sched_m2.c revision 1.21 1 1.21 martin /* $NetBSD: sched_m2.c,v 1.21 2008/03/10 22:20:14 martin Exp $ */
2 1.1 rmind
3 1.1 rmind /*
4 1.15 rmind * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 1.12 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * Redistribution and use in source and binary forms, with or without
8 1.1 rmind * modification, are permitted provided that the following conditions
9 1.1 rmind * are met:
10 1.1 rmind * 1. Redistributions of source code must retain the above copyright
11 1.1 rmind * notice, this list of conditions and the following disclaimer.
12 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer in the
14 1.1 rmind * documentation and/or other materials provided with the distribution.
15 1.1 rmind *
16 1.19 rmind * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.19 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.19 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.19 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.19 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.19 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.19 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.19 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.19 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.19 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.19 rmind * SUCH DAMAGE.
27 1.1 rmind */
28 1.1 rmind
29 1.1 rmind /*
30 1.1 rmind * TODO:
31 1.1 rmind * - Implementation of fair share queue;
32 1.1 rmind * - Support for NUMA;
33 1.1 rmind */
34 1.1 rmind
35 1.1 rmind #include <sys/cdefs.h>
36 1.21 martin __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.21 2008/03/10 22:20:14 martin Exp $");
37 1.1 rmind
38 1.1 rmind #include <sys/param.h>
39 1.1 rmind
40 1.8 rmind #include <sys/bitops.h>
41 1.1 rmind #include <sys/cpu.h>
42 1.1 rmind #include <sys/callout.h>
43 1.1 rmind #include <sys/errno.h>
44 1.1 rmind #include <sys/kernel.h>
45 1.1 rmind #include <sys/kmem.h>
46 1.1 rmind #include <sys/lwp.h>
47 1.1 rmind #include <sys/mutex.h>
48 1.1 rmind #include <sys/pool.h>
49 1.1 rmind #include <sys/proc.h>
50 1.15 rmind #include <sys/pset.h>
51 1.1 rmind #include <sys/resource.h>
52 1.1 rmind #include <sys/resourcevar.h>
53 1.1 rmind #include <sys/sched.h>
54 1.1 rmind #include <sys/syscallargs.h>
55 1.1 rmind #include <sys/sysctl.h>
56 1.1 rmind #include <sys/types.h>
57 1.1 rmind
58 1.1 rmind /*
59 1.10 ad * Priority related defintions.
60 1.1 rmind */
61 1.10 ad #define PRI_TS_COUNT (NPRI_USER)
62 1.10 ad #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
63 1.10 ad #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
64 1.10 ad
65 1.11 rmind #define PRI_HIGHEST_TS (MAXPRI_USER)
66 1.10 ad
67 1.10 ad const int schedppq = 1;
68 1.1 rmind
69 1.1 rmind /*
70 1.1 rmind * Bits per map.
71 1.1 rmind */
72 1.10 ad #define BITMAP_BITS (32)
73 1.10 ad #define BITMAP_SHIFT (5)
74 1.11 rmind #define BITMAP_MSB (0x80000000U)
75 1.10 ad #define BITMAP_MASK (BITMAP_BITS - 1)
76 1.1 rmind
77 1.1 rmind /*
78 1.1 rmind * Time-slices and priorities.
79 1.1 rmind */
80 1.1 rmind static u_int min_ts; /* Minimal time-slice */
81 1.1 rmind static u_int max_ts; /* Maximal time-slice */
82 1.1 rmind static u_int rt_ts; /* Real-time time-slice */
83 1.1 rmind static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
84 1.1 rmind static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
85 1.1 rmind
86 1.1 rmind /*
87 1.1 rmind * Migration and balancing.
88 1.1 rmind */
89 1.1 rmind #ifdef MULTIPROCESSOR
90 1.15 rmind
91 1.1 rmind static u_int cacheht_time; /* Cache hotness time */
92 1.1 rmind static u_int min_catch; /* Minimal LWP count for catching */
93 1.1 rmind
94 1.1 rmind static u_int balance_period; /* Balance period */
95 1.1 rmind static struct callout balance_ch; /* Callout of balancer */
96 1.1 rmind
97 1.1 rmind static struct cpu_info * volatile worker_ci;
98 1.1 rmind
99 1.1 rmind #endif
100 1.1 rmind
101 1.1 rmind /*
102 1.1 rmind * Structures, runqueue.
103 1.1 rmind */
104 1.1 rmind
105 1.1 rmind typedef struct {
106 1.1 rmind TAILQ_HEAD(, lwp) q_head;
107 1.1 rmind } queue_t;
108 1.1 rmind
109 1.1 rmind typedef struct {
110 1.1 rmind /* Lock and bitmap */
111 1.10 ad uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
112 1.1 rmind /* Counters */
113 1.1 rmind u_int r_count; /* Count of the threads */
114 1.1 rmind pri_t r_highest_pri; /* Highest priority */
115 1.1 rmind u_int r_avgcount; /* Average count of threads */
116 1.1 rmind u_int r_mcount; /* Count of migratable threads */
117 1.1 rmind /* Runqueues */
118 1.1 rmind queue_t r_rt_queue[PRI_RT_COUNT];
119 1.1 rmind queue_t r_ts_queue[PRI_TS_COUNT];
120 1.1 rmind } runqueue_t;
121 1.1 rmind
122 1.1 rmind typedef struct {
123 1.1 rmind u_int sl_flags;
124 1.1 rmind u_int sl_timeslice; /* Time-slice of thread */
125 1.1 rmind u_int sl_slept; /* Saved sleep time for sleep sum */
126 1.1 rmind u_int sl_slpsum; /* Sum of sleep time */
127 1.1 rmind u_int sl_rtime; /* Saved start time of run */
128 1.1 rmind u_int sl_rtsum; /* Sum of the run time */
129 1.1 rmind u_int sl_lrtime; /* Last run time */
130 1.1 rmind } sched_info_lwp_t;
131 1.1 rmind
132 1.1 rmind /* Flags */
133 1.1 rmind #define SL_BATCH 0x01
134 1.1 rmind
135 1.1 rmind /* Pool of the scheduler-specific structures for threads */
136 1.19 rmind static pool_cache_t sil_pool;
137 1.1 rmind
138 1.1 rmind /*
139 1.1 rmind * Prototypes.
140 1.1 rmind */
141 1.1 rmind
142 1.1 rmind static inline void * sched_getrq(runqueue_t *, const pri_t);
143 1.1 rmind static inline void sched_newts(struct lwp *);
144 1.1 rmind static void sched_precalcts(void);
145 1.1 rmind
146 1.1 rmind #ifdef MULTIPROCESSOR
147 1.1 rmind static struct lwp * sched_catchlwp(void);
148 1.1 rmind static void sched_balance(void *);
149 1.1 rmind #endif
150 1.1 rmind
151 1.1 rmind /*
152 1.1 rmind * Initialization and setup.
153 1.1 rmind */
154 1.1 rmind
155 1.1 rmind void
156 1.1 rmind sched_rqinit(void)
157 1.1 rmind {
158 1.1 rmind struct cpu_info *ci = curcpu();
159 1.1 rmind
160 1.1 rmind if (hz < 100) {
161 1.1 rmind panic("sched_rqinit: value of HZ is too low\n");
162 1.1 rmind }
163 1.1 rmind
164 1.1 rmind /* Default timing ranges */
165 1.1 rmind min_ts = mstohz(50); /* ~50ms */
166 1.1 rmind max_ts = mstohz(150); /* ~150ms */
167 1.1 rmind rt_ts = mstohz(100); /* ~100ms */
168 1.1 rmind sched_precalcts();
169 1.1 rmind
170 1.1 rmind #ifdef MULTIPROCESSOR
171 1.1 rmind /* Balancing */
172 1.1 rmind worker_ci = ci;
173 1.1 rmind cacheht_time = mstohz(5); /* ~5 ms */
174 1.1 rmind balance_period = mstohz(300); /* ~300ms */
175 1.1 rmind min_catch = ~0;
176 1.1 rmind #endif
177 1.1 rmind
178 1.1 rmind /* Pool of the scheduler-specific structures */
179 1.20 ad sil_pool = pool_cache_init(sizeof(sched_info_lwp_t), CACHE_LINE_SIZE,
180 1.20 ad 0, 0, "lwpsd", NULL, IPL_NONE, NULL, NULL, NULL);
181 1.1 rmind
182 1.1 rmind /* Attach the primary CPU here */
183 1.1 rmind sched_cpuattach(ci);
184 1.1 rmind
185 1.10 ad sched_lwp_fork(NULL, &lwp0);
186 1.1 rmind sched_newts(&lwp0);
187 1.1 rmind }
188 1.1 rmind
189 1.1 rmind void
190 1.1 rmind sched_setup(void)
191 1.1 rmind {
192 1.1 rmind
193 1.1 rmind #ifdef MULTIPROCESSOR
194 1.1 rmind /* Minimal count of LWPs for catching: log2(count of CPUs) */
195 1.8 rmind min_catch = min(ilog2(ncpu), 4);
196 1.1 rmind
197 1.1 rmind /* Initialize balancing callout and run it */
198 1.1 rmind callout_init(&balance_ch, CALLOUT_MPSAFE);
199 1.1 rmind callout_setfunc(&balance_ch, sched_balance, NULL);
200 1.1 rmind callout_schedule(&balance_ch, balance_period);
201 1.1 rmind #endif
202 1.1 rmind }
203 1.1 rmind
204 1.1 rmind void
205 1.1 rmind sched_cpuattach(struct cpu_info *ci)
206 1.1 rmind {
207 1.1 rmind runqueue_t *ci_rq;
208 1.1 rmind void *rq_ptr;
209 1.1 rmind u_int i, size;
210 1.1 rmind
211 1.20 ad if (ci == lwp0.l_cpu) {
212 1.20 ad /* Initialize the scheduler structure of the primary LWP */
213 1.20 ad lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
214 1.20 ad }
215 1.20 ad
216 1.20 ad if (ci->ci_schedstate.spc_mutex != NULL) {
217 1.20 ad /* Already initialized. */
218 1.20 ad return;
219 1.20 ad }
220 1.20 ad
221 1.19 rmind /* Allocate the run queue */
222 1.19 rmind size = roundup2(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
223 1.14 ad rq_ptr = kmem_zalloc(size, KM_SLEEP);
224 1.1 rmind if (rq_ptr == NULL) {
225 1.19 rmind panic("sched_cpuattach: could not allocate the runqueue");
226 1.1 rmind }
227 1.19 rmind ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), CACHE_LINE_SIZE));
228 1.1 rmind
229 1.1 rmind /* Initialize run queues */
230 1.20 ad KASSERT(sizeof(kmutex_t) <= CACHE_LINE_SIZE);
231 1.20 ad ci->ci_schedstate.spc_mutex = kmem_alloc(CACHE_LINE_SIZE, KM_SLEEP);
232 1.20 ad mutex_init(ci->ci_schedstate.spc_mutex, MUTEX_DEFAULT, IPL_SCHED);
233 1.1 rmind for (i = 0; i < PRI_RT_COUNT; i++)
234 1.1 rmind TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
235 1.1 rmind for (i = 0; i < PRI_TS_COUNT; i++)
236 1.1 rmind TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
237 1.10 ad ci_rq->r_highest_pri = 0;
238 1.1 rmind
239 1.1 rmind ci->ci_schedstate.spc_sched_info = ci_rq;
240 1.1 rmind }
241 1.1 rmind
242 1.1 rmind /* Pre-calculate the time-slices for the priorities */
243 1.1 rmind static void
244 1.1 rmind sched_precalcts(void)
245 1.1 rmind {
246 1.1 rmind pri_t p;
247 1.1 rmind
248 1.10 ad /* Time-sharing range */
249 1.10 ad for (p = 0; p <= PRI_HIGHEST_TS; p++) {
250 1.10 ad ts_map[p] = max_ts -
251 1.10 ad (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
252 1.10 ad high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
253 1.10 ad ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
254 1.10 ad }
255 1.10 ad
256 1.10 ad /* Real-time range */
257 1.10 ad for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
258 1.1 rmind ts_map[p] = rt_ts;
259 1.1 rmind high_pri[p] = p;
260 1.1 rmind }
261 1.1 rmind }
262 1.1 rmind
263 1.1 rmind /*
264 1.1 rmind * Hooks.
265 1.1 rmind */
266 1.1 rmind
267 1.1 rmind void
268 1.1 rmind sched_proc_fork(struct proc *parent, struct proc *child)
269 1.1 rmind {
270 1.1 rmind struct lwp *l;
271 1.1 rmind
272 1.1 rmind LIST_FOREACH(l, &child->p_lwps, l_sibling) {
273 1.1 rmind lwp_lock(l);
274 1.1 rmind sched_newts(l);
275 1.1 rmind lwp_unlock(l);
276 1.1 rmind }
277 1.1 rmind }
278 1.1 rmind
279 1.1 rmind void
280 1.1 rmind sched_proc_exit(struct proc *child, struct proc *parent)
281 1.1 rmind {
282 1.1 rmind
283 1.1 rmind /* Dummy */
284 1.1 rmind }
285 1.1 rmind
286 1.1 rmind void
287 1.10 ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
288 1.1 rmind {
289 1.1 rmind
290 1.10 ad KASSERT(l2->l_sched_info == NULL);
291 1.19 rmind l2->l_sched_info = pool_cache_get(sil_pool, PR_WAITOK);
292 1.10 ad memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
293 1.1 rmind }
294 1.1 rmind
295 1.1 rmind void
296 1.1 rmind sched_lwp_exit(struct lwp *l)
297 1.1 rmind {
298 1.1 rmind
299 1.1 rmind KASSERT(l->l_sched_info != NULL);
300 1.19 rmind pool_cache_put(sil_pool, l->l_sched_info);
301 1.1 rmind l->l_sched_info = NULL;
302 1.1 rmind }
303 1.1 rmind
304 1.1 rmind void
305 1.10 ad sched_lwp_collect(struct lwp *l)
306 1.10 ad {
307 1.10 ad
308 1.10 ad }
309 1.10 ad
310 1.10 ad void
311 1.1 rmind sched_setrunnable(struct lwp *l)
312 1.1 rmind {
313 1.1 rmind
314 1.1 rmind /* Dummy */
315 1.1 rmind }
316 1.1 rmind
317 1.1 rmind void
318 1.1 rmind sched_schedclock(struct lwp *l)
319 1.1 rmind {
320 1.1 rmind
321 1.1 rmind /* Dummy */
322 1.1 rmind }
323 1.1 rmind
324 1.1 rmind /*
325 1.1 rmind * Priorities and time-slice.
326 1.1 rmind */
327 1.1 rmind
328 1.1 rmind void
329 1.1 rmind sched_nice(struct proc *p, int prio)
330 1.1 rmind {
331 1.1 rmind
332 1.17 rmind /* TODO: implement as SCHED_IA */
333 1.1 rmind }
334 1.1 rmind
335 1.1 rmind /* Recalculate the time-slice */
336 1.1 rmind static inline void
337 1.1 rmind sched_newts(struct lwp *l)
338 1.1 rmind {
339 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
340 1.1 rmind
341 1.1 rmind sil->sl_timeslice = ts_map[lwp_eprio(l)];
342 1.1 rmind }
343 1.1 rmind
344 1.1 rmind /*
345 1.1 rmind * Control of the runqueue.
346 1.1 rmind */
347 1.1 rmind
348 1.1 rmind static inline void *
349 1.1 rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
350 1.1 rmind {
351 1.1 rmind
352 1.1 rmind KASSERT(prio < PRI_COUNT);
353 1.10 ad return (prio <= PRI_HIGHEST_TS) ?
354 1.10 ad &ci_rq->r_ts_queue[prio].q_head :
355 1.10 ad &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
356 1.1 rmind }
357 1.1 rmind
358 1.1 rmind void
359 1.1 rmind sched_enqueue(struct lwp *l, bool swtch)
360 1.1 rmind {
361 1.1 rmind runqueue_t *ci_rq;
362 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
363 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
364 1.1 rmind const pri_t eprio = lwp_eprio(l);
365 1.1 rmind
366 1.1 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
367 1.1 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
368 1.1 rmind
369 1.1 rmind /* Update the last run time on switch */
370 1.11 rmind if (__predict_true(swtch == true)) {
371 1.1 rmind sil->sl_lrtime = hardclock_ticks;
372 1.1 rmind sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
373 1.8 rmind } else if (sil->sl_lrtime == 0)
374 1.8 rmind sil->sl_lrtime = hardclock_ticks;
375 1.1 rmind
376 1.1 rmind /* Enqueue the thread */
377 1.1 rmind q_head = sched_getrq(ci_rq, eprio);
378 1.1 rmind if (TAILQ_EMPTY(q_head)) {
379 1.1 rmind u_int i;
380 1.1 rmind uint32_t q;
381 1.1 rmind
382 1.1 rmind /* Mark bit */
383 1.1 rmind i = eprio >> BITMAP_SHIFT;
384 1.10 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
385 1.10 ad KASSERT((ci_rq->r_bitmap[i] & q) == 0);
386 1.10 ad ci_rq->r_bitmap[i] |= q;
387 1.1 rmind }
388 1.1 rmind TAILQ_INSERT_TAIL(q_head, l, l_runq);
389 1.1 rmind ci_rq->r_count++;
390 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
391 1.1 rmind ci_rq->r_mcount++;
392 1.1 rmind
393 1.1 rmind /*
394 1.1 rmind * Update the value of highest priority in the runqueue,
395 1.1 rmind * if priority of this thread is higher.
396 1.1 rmind */
397 1.10 ad if (eprio > ci_rq->r_highest_pri)
398 1.1 rmind ci_rq->r_highest_pri = eprio;
399 1.1 rmind
400 1.1 rmind sched_newts(l);
401 1.1 rmind }
402 1.1 rmind
403 1.1 rmind void
404 1.1 rmind sched_dequeue(struct lwp *l)
405 1.1 rmind {
406 1.1 rmind runqueue_t *ci_rq;
407 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
408 1.1 rmind const pri_t eprio = lwp_eprio(l);
409 1.1 rmind
410 1.1 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
411 1.1 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
412 1.15 rmind
413 1.10 ad KASSERT(eprio <= ci_rq->r_highest_pri);
414 1.1 rmind KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
415 1.1 rmind KASSERT(ci_rq->r_count > 0);
416 1.1 rmind
417 1.1 rmind ci_rq->r_count--;
418 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
419 1.1 rmind ci_rq->r_mcount--;
420 1.1 rmind
421 1.1 rmind q_head = sched_getrq(ci_rq, eprio);
422 1.1 rmind TAILQ_REMOVE(q_head, l, l_runq);
423 1.1 rmind if (TAILQ_EMPTY(q_head)) {
424 1.1 rmind u_int i;
425 1.1 rmind uint32_t q;
426 1.1 rmind
427 1.1 rmind /* Unmark bit */
428 1.1 rmind i = eprio >> BITMAP_SHIFT;
429 1.10 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
430 1.10 ad KASSERT((ci_rq->r_bitmap[i] & q) != 0);
431 1.10 ad ci_rq->r_bitmap[i] &= ~q;
432 1.1 rmind
433 1.1 rmind /*
434 1.1 rmind * Update the value of highest priority in the runqueue, in a
435 1.1 rmind * case it was a last thread in the queue of highest priority.
436 1.1 rmind */
437 1.1 rmind if (eprio != ci_rq->r_highest_pri)
438 1.1 rmind return;
439 1.1 rmind
440 1.1 rmind do {
441 1.1 rmind q = ffs(ci_rq->r_bitmap[i]);
442 1.1 rmind if (q) {
443 1.1 rmind ci_rq->r_highest_pri =
444 1.10 ad (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
445 1.1 rmind return;
446 1.1 rmind }
447 1.10 ad } while (i--);
448 1.1 rmind
449 1.10 ad /* If not found - set the lowest value */
450 1.10 ad ci_rq->r_highest_pri = 0;
451 1.1 rmind }
452 1.1 rmind }
453 1.1 rmind
454 1.1 rmind void
455 1.1 rmind sched_slept(struct lwp *l)
456 1.1 rmind {
457 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
458 1.1 rmind
459 1.1 rmind /* Save the time when thread has slept */
460 1.1 rmind sil->sl_slept = hardclock_ticks;
461 1.1 rmind
462 1.1 rmind /*
463 1.10 ad * If thread is in time-sharing queue and batch flag is not marked,
464 1.10 ad * increase the the priority, and run with the lower time-quantum.
465 1.1 rmind */
466 1.18 rmind if (l->l_priority < PRI_HIGHEST_TS &&
467 1.16 rmind (sil->sl_flags & SL_BATCH) == 0) {
468 1.10 ad KASSERT(l->l_class == SCHED_OTHER);
469 1.10 ad l->l_priority++;
470 1.10 ad }
471 1.1 rmind }
472 1.1 rmind
473 1.1 rmind void
474 1.1 rmind sched_wakeup(struct lwp *l)
475 1.1 rmind {
476 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
477 1.1 rmind
478 1.1 rmind /* Update sleep time delta */
479 1.1 rmind sil->sl_slpsum += (l->l_slptime == 0) ?
480 1.1 rmind (hardclock_ticks - sil->sl_slept) : hz;
481 1.1 rmind
482 1.1 rmind /* If thread was sleeping a second or more - set a high priority */
483 1.1 rmind if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
484 1.10 ad l->l_priority = high_pri[l->l_priority];
485 1.1 rmind
486 1.1 rmind /* Also, consider looking for a better CPU to wake up */
487 1.1 rmind if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
488 1.1 rmind l->l_cpu = sched_takecpu(l);
489 1.1 rmind }
490 1.1 rmind
491 1.1 rmind void
492 1.1 rmind sched_pstats_hook(struct lwp *l)
493 1.1 rmind {
494 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
495 1.11 rmind pri_t prio;
496 1.10 ad bool batch;
497 1.10 ad
498 1.10 ad if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
499 1.10 ad l->l_stat == LSSUSPENDED)
500 1.10 ad l->l_slptime++;
501 1.1 rmind
502 1.1 rmind /*
503 1.1 rmind * Set that thread is more CPU-bound, if sum of run time exceeds the
504 1.10 ad * sum of sleep time. Check if thread is CPU-bound a first time.
505 1.1 rmind */
506 1.10 ad batch = (sil->sl_rtsum > sil->sl_slpsum);
507 1.10 ad if (batch) {
508 1.10 ad if ((sil->sl_flags & SL_BATCH) == 0)
509 1.10 ad batch = false;
510 1.1 rmind sil->sl_flags |= SL_BATCH;
511 1.10 ad } else
512 1.1 rmind sil->sl_flags &= ~SL_BATCH;
513 1.10 ad
514 1.10 ad /* Reset the time sums */
515 1.1 rmind sil->sl_slpsum = 0;
516 1.1 rmind sil->sl_rtsum = 0;
517 1.1 rmind
518 1.10 ad /* Estimate threads on time-sharing queue only */
519 1.10 ad if (l->l_priority >= PRI_HIGHEST_TS)
520 1.1 rmind return;
521 1.16 rmind KASSERT(l->l_class == SCHED_OTHER);
522 1.1 rmind
523 1.10 ad /* If it is CPU-bound not a first time - decrease the priority */
524 1.11 rmind prio = l->l_priority;
525 1.11 rmind if (batch && prio != 0)
526 1.11 rmind prio--;
527 1.10 ad
528 1.1 rmind /* If thread was not ran a second or more - set a high priority */
529 1.11 rmind if (l->l_stat == LSRUN) {
530 1.11 rmind if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
531 1.11 rmind prio = high_pri[prio];
532 1.11 rmind /* Re-enqueue the thread if priority has changed */
533 1.11 rmind if (prio != l->l_priority)
534 1.11 rmind lwp_changepri(l, prio);
535 1.11 rmind } else {
536 1.11 rmind /* In other states, change the priority directly */
537 1.11 rmind l->l_priority = prio;
538 1.11 rmind }
539 1.1 rmind }
540 1.1 rmind
541 1.1 rmind /*
542 1.1 rmind * Migration and balancing.
543 1.1 rmind */
544 1.1 rmind
545 1.1 rmind #ifdef MULTIPROCESSOR
546 1.1 rmind
547 1.16 rmind /* Estimate if LWP is cache-hot */
548 1.16 rmind static inline bool
549 1.16 rmind lwp_cache_hot(const struct lwp *l)
550 1.16 rmind {
551 1.16 rmind const sched_info_lwp_t *sil = l->l_sched_info;
552 1.16 rmind
553 1.16 rmind if (l->l_slptime || sil->sl_lrtime == 0)
554 1.16 rmind return false;
555 1.16 rmind
556 1.16 rmind return (hardclock_ticks - sil->sl_lrtime < cacheht_time);
557 1.16 rmind }
558 1.16 rmind
559 1.1 rmind /* Check if LWP can migrate to the chosen CPU */
560 1.1 rmind static inline bool
561 1.15 rmind sched_migratable(const struct lwp *l, struct cpu_info *ci)
562 1.1 rmind {
563 1.15 rmind const struct schedstate_percpu *spc = &ci->ci_schedstate;
564 1.1 rmind
565 1.15 rmind /* CPU is offline */
566 1.15 rmind if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
567 1.1 rmind return false;
568 1.1 rmind
569 1.15 rmind /* Affinity bind */
570 1.15 rmind if (__predict_false(l->l_flag & LW_AFFINITY))
571 1.15 rmind return CPU_ISSET(cpu_index(ci), &l->l_affinity);
572 1.15 rmind
573 1.15 rmind /* Processor-set */
574 1.15 rmind return (spc->spc_psid == l->l_psid);
575 1.1 rmind }
576 1.1 rmind
577 1.1 rmind /*
578 1.1 rmind * Estimate the migration of LWP to the other CPU.
579 1.1 rmind * Take and return the CPU, if migration is needed.
580 1.1 rmind */
581 1.1 rmind struct cpu_info *
582 1.1 rmind sched_takecpu(struct lwp *l)
583 1.1 rmind {
584 1.15 rmind struct cpu_info *ci, *tci;
585 1.1 rmind struct schedstate_percpu *spc;
586 1.1 rmind runqueue_t *ci_rq;
587 1.1 rmind CPU_INFO_ITERATOR cii;
588 1.1 rmind pri_t eprio, lpri;
589 1.1 rmind
590 1.15 rmind KASSERT(lwp_locked(l, NULL));
591 1.15 rmind
592 1.1 rmind ci = l->l_cpu;
593 1.1 rmind spc = &ci->ci_schedstate;
594 1.1 rmind ci_rq = spc->spc_sched_info;
595 1.1 rmind
596 1.15 rmind /* If thread is strictly bound, do not estimate other CPUs */
597 1.15 rmind if (l->l_flag & LW_BOUND)
598 1.15 rmind return ci;
599 1.15 rmind
600 1.1 rmind /* CPU of this thread is idling - run there */
601 1.1 rmind if (ci_rq->r_count == 0)
602 1.1 rmind return ci;
603 1.1 rmind
604 1.1 rmind eprio = lwp_eprio(l);
605 1.1 rmind
606 1.1 rmind /* Stay if thread is cache-hot */
607 1.16 rmind if (__predict_true(l->l_stat != LSIDL) &&
608 1.16 rmind lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
609 1.1 rmind return ci;
610 1.1 rmind
611 1.1 rmind /* Run on current CPU if priority of thread is higher */
612 1.1 rmind ci = curcpu();
613 1.1 rmind spc = &ci->ci_schedstate;
614 1.10 ad if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
615 1.1 rmind return ci;
616 1.1 rmind
617 1.1 rmind /*
618 1.1 rmind * Look for the CPU with the lowest priority thread. In case of
619 1.1 rmind * equal the priority - check the lower count of the threads.
620 1.1 rmind */
621 1.15 rmind tci = l->l_cpu;
622 1.10 ad lpri = PRI_COUNT;
623 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
624 1.1 rmind runqueue_t *ici_rq;
625 1.1 rmind pri_t pri;
626 1.1 rmind
627 1.1 rmind spc = &ci->ci_schedstate;
628 1.1 rmind ici_rq = spc->spc_sched_info;
629 1.10 ad pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
630 1.10 ad if (pri > lpri)
631 1.1 rmind continue;
632 1.1 rmind
633 1.15 rmind if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
634 1.1 rmind continue;
635 1.1 rmind
636 1.15 rmind if (!sched_migratable(l, ci))
637 1.1 rmind continue;
638 1.1 rmind
639 1.1 rmind lpri = pri;
640 1.1 rmind tci = ci;
641 1.1 rmind ci_rq = ici_rq;
642 1.1 rmind }
643 1.1 rmind return tci;
644 1.1 rmind }
645 1.1 rmind
646 1.1 rmind /*
647 1.1 rmind * Tries to catch an LWP from the runqueue of other CPU.
648 1.1 rmind */
649 1.1 rmind static struct lwp *
650 1.1 rmind sched_catchlwp(void)
651 1.1 rmind {
652 1.1 rmind struct cpu_info *curci = curcpu(), *ci = worker_ci;
653 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
654 1.1 rmind runqueue_t *ci_rq;
655 1.1 rmind struct lwp *l;
656 1.1 rmind
657 1.1 rmind if (curci == ci)
658 1.1 rmind return NULL;
659 1.1 rmind
660 1.1 rmind /* Lockless check */
661 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
662 1.1 rmind if (ci_rq->r_count < min_catch)
663 1.1 rmind return NULL;
664 1.1 rmind
665 1.1 rmind /*
666 1.1 rmind * Double-lock the runqueues.
667 1.1 rmind */
668 1.3 rmind if (curci < ci) {
669 1.1 rmind spc_lock(ci);
670 1.1 rmind } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
671 1.1 rmind const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
672 1.1 rmind
673 1.1 rmind spc_unlock(curci);
674 1.1 rmind spc_lock(ci);
675 1.1 rmind spc_lock(curci);
676 1.1 rmind
677 1.1 rmind if (cur_rq->r_count) {
678 1.1 rmind spc_unlock(ci);
679 1.1 rmind return NULL;
680 1.1 rmind }
681 1.1 rmind }
682 1.1 rmind
683 1.1 rmind if (ci_rq->r_count < min_catch) {
684 1.1 rmind spc_unlock(ci);
685 1.1 rmind return NULL;
686 1.1 rmind }
687 1.1 rmind
688 1.1 rmind /* Take the highest priority thread */
689 1.1 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
690 1.1 rmind l = TAILQ_FIRST(q_head);
691 1.1 rmind
692 1.1 rmind for (;;) {
693 1.1 rmind /* Check the first and next result from the queue */
694 1.1 rmind if (l == NULL)
695 1.1 rmind break;
696 1.1 rmind
697 1.1 rmind /* Look for threads, whose are allowed to migrate */
698 1.16 rmind if ((l->l_flag & LW_SYSTEM) || lwp_cache_hot(l) ||
699 1.15 rmind !sched_migratable(l, curci)) {
700 1.1 rmind l = TAILQ_NEXT(l, l_runq);
701 1.1 rmind continue;
702 1.1 rmind }
703 1.1 rmind /* Recheck if chosen thread is still on the runqueue */
704 1.1 rmind if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
705 1.1 rmind sched_dequeue(l);
706 1.1 rmind l->l_cpu = curci;
707 1.1 rmind lwp_setlock(l, curci->ci_schedstate.spc_mutex);
708 1.1 rmind sched_enqueue(l, false);
709 1.1 rmind break;
710 1.1 rmind }
711 1.1 rmind l = TAILQ_NEXT(l, l_runq);
712 1.1 rmind }
713 1.1 rmind spc_unlock(ci);
714 1.1 rmind
715 1.1 rmind return l;
716 1.1 rmind }
717 1.1 rmind
718 1.1 rmind /*
719 1.1 rmind * Periodical calculations for balancing.
720 1.1 rmind */
721 1.1 rmind static void
722 1.1 rmind sched_balance(void *nocallout)
723 1.1 rmind {
724 1.1 rmind struct cpu_info *ci, *hci;
725 1.1 rmind runqueue_t *ci_rq;
726 1.1 rmind CPU_INFO_ITERATOR cii;
727 1.1 rmind u_int highest;
728 1.1 rmind
729 1.1 rmind hci = curcpu();
730 1.1 rmind highest = 0;
731 1.1 rmind
732 1.1 rmind /* Make lockless countings */
733 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
734 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
735 1.1 rmind
736 1.1 rmind /* Average count of the threads */
737 1.1 rmind ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
738 1.1 rmind
739 1.1 rmind /* Look for CPU with the highest average */
740 1.1 rmind if (ci_rq->r_avgcount > highest) {
741 1.1 rmind hci = ci;
742 1.1 rmind highest = ci_rq->r_avgcount;
743 1.1 rmind }
744 1.1 rmind }
745 1.1 rmind
746 1.1 rmind /* Update the worker */
747 1.1 rmind worker_ci = hci;
748 1.1 rmind
749 1.1 rmind if (nocallout == NULL)
750 1.1 rmind callout_schedule(&balance_ch, balance_period);
751 1.1 rmind }
752 1.1 rmind
753 1.1 rmind #else
754 1.1 rmind
755 1.1 rmind struct cpu_info *
756 1.1 rmind sched_takecpu(struct lwp *l)
757 1.1 rmind {
758 1.1 rmind
759 1.1 rmind return l->l_cpu;
760 1.1 rmind }
761 1.1 rmind
762 1.1 rmind #endif /* MULTIPROCESSOR */
763 1.1 rmind
764 1.1 rmind /*
765 1.1 rmind * Scheduler mill.
766 1.1 rmind */
767 1.1 rmind struct lwp *
768 1.1 rmind sched_nextlwp(void)
769 1.1 rmind {
770 1.1 rmind struct cpu_info *ci = curcpu();
771 1.1 rmind struct schedstate_percpu *spc;
772 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
773 1.1 rmind sched_info_lwp_t *sil;
774 1.1 rmind runqueue_t *ci_rq;
775 1.1 rmind struct lwp *l;
776 1.1 rmind
777 1.1 rmind spc = &ci->ci_schedstate;
778 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
779 1.1 rmind
780 1.1 rmind #ifdef MULTIPROCESSOR
781 1.1 rmind /* If runqueue is empty, try to catch some thread from other CPU */
782 1.11 rmind if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
783 1.7 rmind if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
784 1.1 rmind return NULL;
785 1.1 rmind } else if (ci_rq->r_count == 0) {
786 1.1 rmind /* Reset the counter, and call the balancer */
787 1.1 rmind ci_rq->r_avgcount = 0;
788 1.1 rmind sched_balance(ci);
789 1.1 rmind
790 1.1 rmind /* The re-locking will be done inside */
791 1.1 rmind return sched_catchlwp();
792 1.1 rmind }
793 1.1 rmind #else
794 1.1 rmind if (ci_rq->r_count == 0)
795 1.1 rmind return NULL;
796 1.1 rmind #endif
797 1.1 rmind
798 1.1 rmind /* Take the highest priority thread */
799 1.1 rmind KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
800 1.1 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
801 1.1 rmind l = TAILQ_FIRST(q_head);
802 1.1 rmind KASSERT(l != NULL);
803 1.1 rmind
804 1.1 rmind /* Update the counters */
805 1.1 rmind sil = l->l_sched_info;
806 1.1 rmind KASSERT(sil->sl_timeslice >= min_ts);
807 1.1 rmind KASSERT(sil->sl_timeslice <= max_ts);
808 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
809 1.1 rmind sil->sl_rtime = hardclock_ticks;
810 1.1 rmind
811 1.1 rmind return l;
812 1.1 rmind }
813 1.1 rmind
814 1.1 rmind bool
815 1.1 rmind sched_curcpu_runnable_p(void)
816 1.1 rmind {
817 1.1 rmind const struct cpu_info *ci = curcpu();
818 1.1 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
819 1.1 rmind
820 1.11 rmind #ifndef __HAVE_FAST_SOFTINTS
821 1.11 rmind if (ci->ci_data.cpu_softints)
822 1.11 rmind return true;
823 1.11 rmind #endif
824 1.11 rmind
825 1.1 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
826 1.7 rmind return (ci_rq->r_count - ci_rq->r_mcount);
827 1.1 rmind
828 1.1 rmind return ci_rq->r_count;
829 1.1 rmind }
830 1.1 rmind
831 1.1 rmind /*
832 1.1 rmind * Time-driven events.
833 1.1 rmind */
834 1.1 rmind
835 1.1 rmind /*
836 1.1 rmind * Called once per time-quantum. This routine is CPU-local and runs at
837 1.1 rmind * IPL_SCHED, thus the locking is not needed.
838 1.1 rmind */
839 1.1 rmind void
840 1.1 rmind sched_tick(struct cpu_info *ci)
841 1.1 rmind {
842 1.1 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
843 1.1 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
844 1.1 rmind struct lwp *l = curlwp;
845 1.16 rmind const sched_info_lwp_t *sil = l->l_sched_info;
846 1.1 rmind
847 1.2 rmind if (CURCPU_IDLE_P())
848 1.2 rmind return;
849 1.1 rmind
850 1.10 ad switch (l->l_class) {
851 1.2 rmind case SCHED_FIFO:
852 1.2 rmind /*
853 1.2 rmind * Update the time-quantum, and continue running,
854 1.2 rmind * if thread runs on FIFO real-time policy.
855 1.2 rmind */
856 1.16 rmind KASSERT(l->l_priority > PRI_HIGHEST_TS);
857 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
858 1.1 rmind return;
859 1.2 rmind case SCHED_OTHER:
860 1.10 ad /*
861 1.10 ad * If thread is in time-sharing queue, decrease the priority,
862 1.10 ad * and run with a higher time-quantum.
863 1.10 ad */
864 1.16 rmind KASSERT(l->l_priority <= PRI_HIGHEST_TS);
865 1.10 ad if (l->l_priority != 0)
866 1.10 ad l->l_priority--;
867 1.2 rmind break;
868 1.1 rmind }
869 1.1 rmind
870 1.1 rmind /*
871 1.2 rmind * If there are higher priority threads or threads in the same queue,
872 1.2 rmind * mark that thread should yield, otherwise, continue running.
873 1.1 rmind */
874 1.15 rmind if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
875 1.1 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
876 1.1 rmind cpu_need_resched(ci, 0);
877 1.1 rmind } else
878 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
879 1.1 rmind }
880 1.1 rmind
881 1.1 rmind /*
882 1.1 rmind * Sysctl nodes and initialization.
883 1.1 rmind */
884 1.1 rmind
885 1.1 rmind static int
886 1.15 rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
887 1.15 rmind {
888 1.15 rmind struct sysctlnode node;
889 1.15 rmind int rttsms = hztoms(rt_ts);
890 1.15 rmind
891 1.15 rmind node = *rnode;
892 1.15 rmind node.sysctl_data = &rttsms;
893 1.15 rmind return sysctl_lookup(SYSCTLFN_CALL(&node));
894 1.15 rmind }
895 1.15 rmind
896 1.15 rmind static int
897 1.1 rmind sysctl_sched_mints(SYSCTLFN_ARGS)
898 1.1 rmind {
899 1.1 rmind struct sysctlnode node;
900 1.1 rmind struct cpu_info *ci;
901 1.1 rmind int error, newsize;
902 1.1 rmind CPU_INFO_ITERATOR cii;
903 1.1 rmind
904 1.1 rmind node = *rnode;
905 1.1 rmind node.sysctl_data = &newsize;
906 1.1 rmind
907 1.1 rmind newsize = hztoms(min_ts);
908 1.1 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
909 1.1 rmind if (error || newp == NULL)
910 1.1 rmind return error;
911 1.1 rmind
912 1.8 rmind newsize = mstohz(newsize);
913 1.1 rmind if (newsize < 1 || newsize > hz || newsize >= max_ts)
914 1.1 rmind return EINVAL;
915 1.1 rmind
916 1.1 rmind /* It is safe to do this in such order */
917 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
918 1.1 rmind spc_lock(ci);
919 1.1 rmind
920 1.8 rmind min_ts = newsize;
921 1.1 rmind sched_precalcts();
922 1.1 rmind
923 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
924 1.1 rmind spc_unlock(ci);
925 1.1 rmind
926 1.1 rmind return 0;
927 1.1 rmind }
928 1.1 rmind
929 1.1 rmind static int
930 1.1 rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
931 1.1 rmind {
932 1.1 rmind struct sysctlnode node;
933 1.1 rmind struct cpu_info *ci;
934 1.1 rmind int error, newsize;
935 1.1 rmind CPU_INFO_ITERATOR cii;
936 1.1 rmind
937 1.1 rmind node = *rnode;
938 1.1 rmind node.sysctl_data = &newsize;
939 1.1 rmind
940 1.1 rmind newsize = hztoms(max_ts);
941 1.1 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
942 1.1 rmind if (error || newp == NULL)
943 1.1 rmind return error;
944 1.1 rmind
945 1.8 rmind newsize = mstohz(newsize);
946 1.1 rmind if (newsize < 10 || newsize > hz || newsize <= min_ts)
947 1.1 rmind return EINVAL;
948 1.1 rmind
949 1.1 rmind /* It is safe to do this in such order */
950 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
951 1.1 rmind spc_lock(ci);
952 1.1 rmind
953 1.8 rmind max_ts = newsize;
954 1.1 rmind sched_precalcts();
955 1.1 rmind
956 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
957 1.1 rmind spc_unlock(ci);
958 1.1 rmind
959 1.1 rmind return 0;
960 1.1 rmind }
961 1.1 rmind
962 1.1 rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
963 1.1 rmind {
964 1.1 rmind const struct sysctlnode *node = NULL;
965 1.1 rmind
966 1.1 rmind sysctl_createv(clog, 0, NULL, NULL,
967 1.1 rmind CTLFLAG_PERMANENT,
968 1.1 rmind CTLTYPE_NODE, "kern", NULL,
969 1.1 rmind NULL, 0, NULL, 0,
970 1.1 rmind CTL_KERN, CTL_EOL);
971 1.1 rmind sysctl_createv(clog, 0, NULL, &node,
972 1.1 rmind CTLFLAG_PERMANENT,
973 1.1 rmind CTLTYPE_NODE, "sched",
974 1.1 rmind SYSCTL_DESCR("Scheduler options"),
975 1.1 rmind NULL, 0, NULL, 0,
976 1.1 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
977 1.1 rmind
978 1.1 rmind if (node == NULL)
979 1.1 rmind return;
980 1.1 rmind
981 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
982 1.1 rmind CTLFLAG_PERMANENT,
983 1.1 rmind CTLTYPE_STRING, "name", NULL,
984 1.1 rmind NULL, 0, __UNCONST("M2"), 0,
985 1.1 rmind CTL_CREATE, CTL_EOL);
986 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
987 1.15 rmind CTLFLAG_PERMANENT,
988 1.15 rmind CTLTYPE_INT, "rtts",
989 1.15 rmind SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
990 1.15 rmind sysctl_sched_rtts, 0, NULL, 0,
991 1.15 rmind CTL_CREATE, CTL_EOL);
992 1.15 rmind sysctl_createv(clog, 0, &node, NULL,
993 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
994 1.1 rmind CTLTYPE_INT, "maxts",
995 1.8 rmind SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
996 1.1 rmind sysctl_sched_maxts, 0, &max_ts, 0,
997 1.1 rmind CTL_CREATE, CTL_EOL);
998 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
999 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1000 1.1 rmind CTLTYPE_INT, "mints",
1001 1.8 rmind SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
1002 1.1 rmind sysctl_sched_mints, 0, &min_ts, 0,
1003 1.1 rmind CTL_CREATE, CTL_EOL);
1004 1.1 rmind
1005 1.1 rmind #ifdef MULTIPROCESSOR
1006 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
1007 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1008 1.1 rmind CTLTYPE_INT, "cacheht_time",
1009 1.8 rmind SYSCTL_DESCR("Cache hotness time (in ticks)"),
1010 1.1 rmind NULL, 0, &cacheht_time, 0,
1011 1.1 rmind CTL_CREATE, CTL_EOL);
1012 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
1013 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1014 1.9 rmind CTLTYPE_INT, "balance_period",
1015 1.9 rmind SYSCTL_DESCR("Balance period (in ticks)"),
1016 1.1 rmind NULL, 0, &balance_period, 0,
1017 1.1 rmind CTL_CREATE, CTL_EOL);
1018 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
1019 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1020 1.1 rmind CTLTYPE_INT, "min_catch",
1021 1.8 rmind SYSCTL_DESCR("Minimal count of the threads for catching"),
1022 1.1 rmind NULL, 0, &min_catch, 0,
1023 1.1 rmind CTL_CREATE, CTL_EOL);
1024 1.1 rmind #endif
1025 1.1 rmind }
1026 1.1 rmind
1027 1.1 rmind /*
1028 1.1 rmind * Debugging.
1029 1.1 rmind */
1030 1.1 rmind
1031 1.1 rmind #ifdef DDB
1032 1.1 rmind
1033 1.1 rmind void
1034 1.1 rmind sched_print_runqueue(void (*pr)(const char *, ...))
1035 1.1 rmind {
1036 1.1 rmind runqueue_t *ci_rq;
1037 1.1 rmind sched_info_lwp_t *sil;
1038 1.1 rmind struct lwp *l;
1039 1.1 rmind struct proc *p;
1040 1.1 rmind int i;
1041 1.1 rmind
1042 1.1 rmind struct cpu_info *ci;
1043 1.1 rmind CPU_INFO_ITERATOR cii;
1044 1.1 rmind
1045 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
1046 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
1047 1.1 rmind
1048 1.21 martin (*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
1049 1.1 rmind (*pr)(" pid.lid = %d.%d, threads count = %u, "
1050 1.1 rmind "avgcount = %u, highest pri = %d\n",
1051 1.1 rmind ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1052 1.1 rmind ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1053 1.10 ad i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1054 1.1 rmind do {
1055 1.10 ad uint32_t q;
1056 1.10 ad q = ci_rq->r_bitmap[i];
1057 1.10 ad (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1058 1.10 ad } while (i--);
1059 1.1 rmind }
1060 1.1 rmind
1061 1.1 rmind (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1062 1.10 ad "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1063 1.1 rmind
1064 1.1 rmind PROCLIST_FOREACH(p, &allproc) {
1065 1.1 rmind (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1066 1.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1067 1.1 rmind sil = l->l_sched_info;
1068 1.1 rmind ci = l->l_cpu;
1069 1.21 martin (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3u "
1070 1.1 rmind "%u ST=%d RT=%d %d\n",
1071 1.10 ad (int)l->l_lid, l->l_priority, lwp_eprio(l),
1072 1.1 rmind l->l_flag, l->l_stat == LSRUN ? "RQ" :
1073 1.1 rmind (l->l_stat == LSSLEEP ? "SQ" : "-"),
1074 1.21 martin sil->sl_timeslice, l, ci->ci_index,
1075 1.1 rmind (u_int)(hardclock_ticks - sil->sl_lrtime),
1076 1.1 rmind sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1077 1.1 rmind }
1078 1.1 rmind }
1079 1.1 rmind }
1080 1.1 rmind
1081 1.16 rmind #endif
1082