 	} else
    504   1.1  rmind 		sil->sl_flags &= ~SL_BATCH;
    505  1.10     ad 
    506  1.10     ad 	/* Reset the time sums */
    507   1.1  rmind 	sil->sl_slpsum = 0;
    508   1.1  rmind 	sil->sl_rtsum = 0;
    509   1.1  rmind 
    510  1.10     ad 	/* Estimate threads on time-sharing queue only */
    511  1.10     ad 	if (l->l_priority >= PRI_HIGHEST_TS)
    512   1.1  rmind 		return;
    513  1.16  rmind 	KASSERT(l->l_class == SCHED_OTHER);
    514   1.1  rmind 
    515  1.10     ad 	/* If it is CPU-bound not a first time - decrease the priority */
    516  1.11  rmind 	prio = l->l_priority;
    517  1.11  rmind 	if (batch && prio != 0)
    518  1.11  rmind 		prio--;
    519  1.10     ad 
    520   1.1  rmind 	/* If thread was not ran a second or more - set a high priority */
    521  1.11  rmind 	if (l->l_stat == LSRUN) {
    522  1.11  rmind 		if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
    523  1.11  rmind 			prio = high_pri[prio];
    524  1.11  rmind 		/* Re-enqueue the thread if priority has changed */
    525  1.11  rmind 		if (prio != l->l_priority)
    526  1.11  rmind 			lwp_changepri(l, prio);
    527  1.11  rmind 	} else {
    528  1.11  rmind 		/* In other states, change the priority directly */
    529  1.11  rmind 		l->l_priority = prio;
    530  1.11  rmind 	}
    531   1.1  rmind }
    532   1.1  rmind 
    533   1.1  rmind /*
    534   1.1  rmind  * Migration and balancing.
    535   1.1  rmind  */
    536   1.1  rmind 
    537   1.1  rmind #ifdef MULTIPROCESSOR
    538   1.1  rmind 
    539  1.16  rmind /* Estimate if LWP is cache-hot */
    540  1.16  rmind static inline bool
    541  1.16  rmind lwp_cache_hot(const struct lwp *l)
    542  1.16  rmind {
    543  1.16  rmind 	const sched_info_lwp_t *sil = l->l_sched_info;
    544  1.16  rmind 
    545  1.16  rmind 	if (l->l_slptime || sil->sl_lrtime == 0)
    546  1.16  rmind 		return false;
    547  1.16  rmind 
    548  1.16  rmind 	return (hardclock_ticks - sil->sl_lrtime < cacheht_time);
    549  1.16  rmind }
    550  1.16  rmind 
    551   1.1  rmind /* Check if LWP can migrate to the chosen CPU */
    552   1.1  rmind static inline bool
    553  1.15  rmind sched_migratable(const struct lwp *l, struct cpu_info *ci)
    554   1.1  rmind {
    555  1.15  rmind 	const struct schedstate_percpu *spc = &ci->ci_schedstate;
    556   1.1  rmind 
    557  1.15  rmind 	/* CPU is offline */
    558  1.15  rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
    559   1.1  rmind 		return false;
    560   1.1  rmind 
    561  1.15  rmind 	/* Affinity bind */
    562  1.15  rmind 	if (__predict_false(l->l_flag & LW_AFFINITY))
    563  1.15  rmind 		return CPU_ISSET(cpu_index(ci), &l->l_affinity);
    564  1.15  rmind 
    565  1.15  rmind 	/* Processor-set */
    566  1.15  rmind 	return (spc->spc_psid == l->l_psid);
    567   1.1  rmind }
    568   1.1  rmind 
    569   1.1  rmind /*
    570   1.1  rmind  * Estimate the migration of LWP to the other CPU.
    571   1.1  rmind  * Take and return the CPU, if migration is needed.
    572   1.1  rmind  */
    573   1.1  rmind struct cpu_info *
    574   1.1  rmind sched_takecpu(struct lwp *l)
    575   1.1  rmind {
    576  1.15  rmind 	struct cpu_info *ci, *tci;
    577   1.1  rmind 	struct schedstate_percpu *spc;
    578   1.1  rmind 	runqueue_t *ci_rq;
    579   1.1  rmind 	CPU_INFO_ITERATOR cii;
    580   1.1  rmind 	pri_t eprio, lpri;
    581   1.1  rmind 
    582  1.15  rmind 	KASSERT(lwp_locked(l, NULL));
    583  1.15  rmind 
    584   1.1  rmind 	ci = l->l_cpu;
    585   1.1  rmind 	spc = &ci->ci_schedstate;
    586   1.1  rmind 	ci_rq = spc->spc_sched_info;
    587   1.1  rmind 
    588  1.15  rmind 	/* If thread is strictly bound, do not estimate other CPUs */
    589  1.15  rmind 	if (l->l_flag & LW_BOUND)
    590  1.15  rmind 		return ci;
    591  1.15  rmind 
    592   1.1  rmind 	/* CPU of this thread is idling - run there */
    593   1.1  rmind 	if (ci_rq->r_count == 0)
    594   1.1  rmind 		return ci;
    595   1.1  rmind 
    596   1.1  rmind 	eprio = lwp_eprio(l);
    597   1.1  rmind 
    598   1.1  rmind 	/* Stay if thread is cache-hot */
    599  1.16  rmind 	if (__predict_true(l->l_stat != LSIDL) &&
    600  1.16  rmind 	    lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
    601   1.1  rmind 		return ci;
    602   1.1  rmind 
    603   1.1  rmind 	/* Run on current CPU if priority of thread is higher */
    604   1.1  rmind 	ci = curcpu();
    605   1.1  rmind 	spc = &ci->ci_schedstate;
    606  1.10     ad 	if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
    607   1.1  rmind 		return ci;
    608   1.1  rmind 
    609   1.1  rmind 	/*
    610   1.1  rmind 	 * Look for the CPU with the lowest priority thread.  In case of
    611   1.1  rmind 	 * equal the priority - check the lower count of the threads.
    612   1.1  rmind 	 */
    613  1.15  rmind 	tci = l->l_cpu;
    614  1.10     ad 	lpri = PRI_COUNT;
    615   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    616   1.1  rmind 		runqueue_t *ici_rq;
    617   1.1  rmind 		pri_t pri;
    618   1.1  rmind 
    619   1.1  rmind 		spc = &ci->ci_schedstate;
    620   1.1  rmind 		ici_rq = spc->spc_sched_info;
    621  1.10     ad 		pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
    622  1.10     ad 		if (pri > lpri)
    623   1.1  rmind 			continue;
    624   1.1  rmind 
    625  1.15  rmind 		if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
    626   1.1  rmind 			continue;
    627   1.1  rmind 
    628  1.15  rmind 		if (!sched_migratable(l, ci))
    629   1.1  rmind 			continue;
    630   1.1  rmind 
    631   1.1  rmind 		lpri = pri;
    632   1.1  rmind 		tci = ci;
    633   1.1  rmind 		ci_rq = ici_rq;
    634   1.1  rmind 	}
    635   1.1  rmind 	return tci;
    636   1.1  rmind }
    637   1.1  rmind 
    638   1.1  rmind /*
    639   1.1  rmind  * Tries to catch an LWP from the runqueue of other CPU.
    640   1.1  rmind  */
    641   1.1  rmind static struct lwp *
    642   1.1  rmind sched_catchlwp(void)
    643   1.1  rmind {
    644   1.1  rmind 	struct cpu_info *curci = curcpu(), *ci = worker_ci;
    645   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    646   1.1  rmind 	runqueue_t *ci_rq;
    647   1.1  rmind 	struct lwp *l;
    648   1.1  rmind 
    649   1.1  rmind 	if (curci == ci)
    650   1.1  rmind 		return NULL;
    651   1.1  rmind 
    652   1.1  rmind 	/* Lockless check */
    653   1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    654   1.1  rmind 	if (ci_rq->r_count < min_catch)
    655   1.1  rmind 		return NULL;
    656   1.1  rmind 
    657   1.1  rmind 	/*
    658   1.1  rmind 	 * Double-lock the runqueues.
    659   1.1  rmind 	 */
    660   1.3  rmind 	if (curci < ci) {
    661   1.1  rmind 		spc_lock(ci);
    662   1.1  rmind 	} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
    663   1.1  rmind 		const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
    664   1.1  rmind 
    665   1.1  rmind 		spc_unlock(curci);
    666   1.1  rmind 		spc_lock(ci);
    667   1.1  rmind 		spc_lock(curci);
    668   1.1  rmind 
    669   1.1  rmind 		if (cur_rq->r_count) {
    670   1.1  rmind 			spc_unlock(ci);
    671   1.1  rmind 			return NULL;
    672   1.1  rmind 		}
    673   1.1  rmind 	}
    674   1.1  rmind 
    675   1.1  rmind 	if (ci_rq->r_count < min_catch) {
    676   1.1  rmind 		spc_unlock(ci);
    677   1.1  rmind 		return NULL;
    678   1.1  rmind 	}
    679   1.1  rmind 
    680   1.1  rmind 	/* Take the highest priority thread */
    681   1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    682   1.1  rmind 	l = TAILQ_FIRST(q_head);
    683   1.1  rmind 
    684   1.1  rmind 	for (;;) {
    685   1.1  rmind 		/* Check the first and next result from the queue */
    686   1.1  rmind 		if (l == NULL)
    687   1.1  rmind 			break;
    688   1.1  rmind 
    689   1.1  rmind 		/* Look for threads, whose are allowed to migrate */
    690  1.16  rmind 		if ((l->l_flag & LW_SYSTEM) || lwp_cache_hot(l) ||
    691  1.15  rmind 		    !sched_migratable(l, curci)) {
    692   1.1  rmind 			l = TAILQ_NEXT(l, l_runq);
    693   1.1  rmind 			continue;
    694   1.1  rmind 		}
    695   1.1  rmind 		/* Recheck if chosen thread is still on the runqueue */
    696   1.1  rmind 		if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
    697   1.1  rmind 			sched_dequeue(l);
    698   1.1  rmind 			l->l_cpu = curci;
    699   1.1  rmind 			lwp_setlock(l, curci->ci_schedstate.spc_mutex);
    700   1.1  rmind 			sched_enqueue(l, false);
    701   1.1  rmind 			break;
    702   1.1  rmind 		}
    703   1.1  rmind 		l = TAILQ_NEXT(l, l_runq);
    704   1.1  rmind 	}
    705   1.1  rmind 	spc_unlock(ci);
    706   1.1  rmind 
    707   1.1  rmind 	return l;
    708   1.1  rmind }
    709   1.1  rmind 
    710   1.1  rmind /*
    711   1.1  rmind  * Periodical calculations for balancing.
    712   1.1  rmind  */
    713   1.1  rmind static void
    714   1.1  rmind sched_balance(void *nocallout)
    715   1.1  rmind {
    716   1.1  rmind 	struct cpu_info *ci, *hci;
    717   1.1  rmind 	runqueue_t *ci_rq;
    718   1.1  rmind 	CPU_INFO_ITERATOR cii;
    719   1.1  rmind 	u_int highest;
    720   1.1  rmind 
    721   1.1  rmind 	hci = curcpu();
    722   1.1  rmind 	highest = 0;
    723   1.1  rmind 
    724   1.1  rmind 	/* Make lockless countings */
    725   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    726   1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
    727   1.1  rmind 
    728   1.1  rmind 		/* Average count of the threads */
    729   1.1  rmind 		ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
    730   1.1  rmind 
    731   1.1  rmind 		/* Look for CPU with the highest average */
    732   1.1  rmind 		if (ci_rq->r_avgcount > highest) {
    733   1.1  rmind 			hci = ci;
    734   1.1  rmind 			highest = ci_rq->r_avgcount;
    735   1.1  rmind 		}
    736   1.1  rmind 	}
    737   1.1  rmind 
    738   1.1  rmind 	/* Update the worker */
    739   1.1  rmind 	worker_ci = hci;
    740   1.1  rmind 
    741   1.1  rmind 	if (nocallout == NULL)
    742   1.1  rmind 		callout_schedule(&balance_ch, balance_period);
    743   1.1  rmind }
    744   1.1  rmind 
    745   1.1  rmind #else
    746   1.1  rmind 
    747   1.1  rmind struct cpu_info *
    748   1.1  rmind sched_takecpu(struct lwp *l)
    749   1.1  rmind {
    750   1.1  rmind 
    751   1.1  rmind 	return l->l_cpu;
    752   1.1  rmind }
    753   1.1  rmind 
    754   1.1  rmind #endif	/* MULTIPROCESSOR */
    755   1.1  rmind 
    756   1.1  rmind /*
    757   1.1  rmind  * Scheduler mill.
    758   1.1  rmind  */
    759   1.1  rmind struct lwp *
    760   1.1  rmind sched_nextlwp(void)
    761   1.1  rmind {
    762   1.1  rmind 	struct cpu_info *ci = curcpu();
    763   1.1  rmind 	struct schedstate_percpu *spc;
    764   1.1  rmind 	TAILQ_HEAD(, lwp) *q_head;
    765   1.1  rmind 	sched_info_lwp_t *sil;
    766   1.1  rmind 	runqueue_t *ci_rq;
    767   1.1  rmind 	struct lwp *l;
    768   1.1  rmind 
    769   1.1  rmind 	spc = &ci->ci_schedstate;
    770   1.1  rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    771   1.1  rmind 
    772   1.1  rmind #ifdef MULTIPROCESSOR
    773   1.1  rmind 	/* If runqueue is empty, try to catch some thread from other CPU */
    774  1.11  rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
    775   1.7  rmind 		if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
    776   1.1  rmind 			return NULL;
    777   1.1  rmind 	} else if (ci_rq->r_count == 0) {
    778   1.1  rmind 		/* Reset the counter, and call the balancer */
    779   1.1  rmind 		ci_rq->r_avgcount = 0;
    780   1.1  rmind 		sched_balance(ci);
    781   1.1  rmind 
    782   1.1  rmind 		/* The re-locking will be done inside */
    783   1.1  rmind 		return sched_catchlwp();
    784   1.1  rmind 	}
    785   1.1  rmind #else
    786   1.1  rmind 	if (ci_rq->r_count == 0)
    787   1.1  rmind 		return NULL;
    788   1.1  rmind #endif
    789   1.1  rmind 
    790   1.1  rmind 	/* Take the highest priority thread */
    791   1.1  rmind 	KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
    792   1.1  rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    793   1.1  rmind 	l = TAILQ_FIRST(q_head);
    794   1.1  rmind 	KASSERT(l != NULL);
    795   1.1  rmind 
    796   1.1  rmind 	/* Update the counters */
    797   1.1  rmind 	sil = l->l_sched_info;
    798   1.1  rmind 	KASSERT(sil->sl_timeslice >= min_ts);
    799   1.1  rmind 	KASSERT(sil->sl_timeslice <= max_ts);
    800   1.1  rmind 	spc->spc_ticks = sil->sl_timeslice;
    801   1.1  rmind 	sil->sl_rtime = hardclock_ticks;
    802   1.1  rmind 
    803   1.1  rmind 	return l;
    804   1.1  rmind }
    805   1.1  rmind 
    806   1.1  rmind bool
    807   1.1  rmind sched_curcpu_runnable_p(void)
    808   1.1  rmind {
    809   1.1  rmind 	const struct cpu_info *ci = curcpu();
    810   1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    811   1.1  rmind 
    812  1.11  rmind #ifndef __HAVE_FAST_SOFTINTS
    813  1.11  rmind 	if (ci->ci_data.cpu_softints)
    814  1.11  rmind 		return true;
    815  1.11  rmind #endif
    816  1.11  rmind 
    817   1.1  rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    818   1.7  rmind 		return (ci_rq->r_count - ci_rq->r_mcount);
    819   1.1  rmind 
    820   1.1  rmind 	return ci_rq->r_count;
    821   1.1  rmind }
    822   1.1  rmind 
    823   1.1  rmind /*
    824   1.1  rmind  * Time-driven events.
    825   1.1  rmind  */
    826   1.1  rmind 
    827   1.1  rmind /*
    828   1.1  rmind  * Called once per time-quantum.  This routine is CPU-local and runs at
    829   1.1  rmind  * IPL_SCHED, thus the locking is not needed.
    830   1.1  rmind  */
    831   1.1  rmind void
    832   1.1  rmind sched_tick(struct cpu_info *ci)
    833   1.1  rmind {
    834   1.1  rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    835   1.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    836   1.1  rmind 	struct lwp *l = curlwp;
    837  1.16  rmind 	const sched_info_lwp_t *sil = l->l_sched_info;
    838   1.1  rmind 
    839   1.2  rmind 	if (CURCPU_IDLE_P())
    840   1.2  rmind 		return;
    841   1.1  rmind 
    842  1.10     ad 	switch (l->l_class) {
    843   1.2  rmind 	case SCHED_FIFO:
    844   1.2  rmind 		/*
    845   1.2  rmind 		 * Update the time-quantum, and continue running,
    846   1.2  rmind 		 * if thread runs on FIFO real-time policy.
    847   1.2  rmind 		 */
    848  1.16  rmind 		KASSERT(l->l_priority > PRI_HIGHEST_TS);
    849   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    850   1.1  rmind 		return;
    851   1.2  rmind 	case SCHED_OTHER:
    852  1.10     ad 		/*
    853  1.10     ad 		 * If thread is in time-sharing queue, decrease the priority,
    854  1.10     ad 		 * and run with a higher time-quantum.
    855  1.10     ad 		 */
    856  1.16  rmind 		KASSERT(l->l_priority <= PRI_HIGHEST_TS);
    857  1.10     ad 		if (l->l_priority != 0)
    858  1.10     ad 			l->l_priority--;
    859   1.2  rmind 		break;
    860   1.1  rmind 	}
    861   1.1  rmind 
    862   1.1  rmind 	/*
    863   1.2  rmind 	 * If there are higher priority threads or threads in the same queue,
    864   1.2  rmind 	 * mark that thread should yield, otherwise, continue running.
    865   1.1  rmind 	 */
    866  1.15  rmind 	if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
    867   1.1  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    868   1.1  rmind 		cpu_need_resched(ci, 0);
    869   1.1  rmind 	} else
    870   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    871   1.1  rmind }
    872   1.1  rmind 
    873   1.1  rmind /*
    874   1.1  rmind  * Sysctl nodes and initialization.
    875   1.1  rmind  */
    876   1.1  rmind 
    877   1.1  rmind static int
    878  1.15  rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    879  1.15  rmind {
    880  1.15  rmind 	struct sysctlnode node;
    881  1.15  rmind 	int rttsms = hztoms(rt_ts);
    882  1.15  rmind 
    883  1.15  rmind 	node = *rnode;
    884  1.15  rmind 	node.sysctl_data = &rttsms;
    885  1.15  rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    886  1.15  rmind }
    887  1.15  rmind 
    888  1.15  rmind static int
    889   1.1  rmind sysctl_sched_mints(SYSCTLFN_ARGS)
    890   1.1  rmind {
    891   1.1  rmind 	struct sysctlnode node;
    892   1.1  rmind 	struct cpu_info *ci;
    893   1.1  rmind 	int error, newsize;
    894   1.1  rmind 	CPU_INFO_ITERATOR cii;
    895   1.1  rmind 
    896   1.1  rmind 	node = *rnode;
    897   1.1  rmind 	node.sysctl_data = &newsize;
    898   1.1  rmind 
    899   1.1  rmind 	newsize = hztoms(min_ts);
    900   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    901   1.1  rmind 	if (error || newp == NULL)
    902   1.1  rmind 		return error;
    903   1.1  rmind 
    904   1.8  rmind 	newsize = mstohz(newsize);
    905   1.1  rmind 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    906   1.1  rmind 		return EINVAL;
    907   1.1  rmind 
    908   1.1  rmind 	/* It is safe to do this in such order */
    909   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    910   1.1  rmind 		spc_lock(ci);
    911   1.1  rmind 
    912   1.8  rmind 	min_ts = newsize;
    913   1.1  rmind 	sched_precalcts();
    914   1.1  rmind 
    915   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    916   1.1  rmind 		spc_unlock(ci);
    917   1.1  rmind 
    918   1.1  rmind 	return 0;
    919   1.1  rmind }
    920   1.1  rmind 
    921   1.1  rmind static int
    922   1.1  rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
    923   1.1  rmind {
    924   1.1  rmind 	struct sysctlnode node;
    925   1.1  rmind 	struct cpu_info *ci;
    926   1.1  rmind 	int error, newsize;
    927   1.1  rmind 	CPU_INFO_ITERATOR cii;
    928   1.1  rmind 
    929   1.1  rmind 	node = *rnode;
    930   1.1  rmind 	node.sysctl_data = &newsize;
    931   1.1  rmind 
    932   1.1  rmind 	newsize = hztoms(max_ts);
    933   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    934   1.1  rmind 	if (error || newp == NULL)
    935   1.1  rmind 		return error;
    936   1.1  rmind 
    937   1.8  rmind 	newsize = mstohz(newsize);
    938   1.1  rmind 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    939   1.1  rmind 		return EINVAL;
    940   1.1  rmind 
    941   1.1  rmind 	/* It is safe to do this in such order */
    942   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    943   1.1  rmind 		spc_lock(ci);
    944   1.1  rmind 
    945   1.8  rmind 	max_ts = newsize;
    946   1.1  rmind 	sched_precalcts();
    947   1.1  rmind 
    948   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    949   1.1  rmind 		spc_unlock(ci);
    950   1.1  rmind 
    951   1.1  rmind 	return 0;
    952   1.1  rmind }
    953   1.1  rmind 
    954   1.1  rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    955   1.1  rmind {
    956   1.1  rmind 	const struct sysctlnode *node = NULL;
    957   1.1  rmind 
    958   1.1  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    959   1.1  rmind 		CTLFLAG_PERMANENT,
    960   1.1  rmind 		CTLTYPE_NODE, "kern", NULL,
    961   1.1  rmind 		NULL, 0, NULL, 0,
    962   1.1  rmind 		CTL_KERN, CTL_EOL);
    963   1.1  rmind 	sysctl_createv(clog, 0, NULL, &node,
    964   1.1  rmind 		CTLFLAG_PERMANENT,
    965   1.1  rmind 		CTLTYPE_NODE, "sched",
    966   1.1  rmind 		SYSCTL_DESCR("Scheduler options"),
    967   1.1  rmind 		NULL, 0, NULL, 0,
    968   1.1  rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    969   1.1  rmind 
    970   1.1  rmind 	if (node == NULL)
    971   1.1  rmind 		return;
    972   1.1  rmind 
    973   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    974   1.1  rmind 		CTLFLAG_PERMANENT,
    975   1.1  rmind 		CTLTYPE_STRING, "name", NULL,
    976   1.1  rmind 		NULL, 0, __UNCONST("M2"), 0,
    977   1.1  rmind 		CTL_CREATE, CTL_EOL);
    978   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    979  1.15  rmind 		CTLFLAG_PERMANENT,
    980  1.15  rmind 		CTLTYPE_INT, "rtts",
    981  1.15  rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    982  1.15  rmind 		sysctl_sched_rtts, 0, NULL, 0,
    983  1.15  rmind 		CTL_CREATE, CTL_EOL);
    984  1.15  rmind 	sysctl_createv(clog, 0, &node, NULL,
    985   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    986   1.1  rmind 		CTLTYPE_INT, "maxts",
    987   1.8  rmind 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
    988   1.1  rmind 		sysctl_sched_maxts, 0, &max_ts, 0,
    989   1.1  rmind 		CTL_CREATE, CTL_EOL);
    990   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    991   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    992   1.1  rmind 		CTLTYPE_INT, "mints",
    993   1.8  rmind 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
    994   1.1  rmind 		sysctl_sched_mints, 0, &min_ts, 0,
    995   1.1  rmind 		CTL_CREATE, CTL_EOL);
    996   1.1  rmind 
    997   1.1  rmind #ifdef MULTIPROCESSOR
    998   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
    999   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1000   1.1  rmind 		CTLTYPE_INT, "cacheht_time",
   1001   1.8  rmind 		SYSCTL_DESCR("Cache hotness time (in ticks)"),
   1002   1.1  rmind 		NULL, 0, &cacheht_time, 0,
   1003   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1004   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
   1005   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1006   1.9  rmind 		CTLTYPE_INT, "balance_period",
   1007   1.9  rmind 		SYSCTL_DESCR("Balance period (in ticks)"),
   1008   1.1  rmind 		NULL, 0, &balance_period, 0,
   1009   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1010   1.1  rmind 	sysctl_createv(clog, 0, &node, NULL,
   1011   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1012   1.1  rmind 		CTLTYPE_INT, "min_catch",
   1013   1.8  rmind 		SYSCTL_DESCR("Minimal count of the threads for catching"),
   1014   1.1  rmind 		NULL, 0, &min_catch, 0,
   1015   1.1  rmind 		CTL_CREATE, CTL_EOL);
   1016   1.1  rmind #endif
   1017   1.1  rmind }
   1018   1.1  rmind 
   1019   1.1  rmind /*
   1020   1.1  rmind  * Debugging.
   1021   1.1  rmind  */
   1022   1.1  rmind 
   1023   1.1  rmind #ifdef DDB
   1024   1.1  rmind 
   1025   1.1  rmind void
   1026   1.1  rmind sched_print_runqueue(void (*pr)(const char *, ...))
   1027   1.1  rmind {
   1028   1.1  rmind 	runqueue_t *ci_rq;
   1029   1.1  rmind 	sched_info_lwp_t *sil;
   1030   1.1  rmind 	struct lwp *l;
   1031   1.1  rmind 	struct proc *p;
   1032   1.1  rmind 	int i;
   1033   1.1  rmind 
   1034   1.1  rmind 	struct cpu_info *ci;
   1035   1.1  rmind 	CPU_INFO_ITERATOR cii;
   1036   1.1  rmind 
   1037   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
   1038   1.1  rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
   1039   1.1  rmind 
   1040   1.1  rmind 		(*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
   1041   1.1  rmind 		(*pr)(" pid.lid = %d.%d, threads count = %u, "
   1042   1.1  rmind 		    "avgcount = %u, highest pri = %d\n",
   1043   1.1  rmind 		    ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
   1044   1.1  rmind 		    ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
   1045  1.10     ad 		i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
   1046   1.1  rmind 		do {
   1047  1.10     ad 			uint32_t q;
   1048  1.10     ad 			q = ci_rq->r_bitmap[i];
   1049  1.10     ad 			(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
   1050  1.10     ad 		} while (i--);
   1051   1.1  rmind 	}
   1052   1.1  rmind 
   1053   1.1  rmind 	(*pr)("   %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
   1054  1.10     ad 	    "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
   1055   1.1  rmind 
   1056   1.1  rmind 	PROCLIST_FOREACH(p, &allproc) {
   1057   1.1  rmind 		(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
   1058   1.1  rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1059   1.1  rmind 			sil = l->l_sched_info;
   1060   1.1  rmind 			ci = l->l_cpu;
   1061   1.1  rmind 			(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
   1062   1.1  rmind 			    "%u ST=%d RT=%d %d\n",
   1063  1.10     ad 			    (int)l->l_lid, l->l_priority, lwp_eprio(l),
   1064   1.1  rmind 			    l->l_flag, l->l_stat == LSRUN ? "RQ" :
   1065   1.1  rmind 			    (l->l_stat == LSSLEEP ? "SQ" : "-"),
   1066   1.1  rmind 			    sil->sl_timeslice, l, ci->ci_cpuid,
   1067   1.1  rmind 			    (u_int)(hardclock_ticks - sil->sl_lrtime),
   1068   1.1  rmind 			    sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
   1069   1.1  rmind 		}
   1070   1.1  rmind 	}
   1071   1.1  rmind }
   1072   1.1  rmind 
   1073  1.16  rmind #endif
   1074