Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.22
      1  1.22   rmind /*	$NetBSD: sched_m2.c,v 1.22 2008/03/11 18:18:49 rmind Exp $	*/
      2   1.1   rmind 
      3   1.1   rmind /*
      4  1.15   rmind  * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  1.12   rmind  * All rights reserved.
      6   1.1   rmind  *
      7   1.1   rmind  * Redistribution and use in source and binary forms, with or without
      8   1.1   rmind  * modification, are permitted provided that the following conditions
      9   1.1   rmind  * are met:
     10   1.1   rmind  * 1. Redistributions of source code must retain the above copyright
     11   1.1   rmind  *    notice, this list of conditions and the following disclaimer.
     12   1.1   rmind  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1   rmind  *    notice, this list of conditions and the following disclaimer in the
     14   1.1   rmind  *    documentation and/or other materials provided with the distribution.
     15   1.1   rmind  *
     16  1.19   rmind  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  1.19   rmind  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  1.19   rmind  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  1.19   rmind  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  1.19   rmind  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  1.19   rmind  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  1.19   rmind  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  1.19   rmind  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  1.19   rmind  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.19   rmind  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.19   rmind  * SUCH DAMAGE.
     27   1.1   rmind  */
     28   1.1   rmind 
     29   1.1   rmind /*
     30   1.1   rmind  * TODO:
     31   1.1   rmind  *  - Implementation of fair share queue;
     32   1.1   rmind  *  - Support for NUMA;
     33   1.1   rmind  */
     34   1.1   rmind 
     35   1.1   rmind #include <sys/cdefs.h>
     36  1.22   rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.22 2008/03/11 18:18:49 rmind Exp $");
     37   1.1   rmind 
     38   1.1   rmind #include <sys/param.h>
     39   1.1   rmind 
     40   1.8   rmind #include <sys/bitops.h>
     41   1.1   rmind #include <sys/cpu.h>
     42   1.1   rmind #include <sys/callout.h>
     43   1.1   rmind #include <sys/errno.h>
     44   1.1   rmind #include <sys/kernel.h>
     45   1.1   rmind #include <sys/kmem.h>
     46   1.1   rmind #include <sys/lwp.h>
     47   1.1   rmind #include <sys/mutex.h>
     48   1.1   rmind #include <sys/pool.h>
     49   1.1   rmind #include <sys/proc.h>
     50  1.15   rmind #include <sys/pset.h>
     51   1.1   rmind #include <sys/resource.h>
     52   1.1   rmind #include <sys/resourcevar.h>
     53   1.1   rmind #include <sys/sched.h>
     54   1.1   rmind #include <sys/syscallargs.h>
     55   1.1   rmind #include <sys/sysctl.h>
     56   1.1   rmind #include <sys/types.h>
     57   1.1   rmind 
     58   1.1   rmind /*
     59  1.10      ad  * Priority related defintions.
     60   1.1   rmind  */
     61  1.10      ad #define	PRI_TS_COUNT	(NPRI_USER)
     62  1.10      ad #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     63  1.10      ad #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     64  1.10      ad 
     65  1.11   rmind #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     66  1.10      ad 
     67  1.10      ad const int schedppq = 1;
     68   1.1   rmind 
     69   1.1   rmind /*
     70   1.1   rmind  * Bits per map.
     71   1.1   rmind  */
     72  1.10      ad #define	BITMAP_BITS	(32)
     73  1.10      ad #define	BITMAP_SHIFT	(5)
     74  1.11   rmind #define	BITMAP_MSB	(0x80000000U)
     75  1.10      ad #define	BITMAP_MASK	(BITMAP_BITS - 1)
     76   1.1   rmind 
     77   1.1   rmind /*
     78   1.1   rmind  * Time-slices and priorities.
     79   1.1   rmind  */
     80   1.1   rmind static u_int	min_ts;			/* Minimal time-slice */
     81   1.1   rmind static u_int	max_ts;			/* Maximal time-slice */
     82   1.1   rmind static u_int	rt_ts;			/* Real-time time-slice */
     83   1.1   rmind static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     84   1.1   rmind static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     85   1.1   rmind 
     86   1.1   rmind /*
     87   1.1   rmind  * Migration and balancing.
     88   1.1   rmind  */
     89   1.1   rmind #ifdef MULTIPROCESSOR
     90  1.15   rmind 
     91   1.1   rmind static u_int	cacheht_time;		/* Cache hotness time */
     92   1.1   rmind static u_int	min_catch;		/* Minimal LWP count for catching */
     93   1.1   rmind 
     94   1.1   rmind static u_int		balance_period;	/* Balance period */
     95   1.1   rmind static struct callout	balance_ch;	/* Callout of balancer */
     96   1.1   rmind 
     97   1.1   rmind static struct cpu_info * volatile worker_ci;
     98   1.1   rmind 
     99   1.1   rmind #endif
    100   1.1   rmind 
    101   1.1   rmind /*
    102   1.1   rmind  * Structures, runqueue.
    103   1.1   rmind  */
    104   1.1   rmind 
    105   1.1   rmind typedef struct {
    106   1.1   rmind 	TAILQ_HEAD(, lwp) q_head;
    107   1.1   rmind } queue_t;
    108   1.1   rmind 
    109   1.1   rmind typedef struct {
    110   1.1   rmind 	/* Lock and bitmap */
    111  1.10      ad 	uint32_t	r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
    112   1.1   rmind 	/* Counters */
    113   1.1   rmind 	u_int		r_count;	/* Count of the threads */
    114   1.1   rmind 	pri_t		r_highest_pri;	/* Highest priority */
    115   1.1   rmind 	u_int		r_avgcount;	/* Average count of threads */
    116   1.1   rmind 	u_int		r_mcount;	/* Count of migratable threads */
    117   1.1   rmind 	/* Runqueues */
    118   1.1   rmind 	queue_t		r_rt_queue[PRI_RT_COUNT];
    119   1.1   rmind 	queue_t		r_ts_queue[PRI_TS_COUNT];
    120   1.1   rmind } runqueue_t;
    121   1.1   rmind 
    122   1.1   rmind typedef struct {
    123   1.1   rmind 	u_int		sl_flags;
    124   1.1   rmind 	u_int		sl_timeslice;	/* Time-slice of thread */
    125   1.1   rmind 	u_int		sl_slept;	/* Saved sleep time for sleep sum */
    126   1.1   rmind 	u_int		sl_slpsum;	/* Sum of sleep time */
    127   1.1   rmind 	u_int		sl_rtime;	/* Saved start time of run */
    128   1.1   rmind 	u_int		sl_rtsum;	/* Sum of the run time */
    129   1.1   rmind 	u_int		sl_lrtime;	/* Last run time */
    130   1.1   rmind } sched_info_lwp_t;
    131   1.1   rmind 
    132   1.1   rmind /* Flags */
    133   1.1   rmind #define	SL_BATCH	0x01
    134   1.1   rmind 
    135   1.1   rmind /* Pool of the scheduler-specific structures for threads */
    136  1.19   rmind static pool_cache_t	sil_pool;
    137   1.1   rmind 
    138   1.1   rmind /*
    139   1.1   rmind  * Prototypes.
    140   1.1   rmind  */
    141   1.1   rmind 
    142   1.1   rmind static inline void *	sched_getrq(runqueue_t *, const pri_t);
    143   1.1   rmind static inline void	sched_newts(struct lwp *);
    144   1.1   rmind static void		sched_precalcts(void);
    145   1.1   rmind 
    146   1.1   rmind #ifdef MULTIPROCESSOR
    147   1.1   rmind static struct lwp *	sched_catchlwp(void);
    148   1.1   rmind static void		sched_balance(void *);
    149   1.1   rmind #endif
    150   1.1   rmind 
    151   1.1   rmind /*
    152   1.1   rmind  * Initialization and setup.
    153   1.1   rmind  */
    154   1.1   rmind 
    155   1.1   rmind void
    156   1.1   rmind sched_rqinit(void)
    157   1.1   rmind {
    158   1.1   rmind 	struct cpu_info *ci = curcpu();
    159   1.1   rmind 
    160   1.1   rmind 	if (hz < 100) {
    161   1.1   rmind 		panic("sched_rqinit: value of HZ is too low\n");
    162   1.1   rmind 	}
    163   1.1   rmind 
    164   1.1   rmind 	/* Default timing ranges */
    165   1.1   rmind 	min_ts = mstohz(50);			/* ~50ms  */
    166   1.1   rmind 	max_ts = mstohz(150);			/* ~150ms */
    167   1.1   rmind 	rt_ts = mstohz(100);			/* ~100ms */
    168   1.1   rmind 	sched_precalcts();
    169   1.1   rmind 
    170   1.1   rmind #ifdef MULTIPROCESSOR
    171   1.1   rmind 	/* Balancing */
    172   1.1   rmind 	worker_ci = ci;
    173   1.1   rmind 	cacheht_time = mstohz(5);		/* ~5 ms  */
    174   1.1   rmind 	balance_period = mstohz(300);		/* ~300ms */
    175   1.1   rmind 	min_catch = ~0;
    176   1.1   rmind #endif
    177   1.1   rmind 
    178   1.1   rmind 	/* Pool of the scheduler-specific structures */
    179  1.20      ad 	sil_pool = pool_cache_init(sizeof(sched_info_lwp_t), CACHE_LINE_SIZE,
    180  1.20      ad 	    0, 0, "lwpsd", NULL, IPL_NONE, NULL, NULL, NULL);
    181   1.1   rmind 
    182   1.1   rmind 	/* Attach the primary CPU here */
    183   1.1   rmind 	sched_cpuattach(ci);
    184   1.1   rmind 
    185  1.10      ad 	sched_lwp_fork(NULL, &lwp0);
    186   1.1   rmind 	sched_newts(&lwp0);
    187   1.1   rmind }
    188   1.1   rmind 
    189   1.1   rmind void
    190   1.1   rmind sched_setup(void)
    191   1.1   rmind {
    192   1.1   rmind 
    193   1.1   rmind #ifdef MULTIPROCESSOR
    194   1.1   rmind 	/* Minimal count of LWPs for catching: log2(count of CPUs) */
    195   1.8   rmind 	min_catch = min(ilog2(ncpu), 4);
    196   1.1   rmind 
    197   1.1   rmind 	/* Initialize balancing callout and run it */
    198   1.1   rmind 	callout_init(&balance_ch, CALLOUT_MPSAFE);
    199   1.1   rmind 	callout_setfunc(&balance_ch, sched_balance, NULL);
    200   1.1   rmind 	callout_schedule(&balance_ch, balance_period);
    201   1.1   rmind #endif
    202   1.1   rmind }
    203   1.1   rmind 
    204   1.1   rmind void
    205   1.1   rmind sched_cpuattach(struct cpu_info *ci)
    206   1.1   rmind {
    207   1.1   rmind 	runqueue_t *ci_rq;
    208   1.1   rmind 	void *rq_ptr;
    209   1.1   rmind 	u_int i, size;
    210   1.1   rmind 
    211  1.20      ad 	if (ci == lwp0.l_cpu) {
    212  1.20      ad 		/* Initialize the scheduler structure of the primary LWP */
    213  1.20      ad 		lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
    214  1.20      ad 	}
    215  1.20      ad 
    216  1.20      ad 	if (ci->ci_schedstate.spc_mutex != NULL) {
    217  1.20      ad 		/* Already initialized. */
    218  1.20      ad 		return;
    219  1.20      ad 	}
    220  1.20      ad 
    221  1.19   rmind 	/* Allocate the run queue */
    222  1.19   rmind 	size = roundup2(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
    223  1.14      ad 	rq_ptr = kmem_zalloc(size, KM_SLEEP);
    224   1.1   rmind 	if (rq_ptr == NULL) {
    225  1.19   rmind 		panic("sched_cpuattach: could not allocate the runqueue");
    226   1.1   rmind 	}
    227  1.19   rmind 	ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), CACHE_LINE_SIZE));
    228   1.1   rmind 
    229   1.1   rmind 	/* Initialize run queues */
    230  1.20      ad 	KASSERT(sizeof(kmutex_t) <= CACHE_LINE_SIZE);
    231  1.20      ad 	ci->ci_schedstate.spc_mutex = kmem_alloc(CACHE_LINE_SIZE, KM_SLEEP);
    232  1.20      ad 	mutex_init(ci->ci_schedstate.spc_mutex, MUTEX_DEFAULT, IPL_SCHED);
    233   1.1   rmind 	for (i = 0; i < PRI_RT_COUNT; i++)
    234   1.1   rmind 		TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
    235   1.1   rmind 	for (i = 0; i < PRI_TS_COUNT; i++)
    236   1.1   rmind 		TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
    237  1.10      ad 	ci_rq->r_highest_pri = 0;
    238   1.1   rmind 
    239   1.1   rmind 	ci->ci_schedstate.spc_sched_info = ci_rq;
    240   1.1   rmind }
    241   1.1   rmind 
    242   1.1   rmind /* Pre-calculate the time-slices for the priorities */
    243   1.1   rmind static void
    244   1.1   rmind sched_precalcts(void)
    245   1.1   rmind {
    246   1.1   rmind 	pri_t p;
    247   1.1   rmind 
    248  1.10      ad 	/* Time-sharing range */
    249  1.10      ad 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    250  1.10      ad 		ts_map[p] = max_ts -
    251  1.10      ad 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    252  1.10      ad 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    253  1.10      ad 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    254  1.10      ad 	}
    255  1.10      ad 
    256  1.10      ad 	/* Real-time range */
    257  1.10      ad 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    258   1.1   rmind 		ts_map[p] = rt_ts;
    259   1.1   rmind 		high_pri[p] = p;
    260   1.1   rmind 	}
    261   1.1   rmind }
    262   1.1   rmind 
    263   1.1   rmind /*
    264   1.1   rmind  * Hooks.
    265   1.1   rmind  */
    266   1.1   rmind 
    267   1.1   rmind void
    268   1.1   rmind sched_proc_fork(struct proc *parent, struct proc *child)
    269   1.1   rmind {
    270   1.1   rmind 	struct lwp *l;
    271   1.1   rmind 
    272   1.1   rmind 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    273   1.1   rmind 		lwp_lock(l);
    274   1.1   rmind 		sched_newts(l);
    275   1.1   rmind 		lwp_unlock(l);
    276   1.1   rmind 	}
    277   1.1   rmind }
    278   1.1   rmind 
    279   1.1   rmind void
    280   1.1   rmind sched_proc_exit(struct proc *child, struct proc *parent)
    281   1.1   rmind {
    282   1.1   rmind 
    283   1.1   rmind 	/* Dummy */
    284   1.1   rmind }
    285   1.1   rmind 
    286   1.1   rmind void
    287  1.10      ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    288   1.1   rmind {
    289   1.1   rmind 
    290  1.10      ad 	KASSERT(l2->l_sched_info == NULL);
    291  1.19   rmind 	l2->l_sched_info = pool_cache_get(sil_pool, PR_WAITOK);
    292  1.10      ad 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    293   1.1   rmind }
    294   1.1   rmind 
    295   1.1   rmind void
    296   1.1   rmind sched_lwp_exit(struct lwp *l)
    297   1.1   rmind {
    298   1.1   rmind 
    299   1.1   rmind 	KASSERT(l->l_sched_info != NULL);
    300  1.19   rmind 	pool_cache_put(sil_pool, l->l_sched_info);
    301   1.1   rmind 	l->l_sched_info = NULL;
    302   1.1   rmind }
    303   1.1   rmind 
    304   1.1   rmind void
    305  1.10      ad sched_lwp_collect(struct lwp *l)
    306  1.10      ad {
    307  1.10      ad 
    308  1.10      ad }
    309  1.10      ad 
    310  1.10      ad void
    311   1.1   rmind sched_setrunnable(struct lwp *l)
    312   1.1   rmind {
    313   1.1   rmind 
    314   1.1   rmind 	/* Dummy */
    315   1.1   rmind }
    316   1.1   rmind 
    317   1.1   rmind void
    318   1.1   rmind sched_schedclock(struct lwp *l)
    319   1.1   rmind {
    320   1.1   rmind 
    321   1.1   rmind 	/* Dummy */
    322   1.1   rmind }
    323   1.1   rmind 
    324   1.1   rmind /*
    325   1.1   rmind  * Priorities and time-slice.
    326   1.1   rmind  */
    327   1.1   rmind 
    328   1.1   rmind void
    329   1.1   rmind sched_nice(struct proc *p, int prio)
    330   1.1   rmind {
    331   1.1   rmind 
    332  1.17   rmind 	/* TODO: implement as SCHED_IA */
    333   1.1   rmind }
    334   1.1   rmind 
    335   1.1   rmind /* Recalculate the time-slice */
    336   1.1   rmind static inline void
    337   1.1   rmind sched_newts(struct lwp *l)
    338   1.1   rmind {
    339   1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    340   1.1   rmind 
    341   1.1   rmind 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    342   1.1   rmind }
    343   1.1   rmind 
    344   1.1   rmind /*
    345   1.1   rmind  * Control of the runqueue.
    346   1.1   rmind  */
    347   1.1   rmind 
    348   1.1   rmind static inline void *
    349   1.1   rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
    350   1.1   rmind {
    351   1.1   rmind 
    352   1.1   rmind 	KASSERT(prio < PRI_COUNT);
    353  1.10      ad 	return (prio <= PRI_HIGHEST_TS) ?
    354  1.10      ad 	    &ci_rq->r_ts_queue[prio].q_head :
    355  1.10      ad 	    &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
    356   1.1   rmind }
    357   1.1   rmind 
    358   1.1   rmind void
    359   1.1   rmind sched_enqueue(struct lwp *l, bool swtch)
    360   1.1   rmind {
    361   1.1   rmind 	runqueue_t *ci_rq;
    362   1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    363   1.1   rmind 	TAILQ_HEAD(, lwp) *q_head;
    364   1.1   rmind 	const pri_t eprio = lwp_eprio(l);
    365   1.1   rmind 
    366   1.1   rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    367   1.1   rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    368   1.1   rmind 
    369   1.1   rmind 	/* Update the last run time on switch */
    370  1.11   rmind 	if (__predict_true(swtch == true)) {
    371   1.1   rmind 		sil->sl_lrtime = hardclock_ticks;
    372   1.1   rmind 		sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
    373   1.8   rmind 	} else if (sil->sl_lrtime == 0)
    374   1.8   rmind 		sil->sl_lrtime = hardclock_ticks;
    375   1.1   rmind 
    376   1.1   rmind 	/* Enqueue the thread */
    377   1.1   rmind 	q_head = sched_getrq(ci_rq, eprio);
    378   1.1   rmind 	if (TAILQ_EMPTY(q_head)) {
    379   1.1   rmind 		u_int i;
    380   1.1   rmind 		uint32_t q;
    381   1.1   rmind 
    382   1.1   rmind 		/* Mark bit */
    383   1.1   rmind 		i = eprio >> BITMAP_SHIFT;
    384  1.10      ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    385  1.10      ad 		KASSERT((ci_rq->r_bitmap[i] & q) == 0);
    386  1.10      ad 		ci_rq->r_bitmap[i] |= q;
    387   1.1   rmind 	}
    388   1.1   rmind 	TAILQ_INSERT_TAIL(q_head, l, l_runq);
    389   1.1   rmind 	ci_rq->r_count++;
    390   1.1   rmind 	if ((l->l_flag & LW_BOUND) == 0)
    391   1.1   rmind 		ci_rq->r_mcount++;
    392   1.1   rmind 
    393   1.1   rmind 	/*
    394   1.1   rmind 	 * Update the value of highest priority in the runqueue,
    395   1.1   rmind 	 * if priority of this thread is higher.
    396   1.1   rmind 	 */
    397  1.10      ad 	if (eprio > ci_rq->r_highest_pri)
    398   1.1   rmind 		ci_rq->r_highest_pri = eprio;
    399   1.1   rmind 
    400   1.1   rmind 	sched_newts(l);
    401   1.1   rmind }
    402   1.1   rmind 
    403   1.1   rmind void
    404   1.1   rmind sched_dequeue(struct lwp *l)
    405   1.1   rmind {
    406   1.1   rmind 	runqueue_t *ci_rq;
    407   1.1   rmind 	TAILQ_HEAD(, lwp) *q_head;
    408   1.1   rmind 	const pri_t eprio = lwp_eprio(l);
    409   1.1   rmind 
    410   1.1   rmind 	ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
    411   1.1   rmind 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    412  1.15   rmind 
    413  1.10      ad 	KASSERT(eprio <= ci_rq->r_highest_pri);
    414   1.1   rmind 	KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
    415   1.1   rmind 	KASSERT(ci_rq->r_count > 0);
    416   1.1   rmind 
    417   1.1   rmind 	ci_rq->r_count--;
    418   1.1   rmind 	if ((l->l_flag & LW_BOUND) == 0)
    419   1.1   rmind 		ci_rq->r_mcount--;
    420   1.1   rmind 
    421   1.1   rmind 	q_head = sched_getrq(ci_rq, eprio);
    422   1.1   rmind 	TAILQ_REMOVE(q_head, l, l_runq);
    423   1.1   rmind 	if (TAILQ_EMPTY(q_head)) {
    424   1.1   rmind 		u_int i;
    425   1.1   rmind 		uint32_t q;
    426   1.1   rmind 
    427   1.1   rmind 		/* Unmark bit */
    428   1.1   rmind 		i = eprio >> BITMAP_SHIFT;
    429  1.10      ad 		q = BITMAP_MSB >> (eprio & BITMAP_MASK);
    430  1.10      ad 		KASSERT((ci_rq->r_bitmap[i] & q) != 0);
    431  1.10      ad 		ci_rq->r_bitmap[i] &= ~q;
    432   1.1   rmind 
    433   1.1   rmind 		/*
    434   1.1   rmind 		 * Update the value of highest priority in the runqueue, in a
    435   1.1   rmind 		 * case it was a last thread in the queue of highest priority.
    436   1.1   rmind 		 */
    437   1.1   rmind 		if (eprio != ci_rq->r_highest_pri)
    438   1.1   rmind 			return;
    439   1.1   rmind 
    440   1.1   rmind 		do {
    441   1.1   rmind 			q = ffs(ci_rq->r_bitmap[i]);
    442   1.1   rmind 			if (q) {
    443   1.1   rmind 				ci_rq->r_highest_pri =
    444  1.10      ad 				    (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
    445   1.1   rmind 				return;
    446   1.1   rmind 			}
    447  1.10      ad 		} while (i--);
    448   1.1   rmind 
    449  1.10      ad 		/* If not found - set the lowest value */
    450  1.10      ad 		ci_rq->r_highest_pri = 0;
    451   1.1   rmind 	}
    452   1.1   rmind }
    453   1.1   rmind 
    454   1.1   rmind void
    455   1.1   rmind sched_slept(struct lwp *l)
    456   1.1   rmind {
    457   1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    458   1.1   rmind 
    459   1.1   rmind 	/* Save the time when thread has slept */
    460   1.1   rmind 	sil->sl_slept = hardclock_ticks;
    461   1.1   rmind 
    462   1.1   rmind 	/*
    463  1.10      ad 	 * If thread is in time-sharing queue and batch flag is not marked,
    464  1.10      ad 	 * increase the the priority, and run with the lower time-quantum.
    465   1.1   rmind 	 */
    466  1.18   rmind 	if (l->l_priority < PRI_HIGHEST_TS &&
    467  1.16   rmind 	    (sil->sl_flags & SL_BATCH) == 0) {
    468  1.10      ad 		KASSERT(l->l_class == SCHED_OTHER);
    469  1.10      ad 		l->l_priority++;
    470  1.10      ad 	}
    471   1.1   rmind }
    472   1.1   rmind 
    473   1.1   rmind void
    474   1.1   rmind sched_wakeup(struct lwp *l)
    475   1.1   rmind {
    476   1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    477  1.22   rmind 	const u_int slptime = hardclock_ticks - sil->sl_slept;
    478   1.1   rmind 
    479   1.1   rmind 	/* Update sleep time delta */
    480  1.22   rmind 	sil->sl_slpsum += (l->l_slptime == 0) ? slptime : hz;
    481   1.1   rmind 
    482   1.1   rmind 	/* If thread was sleeping a second or more - set a high priority */
    483  1.22   rmind 	if (l->l_slptime > 1 || slptime >= hz)
    484  1.10      ad 		l->l_priority = high_pri[l->l_priority];
    485   1.1   rmind 
    486   1.1   rmind 	/* Also, consider looking for a better CPU to wake up */
    487  1.22   rmind 	l->l_cpu = sched_takecpu(l);
    488   1.1   rmind }
    489   1.1   rmind 
    490   1.1   rmind void
    491   1.1   rmind sched_pstats_hook(struct lwp *l)
    492   1.1   rmind {
    493   1.1   rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    494  1.11   rmind 	pri_t prio;
    495  1.10      ad 	bool batch;
    496  1.10      ad 
    497  1.10      ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    498  1.10      ad 	    l->l_stat == LSSUSPENDED)
    499  1.10      ad 		l->l_slptime++;
    500   1.1   rmind 
    501   1.1   rmind 	/*
    502   1.1   rmind 	 * Set that thread is more CPU-bound, if sum of run time exceeds the
    503  1.10      ad 	 * sum of sleep time.  Check if thread is CPU-bound a first time.
    504   1.1   rmind 	 */
    505  1.10      ad 	batch = (sil->sl_rtsum > sil->sl_slpsum);
    506  1.10      ad 	if (batch) {
    507  1.10      ad 		if ((sil->sl_flags & SL_BATCH) == 0)
    508  1.10      ad 			batch = false;
    509   1.1   rmind 		sil->sl_flags |= SL_BATCH;
    510  1.10      ad 	} else
    511   1.1   rmind 		sil->sl_flags &= ~SL_BATCH;
    512  1.10      ad 
    513  1.22   rmind 	/*
    514  1.22   rmind 	 * If thread is CPU-bound and never sleeps, it would occupy the CPU.
    515  1.22   rmind 	 * In such case reset the value of last sleep, and check it later, if
    516  1.22   rmind 	 * it is still zero - perform the migration, unmark the batch flag.
    517  1.22   rmind 	 */
    518  1.22   rmind 	if (batch && (l->l_slptime + sil->sl_slpsum) == 0) {
    519  1.22   rmind 		if (l->l_stat != LSONPROC && sil->sl_slept == 0) {
    520  1.22   rmind 			struct cpu_info *ci = sched_takecpu(l);
    521  1.22   rmind 
    522  1.22   rmind 			if (l->l_cpu != ci)
    523  1.22   rmind 				l->l_target_cpu = ci;
    524  1.22   rmind 			sil->sl_flags &= ~SL_BATCH;
    525  1.22   rmind 		} else {
    526  1.22   rmind 			sil->sl_slept = 0;
    527  1.22   rmind 		}
    528  1.22   rmind 	}
    529  1.22   rmind 
    530  1.10      ad 	/* Reset the time sums */
    531   1.1   rmind 	sil->sl_slpsum = 0;
    532   1.1   rmind 	sil->sl_rtsum = 0;
    533   1.1   rmind 
    534  1.22   rmind 	/*
    535  1.22   rmind 	 * Estimate threads on time-sharing queue only, however,
    536  1.22   rmind 	 * exclude the highest priority for performance purposes.
    537  1.22   rmind 	 */
    538  1.10      ad 	if (l->l_priority >= PRI_HIGHEST_TS)
    539   1.1   rmind 		return;
    540  1.16   rmind 	KASSERT(l->l_class == SCHED_OTHER);
    541   1.1   rmind 
    542  1.10      ad 	/* If it is CPU-bound not a first time - decrease the priority */
    543  1.11   rmind 	prio = l->l_priority;
    544  1.11   rmind 	if (batch && prio != 0)
    545  1.11   rmind 		prio--;
    546  1.10      ad 
    547   1.1   rmind 	/* If thread was not ran a second or more - set a high priority */
    548  1.11   rmind 	if (l->l_stat == LSRUN) {
    549  1.11   rmind 		if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
    550  1.11   rmind 			prio = high_pri[prio];
    551  1.11   rmind 		/* Re-enqueue the thread if priority has changed */
    552  1.11   rmind 		if (prio != l->l_priority)
    553  1.11   rmind 			lwp_changepri(l, prio);
    554  1.11   rmind 	} else {
    555  1.11   rmind 		/* In other states, change the priority directly */
    556  1.11   rmind 		l->l_priority = prio;
    557  1.11   rmind 	}
    558   1.1   rmind }
    559   1.1   rmind 
    560   1.1   rmind /*
    561   1.1   rmind  * Migration and balancing.
    562   1.1   rmind  */
    563   1.1   rmind 
    564   1.1   rmind #ifdef MULTIPROCESSOR
    565   1.1   rmind 
    566  1.16   rmind /* Estimate if LWP is cache-hot */
    567  1.16   rmind static inline bool
    568  1.16   rmind lwp_cache_hot(const struct lwp *l)
    569  1.16   rmind {
    570  1.16   rmind 	const sched_info_lwp_t *sil = l->l_sched_info;
    571  1.16   rmind 
    572  1.16   rmind 	if (l->l_slptime || sil->sl_lrtime == 0)
    573  1.16   rmind 		return false;
    574  1.16   rmind 
    575  1.22   rmind 	return (hardclock_ticks - sil->sl_lrtime <= cacheht_time);
    576  1.16   rmind }
    577  1.16   rmind 
    578   1.1   rmind /* Check if LWP can migrate to the chosen CPU */
    579   1.1   rmind static inline bool
    580  1.15   rmind sched_migratable(const struct lwp *l, struct cpu_info *ci)
    581   1.1   rmind {
    582  1.15   rmind 	const struct schedstate_percpu *spc = &ci->ci_schedstate;
    583   1.1   rmind 
    584  1.15   rmind 	/* CPU is offline */
    585  1.15   rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
    586   1.1   rmind 		return false;
    587   1.1   rmind 
    588  1.15   rmind 	/* Affinity bind */
    589  1.15   rmind 	if (__predict_false(l->l_flag & LW_AFFINITY))
    590  1.15   rmind 		return CPU_ISSET(cpu_index(ci), &l->l_affinity);
    591  1.15   rmind 
    592  1.15   rmind 	/* Processor-set */
    593  1.15   rmind 	return (spc->spc_psid == l->l_psid);
    594   1.1   rmind }
    595   1.1   rmind 
    596   1.1   rmind /*
    597   1.1   rmind  * Estimate the migration of LWP to the other CPU.
    598   1.1   rmind  * Take and return the CPU, if migration is needed.
    599   1.1   rmind  */
    600   1.1   rmind struct cpu_info *
    601   1.1   rmind sched_takecpu(struct lwp *l)
    602   1.1   rmind {
    603  1.15   rmind 	struct cpu_info *ci, *tci;
    604   1.1   rmind 	struct schedstate_percpu *spc;
    605   1.1   rmind 	runqueue_t *ci_rq;
    606   1.1   rmind 	CPU_INFO_ITERATOR cii;
    607   1.1   rmind 	pri_t eprio, lpri;
    608   1.1   rmind 
    609  1.15   rmind 	KASSERT(lwp_locked(l, NULL));
    610  1.15   rmind 
    611   1.1   rmind 	ci = l->l_cpu;
    612   1.1   rmind 	spc = &ci->ci_schedstate;
    613   1.1   rmind 	ci_rq = spc->spc_sched_info;
    614   1.1   rmind 
    615  1.15   rmind 	/* If thread is strictly bound, do not estimate other CPUs */
    616  1.15   rmind 	if (l->l_flag & LW_BOUND)
    617  1.15   rmind 		return ci;
    618  1.15   rmind 
    619   1.1   rmind 	/* CPU of this thread is idling - run there */
    620   1.1   rmind 	if (ci_rq->r_count == 0)
    621   1.1   rmind 		return ci;
    622   1.1   rmind 
    623   1.1   rmind 	eprio = lwp_eprio(l);
    624   1.1   rmind 
    625   1.1   rmind 	/* Stay if thread is cache-hot */
    626  1.16   rmind 	if (__predict_true(l->l_stat != LSIDL) &&
    627  1.16   rmind 	    lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
    628   1.1   rmind 		return ci;
    629   1.1   rmind 
    630   1.1   rmind 	/* Run on current CPU if priority of thread is higher */
    631   1.1   rmind 	ci = curcpu();
    632   1.1   rmind 	spc = &ci->ci_schedstate;
    633  1.10      ad 	if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
    634   1.1   rmind 		return ci;
    635   1.1   rmind 
    636   1.1   rmind 	/*
    637   1.1   rmind 	 * Look for the CPU with the lowest priority thread.  In case of
    638   1.1   rmind 	 * equal the priority - check the lower count of the threads.
    639   1.1   rmind 	 */
    640  1.15   rmind 	tci = l->l_cpu;
    641  1.10      ad 	lpri = PRI_COUNT;
    642   1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    643   1.1   rmind 		runqueue_t *ici_rq;
    644   1.1   rmind 		pri_t pri;
    645   1.1   rmind 
    646   1.1   rmind 		spc = &ci->ci_schedstate;
    647   1.1   rmind 		ici_rq = spc->spc_sched_info;
    648  1.10      ad 		pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
    649  1.10      ad 		if (pri > lpri)
    650   1.1   rmind 			continue;
    651   1.1   rmind 
    652  1.15   rmind 		if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
    653   1.1   rmind 			continue;
    654   1.1   rmind 
    655  1.15   rmind 		if (!sched_migratable(l, ci))
    656   1.1   rmind 			continue;
    657   1.1   rmind 
    658   1.1   rmind 		lpri = pri;
    659   1.1   rmind 		tci = ci;
    660   1.1   rmind 		ci_rq = ici_rq;
    661   1.1   rmind 	}
    662   1.1   rmind 	return tci;
    663   1.1   rmind }
    664   1.1   rmind 
    665   1.1   rmind /*
    666   1.1   rmind  * Tries to catch an LWP from the runqueue of other CPU.
    667   1.1   rmind  */
    668   1.1   rmind static struct lwp *
    669   1.1   rmind sched_catchlwp(void)
    670   1.1   rmind {
    671   1.1   rmind 	struct cpu_info *curci = curcpu(), *ci = worker_ci;
    672   1.1   rmind 	TAILQ_HEAD(, lwp) *q_head;
    673   1.1   rmind 	runqueue_t *ci_rq;
    674   1.1   rmind 	struct lwp *l;
    675   1.1   rmind 
    676   1.1   rmind 	if (curci == ci)
    677   1.1   rmind 		return NULL;
    678   1.1   rmind 
    679   1.1   rmind 	/* Lockless check */
    680   1.1   rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    681  1.22   rmind 	if (ci_rq->r_mcount < min_catch)
    682   1.1   rmind 		return NULL;
    683   1.1   rmind 
    684   1.1   rmind 	/*
    685   1.1   rmind 	 * Double-lock the runqueues.
    686   1.1   rmind 	 */
    687   1.3   rmind 	if (curci < ci) {
    688   1.1   rmind 		spc_lock(ci);
    689   1.1   rmind 	} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
    690   1.1   rmind 		const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
    691   1.1   rmind 
    692   1.1   rmind 		spc_unlock(curci);
    693   1.1   rmind 		spc_lock(ci);
    694   1.1   rmind 		spc_lock(curci);
    695   1.1   rmind 
    696   1.1   rmind 		if (cur_rq->r_count) {
    697   1.1   rmind 			spc_unlock(ci);
    698   1.1   rmind 			return NULL;
    699   1.1   rmind 		}
    700   1.1   rmind 	}
    701   1.1   rmind 
    702  1.22   rmind 	if (ci_rq->r_mcount < min_catch) {
    703   1.1   rmind 		spc_unlock(ci);
    704   1.1   rmind 		return NULL;
    705   1.1   rmind 	}
    706   1.1   rmind 
    707   1.1   rmind 	/* Take the highest priority thread */
    708   1.1   rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    709   1.1   rmind 	l = TAILQ_FIRST(q_head);
    710   1.1   rmind 
    711   1.1   rmind 	for (;;) {
    712   1.1   rmind 		/* Check the first and next result from the queue */
    713   1.1   rmind 		if (l == NULL)
    714   1.1   rmind 			break;
    715  1.22   rmind 		KASSERT(l->l_stat == LSRUN);
    716  1.22   rmind 		KASSERT(l->l_flag & LW_INMEM);
    717   1.1   rmind 
    718   1.1   rmind 		/* Look for threads, whose are allowed to migrate */
    719  1.22   rmind 		if ((l->l_flag & LW_BOUND) || lwp_cache_hot(l) ||
    720  1.15   rmind 		    !sched_migratable(l, curci)) {
    721   1.1   rmind 			l = TAILQ_NEXT(l, l_runq);
    722   1.1   rmind 			continue;
    723   1.1   rmind 		}
    724  1.22   rmind 
    725  1.22   rmind 		/* Grab the thread, and move to the local run queue */
    726  1.22   rmind 		sched_dequeue(l);
    727  1.22   rmind 		l->l_cpu = curci;
    728  1.22   rmind 		lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
    729  1.22   rmind 		sched_enqueue(l, false);
    730  1.22   rmind 		return l;
    731   1.1   rmind 	}
    732   1.1   rmind 	spc_unlock(ci);
    733   1.1   rmind 
    734   1.1   rmind 	return l;
    735   1.1   rmind }
    736   1.1   rmind 
    737   1.1   rmind /*
    738   1.1   rmind  * Periodical calculations for balancing.
    739   1.1   rmind  */
    740   1.1   rmind static void
    741   1.1   rmind sched_balance(void *nocallout)
    742   1.1   rmind {
    743   1.1   rmind 	struct cpu_info *ci, *hci;
    744   1.1   rmind 	runqueue_t *ci_rq;
    745   1.1   rmind 	CPU_INFO_ITERATOR cii;
    746   1.1   rmind 	u_int highest;
    747   1.1   rmind 
    748   1.1   rmind 	hci = curcpu();
    749   1.1   rmind 	highest = 0;
    750   1.1   rmind 
    751   1.1   rmind 	/* Make lockless countings */
    752   1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
    753   1.1   rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
    754   1.1   rmind 
    755   1.1   rmind 		/* Average count of the threads */
    756   1.1   rmind 		ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
    757   1.1   rmind 
    758   1.1   rmind 		/* Look for CPU with the highest average */
    759   1.1   rmind 		if (ci_rq->r_avgcount > highest) {
    760   1.1   rmind 			hci = ci;
    761   1.1   rmind 			highest = ci_rq->r_avgcount;
    762   1.1   rmind 		}
    763   1.1   rmind 	}
    764   1.1   rmind 
    765   1.1   rmind 	/* Update the worker */
    766   1.1   rmind 	worker_ci = hci;
    767   1.1   rmind 
    768   1.1   rmind 	if (nocallout == NULL)
    769   1.1   rmind 		callout_schedule(&balance_ch, balance_period);
    770   1.1   rmind }
    771   1.1   rmind 
    772   1.1   rmind #else
    773   1.1   rmind 
    774   1.1   rmind struct cpu_info *
    775   1.1   rmind sched_takecpu(struct lwp *l)
    776   1.1   rmind {
    777   1.1   rmind 
    778   1.1   rmind 	return l->l_cpu;
    779   1.1   rmind }
    780   1.1   rmind 
    781   1.1   rmind #endif	/* MULTIPROCESSOR */
    782   1.1   rmind 
    783   1.1   rmind /*
    784   1.1   rmind  * Scheduler mill.
    785   1.1   rmind  */
    786   1.1   rmind struct lwp *
    787   1.1   rmind sched_nextlwp(void)
    788   1.1   rmind {
    789   1.1   rmind 	struct cpu_info *ci = curcpu();
    790   1.1   rmind 	struct schedstate_percpu *spc;
    791   1.1   rmind 	TAILQ_HEAD(, lwp) *q_head;
    792   1.1   rmind 	sched_info_lwp_t *sil;
    793   1.1   rmind 	runqueue_t *ci_rq;
    794   1.1   rmind 	struct lwp *l;
    795   1.1   rmind 
    796   1.1   rmind 	spc = &ci->ci_schedstate;
    797   1.1   rmind 	ci_rq = ci->ci_schedstate.spc_sched_info;
    798   1.1   rmind 
    799   1.1   rmind #ifdef MULTIPROCESSOR
    800   1.1   rmind 	/* If runqueue is empty, try to catch some thread from other CPU */
    801  1.11   rmind 	if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
    802   1.7   rmind 		if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
    803   1.1   rmind 			return NULL;
    804   1.1   rmind 	} else if (ci_rq->r_count == 0) {
    805   1.1   rmind 		/* Reset the counter, and call the balancer */
    806   1.1   rmind 		ci_rq->r_avgcount = 0;
    807   1.1   rmind 		sched_balance(ci);
    808   1.1   rmind 
    809   1.1   rmind 		/* The re-locking will be done inside */
    810   1.1   rmind 		return sched_catchlwp();
    811   1.1   rmind 	}
    812   1.1   rmind #else
    813   1.1   rmind 	if (ci_rq->r_count == 0)
    814   1.1   rmind 		return NULL;
    815   1.1   rmind #endif
    816   1.1   rmind 
    817   1.1   rmind 	/* Take the highest priority thread */
    818   1.1   rmind 	KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
    819   1.1   rmind 	q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
    820   1.1   rmind 	l = TAILQ_FIRST(q_head);
    821   1.1   rmind 	KASSERT(l != NULL);
    822   1.1   rmind 
    823   1.1   rmind 	/* Update the counters */
    824   1.1   rmind 	sil = l->l_sched_info;
    825   1.1   rmind 	KASSERT(sil->sl_timeslice >= min_ts);
    826   1.1   rmind 	KASSERT(sil->sl_timeslice <= max_ts);
    827   1.1   rmind 	spc->spc_ticks = sil->sl_timeslice;
    828   1.1   rmind 	sil->sl_rtime = hardclock_ticks;
    829   1.1   rmind 
    830   1.1   rmind 	return l;
    831   1.1   rmind }
    832   1.1   rmind 
    833   1.1   rmind bool
    834   1.1   rmind sched_curcpu_runnable_p(void)
    835   1.1   rmind {
    836   1.1   rmind 	const struct cpu_info *ci = curcpu();
    837   1.1   rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    838   1.1   rmind 
    839  1.11   rmind #ifndef __HAVE_FAST_SOFTINTS
    840  1.11   rmind 	if (ci->ci_data.cpu_softints)
    841  1.11   rmind 		return true;
    842  1.11   rmind #endif
    843  1.11   rmind 
    844   1.1   rmind 	if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    845   1.7   rmind 		return (ci_rq->r_count - ci_rq->r_mcount);
    846   1.1   rmind 
    847   1.1   rmind 	return ci_rq->r_count;
    848   1.1   rmind }
    849   1.1   rmind 
    850   1.1   rmind /*
    851   1.1   rmind  * Time-driven events.
    852   1.1   rmind  */
    853   1.1   rmind 
    854   1.1   rmind /*
    855   1.1   rmind  * Called once per time-quantum.  This routine is CPU-local and runs at
    856   1.1   rmind  * IPL_SCHED, thus the locking is not needed.
    857   1.1   rmind  */
    858   1.1   rmind void
    859   1.1   rmind sched_tick(struct cpu_info *ci)
    860   1.1   rmind {
    861   1.1   rmind 	const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
    862   1.1   rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    863   1.1   rmind 	struct lwp *l = curlwp;
    864  1.16   rmind 	const sched_info_lwp_t *sil = l->l_sched_info;
    865   1.1   rmind 
    866   1.2   rmind 	if (CURCPU_IDLE_P())
    867   1.2   rmind 		return;
    868   1.1   rmind 
    869  1.10      ad 	switch (l->l_class) {
    870   1.2   rmind 	case SCHED_FIFO:
    871   1.2   rmind 		/*
    872   1.2   rmind 		 * Update the time-quantum, and continue running,
    873   1.2   rmind 		 * if thread runs on FIFO real-time policy.
    874   1.2   rmind 		 */
    875  1.16   rmind 		KASSERT(l->l_priority > PRI_HIGHEST_TS);
    876   1.1   rmind 		spc->spc_ticks = sil->sl_timeslice;
    877   1.1   rmind 		return;
    878   1.2   rmind 	case SCHED_OTHER:
    879  1.10      ad 		/*
    880  1.10      ad 		 * If thread is in time-sharing queue, decrease the priority,
    881  1.10      ad 		 * and run with a higher time-quantum.
    882  1.10      ad 		 */
    883  1.16   rmind 		KASSERT(l->l_priority <= PRI_HIGHEST_TS);
    884  1.10      ad 		if (l->l_priority != 0)
    885  1.10      ad 			l->l_priority--;
    886   1.2   rmind 		break;
    887   1.1   rmind 	}
    888   1.1   rmind 
    889   1.1   rmind 	/*
    890   1.2   rmind 	 * If there are higher priority threads or threads in the same queue,
    891   1.2   rmind 	 * mark that thread should yield, otherwise, continue running.
    892   1.1   rmind 	 */
    893  1.15   rmind 	if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
    894   1.1   rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    895   1.1   rmind 		cpu_need_resched(ci, 0);
    896   1.1   rmind 	} else
    897   1.1   rmind 		spc->spc_ticks = sil->sl_timeslice;
    898   1.1   rmind }
    899   1.1   rmind 
    900   1.1   rmind /*
    901   1.1   rmind  * Sysctl nodes and initialization.
    902   1.1   rmind  */
    903   1.1   rmind 
    904   1.1   rmind static int
    905  1.15   rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    906  1.15   rmind {
    907  1.15   rmind 	struct sysctlnode node;
    908  1.15   rmind 	int rttsms = hztoms(rt_ts);
    909  1.15   rmind 
    910  1.15   rmind 	node = *rnode;
    911  1.15   rmind 	node.sysctl_data = &rttsms;
    912  1.15   rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    913  1.15   rmind }
    914  1.15   rmind 
    915  1.15   rmind static int
    916   1.1   rmind sysctl_sched_mints(SYSCTLFN_ARGS)
    917   1.1   rmind {
    918   1.1   rmind 	struct sysctlnode node;
    919   1.1   rmind 	struct cpu_info *ci;
    920   1.1   rmind 	int error, newsize;
    921   1.1   rmind 	CPU_INFO_ITERATOR cii;
    922   1.1   rmind 
    923   1.1   rmind 	node = *rnode;
    924   1.1   rmind 	node.sysctl_data = &newsize;
    925   1.1   rmind 
    926   1.1   rmind 	newsize = hztoms(min_ts);
    927   1.1   rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    928   1.1   rmind 	if (error || newp == NULL)
    929   1.1   rmind 		return error;
    930   1.1   rmind 
    931   1.8   rmind 	newsize = mstohz(newsize);
    932   1.1   rmind 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    933   1.1   rmind 		return EINVAL;
    934   1.1   rmind 
    935   1.1   rmind 	/* It is safe to do this in such order */
    936   1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci))
    937   1.1   rmind 		spc_lock(ci);
    938   1.1   rmind 
    939   1.8   rmind 	min_ts = newsize;
    940   1.1   rmind 	sched_precalcts();
    941   1.1   rmind 
    942   1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci))
    943   1.1   rmind 		spc_unlock(ci);
    944   1.1   rmind 
    945   1.1   rmind 	return 0;
    946   1.1   rmind }
    947   1.1   rmind 
    948   1.1   rmind static int
    949   1.1   rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
    950   1.1   rmind {
    951   1.1   rmind 	struct sysctlnode node;
    952   1.1   rmind 	struct cpu_info *ci;
    953   1.1   rmind 	int error, newsize;
    954   1.1   rmind 	CPU_INFO_ITERATOR cii;
    955   1.1   rmind 
    956   1.1   rmind 	node = *rnode;
    957   1.1   rmind 	node.sysctl_data = &newsize;
    958   1.1   rmind 
    959   1.1   rmind 	newsize = hztoms(max_ts);
    960   1.1   rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    961   1.1   rmind 	if (error || newp == NULL)
    962   1.1   rmind 		return error;
    963   1.1   rmind 
    964   1.8   rmind 	newsize = mstohz(newsize);
    965   1.1   rmind 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    966   1.1   rmind 		return EINVAL;
    967   1.1   rmind 
    968   1.1   rmind 	/* It is safe to do this in such order */
    969   1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci))
    970   1.1   rmind 		spc_lock(ci);
    971   1.1   rmind 
    972   1.8   rmind 	max_ts = newsize;
    973   1.1   rmind 	sched_precalcts();
    974   1.1   rmind 
    975   1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci))
    976   1.1   rmind 		spc_unlock(ci);
    977   1.1   rmind 
    978   1.1   rmind 	return 0;
    979   1.1   rmind }
    980   1.1   rmind 
    981   1.1   rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    982   1.1   rmind {
    983   1.1   rmind 	const struct sysctlnode *node = NULL;
    984   1.1   rmind 
    985   1.1   rmind 	sysctl_createv(clog, 0, NULL, NULL,
    986   1.1   rmind 		CTLFLAG_PERMANENT,
    987   1.1   rmind 		CTLTYPE_NODE, "kern", NULL,
    988   1.1   rmind 		NULL, 0, NULL, 0,
    989   1.1   rmind 		CTL_KERN, CTL_EOL);
    990   1.1   rmind 	sysctl_createv(clog, 0, NULL, &node,
    991   1.1   rmind 		CTLFLAG_PERMANENT,
    992   1.1   rmind 		CTLTYPE_NODE, "sched",
    993   1.1   rmind 		SYSCTL_DESCR("Scheduler options"),
    994   1.1   rmind 		NULL, 0, NULL, 0,
    995   1.1   rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    996   1.1   rmind 
    997   1.1   rmind 	if (node == NULL)
    998   1.1   rmind 		return;
    999   1.1   rmind 
   1000   1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1001   1.1   rmind 		CTLFLAG_PERMANENT,
   1002   1.1   rmind 		CTLTYPE_STRING, "name", NULL,
   1003   1.1   rmind 		NULL, 0, __UNCONST("M2"), 0,
   1004   1.1   rmind 		CTL_CREATE, CTL_EOL);
   1005   1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1006  1.15   rmind 		CTLFLAG_PERMANENT,
   1007  1.15   rmind 		CTLTYPE_INT, "rtts",
   1008  1.15   rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
   1009  1.15   rmind 		sysctl_sched_rtts, 0, NULL, 0,
   1010  1.15   rmind 		CTL_CREATE, CTL_EOL);
   1011  1.15   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1012   1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1013   1.1   rmind 		CTLTYPE_INT, "maxts",
   1014   1.8   rmind 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
   1015   1.1   rmind 		sysctl_sched_maxts, 0, &max_ts, 0,
   1016   1.1   rmind 		CTL_CREATE, CTL_EOL);
   1017   1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1018   1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1019   1.1   rmind 		CTLTYPE_INT, "mints",
   1020   1.8   rmind 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
   1021   1.1   rmind 		sysctl_sched_mints, 0, &min_ts, 0,
   1022   1.1   rmind 		CTL_CREATE, CTL_EOL);
   1023   1.1   rmind 
   1024   1.1   rmind #ifdef MULTIPROCESSOR
   1025   1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1026   1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1027   1.1   rmind 		CTLTYPE_INT, "cacheht_time",
   1028   1.8   rmind 		SYSCTL_DESCR("Cache hotness time (in ticks)"),
   1029   1.1   rmind 		NULL, 0, &cacheht_time, 0,
   1030   1.1   rmind 		CTL_CREATE, CTL_EOL);
   1031   1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1032   1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1033   1.9   rmind 		CTLTYPE_INT, "balance_period",
   1034   1.9   rmind 		SYSCTL_DESCR("Balance period (in ticks)"),
   1035   1.1   rmind 		NULL, 0, &balance_period, 0,
   1036   1.1   rmind 		CTL_CREATE, CTL_EOL);
   1037   1.1   rmind 	sysctl_createv(clog, 0, &node, NULL,
   1038   1.1   rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1039   1.1   rmind 		CTLTYPE_INT, "min_catch",
   1040   1.8   rmind 		SYSCTL_DESCR("Minimal count of the threads for catching"),
   1041   1.1   rmind 		NULL, 0, &min_catch, 0,
   1042   1.1   rmind 		CTL_CREATE, CTL_EOL);
   1043   1.1   rmind #endif
   1044   1.1   rmind }
   1045   1.1   rmind 
   1046   1.1   rmind /*
   1047   1.1   rmind  * Debugging.
   1048   1.1   rmind  */
   1049   1.1   rmind 
   1050   1.1   rmind #ifdef DDB
   1051   1.1   rmind 
   1052   1.1   rmind void
   1053   1.1   rmind sched_print_runqueue(void (*pr)(const char *, ...))
   1054   1.1   rmind {
   1055   1.1   rmind 	runqueue_t *ci_rq;
   1056   1.1   rmind 	sched_info_lwp_t *sil;
   1057   1.1   rmind 	struct lwp *l;
   1058   1.1   rmind 	struct proc *p;
   1059   1.1   rmind 	int i;
   1060   1.1   rmind 
   1061   1.1   rmind 	struct cpu_info *ci;
   1062   1.1   rmind 	CPU_INFO_ITERATOR cii;
   1063   1.1   rmind 
   1064   1.1   rmind 	for (CPU_INFO_FOREACH(cii, ci)) {
   1065   1.1   rmind 		ci_rq = ci->ci_schedstate.spc_sched_info;
   1066   1.1   rmind 
   1067  1.21  martin 		(*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
   1068   1.1   rmind 		(*pr)(" pid.lid = %d.%d, threads count = %u, "
   1069   1.1   rmind 		    "avgcount = %u, highest pri = %d\n",
   1070   1.1   rmind 		    ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
   1071   1.1   rmind 		    ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
   1072  1.10      ad 		i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
   1073   1.1   rmind 		do {
   1074  1.10      ad 			uint32_t q;
   1075  1.10      ad 			q = ci_rq->r_bitmap[i];
   1076  1.10      ad 			(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
   1077  1.10      ad 		} while (i--);
   1078   1.1   rmind 	}
   1079   1.1   rmind 
   1080   1.1   rmind 	(*pr)("   %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
   1081  1.10      ad 	    "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
   1082   1.1   rmind 
   1083   1.1   rmind 	PROCLIST_FOREACH(p, &allproc) {
   1084   1.1   rmind 		(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
   1085   1.1   rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1086   1.1   rmind 			sil = l->l_sched_info;
   1087   1.1   rmind 			ci = l->l_cpu;
   1088  1.21  martin 			(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3u "
   1089   1.1   rmind 			    "%u ST=%d RT=%d %d\n",
   1090  1.10      ad 			    (int)l->l_lid, l->l_priority, lwp_eprio(l),
   1091   1.1   rmind 			    l->l_flag, l->l_stat == LSRUN ? "RQ" :
   1092   1.1   rmind 			    (l->l_stat == LSSLEEP ? "SQ" : "-"),
   1093  1.21  martin 			    sil->sl_timeslice, l, ci->ci_index,
   1094   1.1   rmind 			    (u_int)(hardclock_ticks - sil->sl_lrtime),
   1095   1.1   rmind 			    sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
   1096   1.1   rmind 		}
   1097   1.1   rmind 	}
   1098   1.1   rmind }
   1099   1.1   rmind 
   1100  1.16   rmind #endif
   1101