Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.25
      1  1.25  rmind /*	$NetBSD: sched_m2.c,v 1.25 2008/05/19 12:48:54 rmind Exp $	*/
      2   1.1  rmind 
      3   1.1  rmind /*
      4  1.15  rmind  * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  1.12  rmind  * All rights reserved.
      6   1.1  rmind  *
      7   1.1  rmind  * Redistribution and use in source and binary forms, with or without
      8   1.1  rmind  * modification, are permitted provided that the following conditions
      9   1.1  rmind  * are met:
     10   1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rmind  *    documentation and/or other materials provided with the distribution.
     15   1.1  rmind  *
     16  1.19  rmind  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  1.19  rmind  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  1.19  rmind  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  1.19  rmind  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  1.19  rmind  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  1.19  rmind  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  1.19  rmind  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  1.19  rmind  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  1.19  rmind  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.19  rmind  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.19  rmind  * SUCH DAMAGE.
     27   1.1  rmind  */
     28   1.1  rmind 
     29   1.1  rmind /*
     30   1.1  rmind  * TODO:
     31   1.1  rmind  *  - Implementation of fair share queue;
     32   1.1  rmind  *  - Support for NUMA;
     33   1.1  rmind  */
     34   1.1  rmind 
     35   1.1  rmind #include <sys/cdefs.h>
     36  1.25  rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.25 2008/05/19 12:48:54 rmind Exp $");
     37   1.1  rmind 
     38   1.1  rmind #include <sys/param.h>
     39   1.1  rmind 
     40   1.8  rmind #include <sys/bitops.h>
     41   1.1  rmind #include <sys/cpu.h>
     42   1.1  rmind #include <sys/callout.h>
     43   1.1  rmind #include <sys/errno.h>
     44   1.1  rmind #include <sys/kernel.h>
     45   1.1  rmind #include <sys/kmem.h>
     46   1.1  rmind #include <sys/lwp.h>
     47   1.1  rmind #include <sys/mutex.h>
     48   1.1  rmind #include <sys/pool.h>
     49   1.1  rmind #include <sys/proc.h>
     50  1.15  rmind #include <sys/pset.h>
     51   1.1  rmind #include <sys/resource.h>
     52   1.1  rmind #include <sys/resourcevar.h>
     53   1.1  rmind #include <sys/sched.h>
     54   1.1  rmind #include <sys/syscallargs.h>
     55   1.1  rmind #include <sys/sysctl.h>
     56   1.1  rmind #include <sys/types.h>
     57   1.1  rmind 
     58   1.1  rmind /*
     59  1.10     ad  * Priority related defintions.
     60   1.1  rmind  */
     61  1.10     ad #define	PRI_TS_COUNT	(NPRI_USER)
     62  1.10     ad #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     63  1.10     ad #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     64  1.10     ad 
     65  1.11  rmind #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     66  1.10     ad 
     67   1.1  rmind /*
     68   1.1  rmind  * Time-slices and priorities.
     69   1.1  rmind  */
     70   1.1  rmind static u_int	min_ts;			/* Minimal time-slice */
     71   1.1  rmind static u_int	max_ts;			/* Maximal time-slice */
     72   1.1  rmind static u_int	rt_ts;			/* Real-time time-slice */
     73   1.1  rmind static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     74   1.1  rmind static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     75   1.1  rmind 
     76  1.25  rmind static void	sched_precalcts(void);
     77  1.25  rmind 
     78   1.1  rmind typedef struct {
     79   1.1  rmind 	u_int		sl_timeslice;	/* Time-slice of thread */
     80   1.1  rmind } sched_info_lwp_t;
     81   1.1  rmind 
     82  1.19  rmind static pool_cache_t	sil_pool;
     83   1.1  rmind 
     84   1.1  rmind /*
     85   1.1  rmind  * Initialization and setup.
     86   1.1  rmind  */
     87   1.1  rmind 
     88   1.1  rmind void
     89   1.1  rmind sched_rqinit(void)
     90   1.1  rmind {
     91   1.1  rmind 	struct cpu_info *ci = curcpu();
     92   1.1  rmind 
     93   1.1  rmind 	if (hz < 100) {
     94   1.1  rmind 		panic("sched_rqinit: value of HZ is too low\n");
     95   1.1  rmind 	}
     96   1.1  rmind 
     97   1.1  rmind 	/* Default timing ranges */
     98   1.1  rmind 	min_ts = mstohz(50);			/* ~50ms  */
     99   1.1  rmind 	max_ts = mstohz(150);			/* ~150ms */
    100   1.1  rmind 	rt_ts = mstohz(100);			/* ~100ms */
    101   1.1  rmind 	sched_precalcts();
    102   1.1  rmind 
    103   1.1  rmind 	/* Pool of the scheduler-specific structures */
    104  1.23     ad 	sil_pool = pool_cache_init(sizeof(sched_info_lwp_t), coherency_unit,
    105  1.20     ad 	    0, 0, "lwpsd", NULL, IPL_NONE, NULL, NULL, NULL);
    106   1.1  rmind 
    107   1.1  rmind 	/* Attach the primary CPU here */
    108   1.1  rmind 	sched_cpuattach(ci);
    109   1.1  rmind 
    110  1.10     ad 	sched_lwp_fork(NULL, &lwp0);
    111   1.1  rmind 	sched_newts(&lwp0);
    112   1.1  rmind }
    113   1.1  rmind 
    114   1.1  rmind /* Pre-calculate the time-slices for the priorities */
    115   1.1  rmind static void
    116   1.1  rmind sched_precalcts(void)
    117   1.1  rmind {
    118   1.1  rmind 	pri_t p;
    119   1.1  rmind 
    120  1.10     ad 	/* Time-sharing range */
    121  1.10     ad 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    122  1.10     ad 		ts_map[p] = max_ts -
    123  1.10     ad 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    124  1.10     ad 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    125  1.10     ad 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    126  1.10     ad 	}
    127  1.10     ad 
    128  1.10     ad 	/* Real-time range */
    129  1.10     ad 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    130   1.1  rmind 		ts_map[p] = rt_ts;
    131   1.1  rmind 		high_pri[p] = p;
    132   1.1  rmind 	}
    133   1.1  rmind }
    134   1.1  rmind 
    135   1.1  rmind /*
    136   1.1  rmind  * Hooks.
    137   1.1  rmind  */
    138   1.1  rmind 
    139   1.1  rmind void
    140   1.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    141   1.1  rmind {
    142   1.1  rmind 	struct lwp *l;
    143   1.1  rmind 
    144   1.1  rmind 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    145   1.1  rmind 		lwp_lock(l);
    146   1.1  rmind 		sched_newts(l);
    147   1.1  rmind 		lwp_unlock(l);
    148   1.1  rmind 	}
    149   1.1  rmind }
    150   1.1  rmind 
    151   1.1  rmind void
    152   1.1  rmind sched_proc_exit(struct proc *child, struct proc *parent)
    153   1.1  rmind {
    154   1.1  rmind 
    155   1.1  rmind 	/* Dummy */
    156   1.1  rmind }
    157   1.1  rmind 
    158   1.1  rmind void
    159  1.10     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    160   1.1  rmind {
    161   1.1  rmind 
    162  1.10     ad 	KASSERT(l2->l_sched_info == NULL);
    163  1.19  rmind 	l2->l_sched_info = pool_cache_get(sil_pool, PR_WAITOK);
    164  1.10     ad 	memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
    165   1.1  rmind }
    166   1.1  rmind 
    167   1.1  rmind void
    168   1.1  rmind sched_lwp_exit(struct lwp *l)
    169   1.1  rmind {
    170   1.1  rmind 
    171   1.1  rmind 	KASSERT(l->l_sched_info != NULL);
    172  1.19  rmind 	pool_cache_put(sil_pool, l->l_sched_info);
    173   1.1  rmind 	l->l_sched_info = NULL;
    174   1.1  rmind }
    175   1.1  rmind 
    176   1.1  rmind void
    177  1.10     ad sched_lwp_collect(struct lwp *l)
    178  1.10     ad {
    179  1.10     ad 
    180  1.10     ad }
    181  1.10     ad 
    182  1.10     ad void
    183   1.1  rmind sched_setrunnable(struct lwp *l)
    184   1.1  rmind {
    185   1.1  rmind 
    186   1.1  rmind 	/* Dummy */
    187   1.1  rmind }
    188   1.1  rmind 
    189   1.1  rmind void
    190   1.1  rmind sched_schedclock(struct lwp *l)
    191   1.1  rmind {
    192   1.1  rmind 
    193   1.1  rmind 	/* Dummy */
    194   1.1  rmind }
    195   1.1  rmind 
    196   1.1  rmind /*
    197   1.1  rmind  * Priorities and time-slice.
    198   1.1  rmind  */
    199   1.1  rmind 
    200   1.1  rmind void
    201   1.1  rmind sched_nice(struct proc *p, int prio)
    202   1.1  rmind {
    203   1.1  rmind 
    204  1.17  rmind 	/* TODO: implement as SCHED_IA */
    205   1.1  rmind }
    206   1.1  rmind 
    207   1.1  rmind /* Recalculate the time-slice */
    208  1.24     ad void
    209   1.1  rmind sched_newts(struct lwp *l)
    210   1.1  rmind {
    211   1.1  rmind 	sched_info_lwp_t *sil = l->l_sched_info;
    212   1.1  rmind 
    213   1.1  rmind 	sil->sl_timeslice = ts_map[lwp_eprio(l)];
    214   1.1  rmind }
    215   1.1  rmind 
    216   1.1  rmind void
    217   1.1  rmind sched_slept(struct lwp *l)
    218   1.1  rmind {
    219   1.1  rmind 
    220   1.1  rmind 	/*
    221  1.10     ad 	 * If thread is in time-sharing queue and batch flag is not marked,
    222  1.10     ad 	 * increase the the priority, and run with the lower time-quantum.
    223   1.1  rmind 	 */
    224  1.25  rmind 	if (l->l_priority < PRI_HIGHEST_TS && (l->l_flag & LW_BATCH) == 0) {
    225  1.10     ad 		KASSERT(l->l_class == SCHED_OTHER);
    226  1.10     ad 		l->l_priority++;
    227  1.10     ad 	}
    228   1.1  rmind }
    229   1.1  rmind 
    230   1.1  rmind void
    231   1.1  rmind sched_wakeup(struct lwp *l)
    232   1.1  rmind {
    233   1.1  rmind 
    234   1.1  rmind 	/* If thread was sleeping a second or more - set a high priority */
    235  1.25  rmind 	if (l->l_slptime >= 1)
    236  1.10     ad 		l->l_priority = high_pri[l->l_priority];
    237   1.1  rmind }
    238   1.1  rmind 
    239   1.1  rmind void
    240  1.25  rmind sched_pstats_hook(struct lwp *l, int batch)
    241   1.1  rmind {
    242  1.11  rmind 	pri_t prio;
    243   1.1  rmind 
    244  1.22  rmind 	/*
    245  1.22  rmind 	 * Estimate threads on time-sharing queue only, however,
    246  1.22  rmind 	 * exclude the highest priority for performance purposes.
    247  1.22  rmind 	 */
    248  1.10     ad 	if (l->l_priority >= PRI_HIGHEST_TS)
    249   1.1  rmind 		return;
    250  1.16  rmind 	KASSERT(l->l_class == SCHED_OTHER);
    251   1.1  rmind 
    252  1.10     ad 	/* If it is CPU-bound not a first time - decrease the priority */
    253  1.11  rmind 	prio = l->l_priority;
    254  1.11  rmind 	if (batch && prio != 0)
    255  1.11  rmind 		prio--;
    256  1.10     ad 
    257   1.1  rmind 	/* If thread was not ran a second or more - set a high priority */
    258  1.11  rmind 	if (l->l_stat == LSRUN) {
    259  1.25  rmind 		if (l->l_rticks && (hardclock_ticks - l->l_rticks >= hz))
    260  1.11  rmind 			prio = high_pri[prio];
    261  1.11  rmind 		/* Re-enqueue the thread if priority has changed */
    262  1.11  rmind 		if (prio != l->l_priority)
    263  1.11  rmind 			lwp_changepri(l, prio);
    264  1.11  rmind 	} else {
    265  1.11  rmind 		/* In other states, change the priority directly */
    266  1.11  rmind 		l->l_priority = prio;
    267  1.11  rmind 	}
    268   1.1  rmind }
    269   1.1  rmind 
    270  1.24     ad void
    271  1.24     ad sched_oncpu(lwp_t *l)
    272  1.16  rmind {
    273  1.24     ad 	sched_info_lwp_t *sil = l->l_sched_info;
    274   1.1  rmind 
    275   1.1  rmind 	/* Update the counters */
    276   1.1  rmind 	sil = l->l_sched_info;
    277   1.1  rmind 	KASSERT(sil->sl_timeslice >= min_ts);
    278   1.1  rmind 	KASSERT(sil->sl_timeslice <= max_ts);
    279  1.24     ad 	l->l_cpu->ci_schedstate.spc_ticks = sil->sl_timeslice;
    280   1.1  rmind }
    281   1.1  rmind 
    282   1.1  rmind /*
    283   1.1  rmind  * Time-driven events.
    284   1.1  rmind  */
    285   1.1  rmind 
    286   1.1  rmind /*
    287   1.1  rmind  * Called once per time-quantum.  This routine is CPU-local and runs at
    288   1.1  rmind  * IPL_SCHED, thus the locking is not needed.
    289   1.1  rmind  */
    290   1.1  rmind void
    291   1.1  rmind sched_tick(struct cpu_info *ci)
    292   1.1  rmind {
    293   1.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    294   1.1  rmind 	struct lwp *l = curlwp;
    295  1.16  rmind 	const sched_info_lwp_t *sil = l->l_sched_info;
    296   1.1  rmind 
    297   1.2  rmind 	if (CURCPU_IDLE_P())
    298   1.2  rmind 		return;
    299   1.1  rmind 
    300  1.10     ad 	switch (l->l_class) {
    301   1.2  rmind 	case SCHED_FIFO:
    302   1.2  rmind 		/*
    303   1.2  rmind 		 * Update the time-quantum, and continue running,
    304   1.2  rmind 		 * if thread runs on FIFO real-time policy.
    305   1.2  rmind 		 */
    306  1.16  rmind 		KASSERT(l->l_priority > PRI_HIGHEST_TS);
    307   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    308   1.1  rmind 		return;
    309   1.2  rmind 	case SCHED_OTHER:
    310  1.10     ad 		/*
    311  1.10     ad 		 * If thread is in time-sharing queue, decrease the priority,
    312  1.10     ad 		 * and run with a higher time-quantum.
    313  1.10     ad 		 */
    314  1.16  rmind 		KASSERT(l->l_priority <= PRI_HIGHEST_TS);
    315  1.10     ad 		if (l->l_priority != 0)
    316  1.10     ad 			l->l_priority--;
    317   1.2  rmind 		break;
    318   1.1  rmind 	}
    319   1.1  rmind 
    320   1.1  rmind 	/*
    321   1.2  rmind 	 * If there are higher priority threads or threads in the same queue,
    322   1.2  rmind 	 * mark that thread should yield, otherwise, continue running.
    323   1.1  rmind 	 */
    324  1.24     ad 	if (lwp_eprio(l) <= spc->spc_maxpriority || l->l_target_cpu) {
    325   1.1  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    326   1.1  rmind 		cpu_need_resched(ci, 0);
    327   1.1  rmind 	} else
    328   1.1  rmind 		spc->spc_ticks = sil->sl_timeslice;
    329   1.1  rmind }
    330   1.1  rmind 
    331   1.1  rmind /*
    332   1.1  rmind  * Sysctl nodes and initialization.
    333   1.1  rmind  */
    334   1.1  rmind 
    335   1.1  rmind static int
    336  1.15  rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    337  1.15  rmind {
    338  1.15  rmind 	struct sysctlnode node;
    339  1.15  rmind 	int rttsms = hztoms(rt_ts);
    340  1.15  rmind 
    341  1.15  rmind 	node = *rnode;
    342  1.15  rmind 	node.sysctl_data = &rttsms;
    343  1.15  rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    344  1.15  rmind }
    345  1.15  rmind 
    346  1.15  rmind static int
    347   1.1  rmind sysctl_sched_mints(SYSCTLFN_ARGS)
    348   1.1  rmind {
    349   1.1  rmind 	struct sysctlnode node;
    350   1.1  rmind 	struct cpu_info *ci;
    351   1.1  rmind 	int error, newsize;
    352   1.1  rmind 	CPU_INFO_ITERATOR cii;
    353   1.1  rmind 
    354   1.1  rmind 	node = *rnode;
    355   1.1  rmind 	node.sysctl_data = &newsize;
    356   1.1  rmind 
    357   1.1  rmind 	newsize = hztoms(min_ts);
    358   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    359   1.1  rmind 	if (error || newp == NULL)
    360   1.1  rmind 		return error;
    361   1.1  rmind 
    362   1.8  rmind 	newsize = mstohz(newsize);
    363   1.1  rmind 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    364   1.1  rmind 		return EINVAL;
    365   1.1  rmind 
    366   1.1  rmind 	/* It is safe to do this in such order */
    367   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    368   1.1  rmind 		spc_lock(ci);
    369   1.1  rmind 
    370   1.8  rmind 	min_ts = newsize;
    371   1.1  rmind 	sched_precalcts();
    372   1.1  rmind 
    373   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    374   1.1  rmind 		spc_unlock(ci);
    375   1.1  rmind 
    376   1.1  rmind 	return 0;
    377   1.1  rmind }
    378   1.1  rmind 
    379   1.1  rmind static int
    380   1.1  rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
    381   1.1  rmind {
    382   1.1  rmind 	struct sysctlnode node;
    383   1.1  rmind 	struct cpu_info *ci;
    384   1.1  rmind 	int error, newsize;
    385   1.1  rmind 	CPU_INFO_ITERATOR cii;
    386   1.1  rmind 
    387   1.1  rmind 	node = *rnode;
    388   1.1  rmind 	node.sysctl_data = &newsize;
    389   1.1  rmind 
    390   1.1  rmind 	newsize = hztoms(max_ts);
    391   1.1  rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    392   1.1  rmind 	if (error || newp == NULL)
    393   1.1  rmind 		return error;
    394   1.1  rmind 
    395   1.8  rmind 	newsize = mstohz(newsize);
    396   1.1  rmind 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    397   1.1  rmind 		return EINVAL;
    398   1.1  rmind 
    399   1.1  rmind 	/* It is safe to do this in such order */
    400   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    401   1.1  rmind 		spc_lock(ci);
    402   1.1  rmind 
    403   1.8  rmind 	max_ts = newsize;
    404   1.1  rmind 	sched_precalcts();
    405   1.1  rmind 
    406   1.1  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    407   1.1  rmind 		spc_unlock(ci);
    408   1.1  rmind 
    409   1.1  rmind 	return 0;
    410   1.1  rmind }
    411   1.1  rmind 
    412  1.24     ad SYSCTL_SETUP(sysctl_sched_m2_setup, "sysctl sched setup")
    413   1.1  rmind {
    414   1.1  rmind 	const struct sysctlnode *node = NULL;
    415   1.1  rmind 
    416   1.1  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    417   1.1  rmind 		CTLFLAG_PERMANENT,
    418   1.1  rmind 		CTLTYPE_NODE, "kern", NULL,
    419   1.1  rmind 		NULL, 0, NULL, 0,
    420   1.1  rmind 		CTL_KERN, CTL_EOL);
    421   1.1  rmind 	sysctl_createv(clog, 0, NULL, &node,
    422   1.1  rmind 		CTLFLAG_PERMANENT,
    423   1.1  rmind 		CTLTYPE_NODE, "sched",
    424   1.1  rmind 		SYSCTL_DESCR("Scheduler options"),
    425   1.1  rmind 		NULL, 0, NULL, 0,
    426   1.1  rmind 		CTL_KERN, CTL_CREATE, CTL_EOL);
    427   1.1  rmind 
    428   1.1  rmind 	if (node == NULL)
    429   1.1  rmind 		return;
    430   1.1  rmind 
    431  1.24     ad 	sysctl_createv(NULL, 0, &node, NULL,
    432   1.1  rmind 		CTLFLAG_PERMANENT,
    433   1.1  rmind 		CTLTYPE_STRING, "name", NULL,
    434   1.1  rmind 		NULL, 0, __UNCONST("M2"), 0,
    435   1.1  rmind 		CTL_CREATE, CTL_EOL);
    436  1.24     ad 	sysctl_createv(NULL, 0, &node, NULL,
    437  1.15  rmind 		CTLFLAG_PERMANENT,
    438  1.15  rmind 		CTLTYPE_INT, "rtts",
    439  1.15  rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    440  1.15  rmind 		sysctl_sched_rtts, 0, NULL, 0,
    441  1.15  rmind 		CTL_CREATE, CTL_EOL);
    442  1.24     ad 	sysctl_createv(NULL, 0, &node, NULL,
    443   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    444   1.1  rmind 		CTLTYPE_INT, "maxts",
    445   1.8  rmind 		SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
    446   1.1  rmind 		sysctl_sched_maxts, 0, &max_ts, 0,
    447   1.1  rmind 		CTL_CREATE, CTL_EOL);
    448  1.24     ad 	sysctl_createv(NULL, 0, &node, NULL,
    449   1.1  rmind 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    450   1.1  rmind 		CTLTYPE_INT, "mints",
    451   1.8  rmind 		SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
    452   1.1  rmind 		sysctl_sched_mints, 0, &min_ts, 0,
    453   1.1  rmind 		CTL_CREATE, CTL_EOL);
    454   1.1  rmind }
    455