sched_m2.c revision 1.3.2.3 1 1.3.2.3 rmind /* $NetBSD: sched_m2.c,v 1.3.2.3 2007/10/11 20:43:32 rmind Exp $ */
2 1.3.2.2 rmind
3 1.3.2.2 rmind /*
4 1.3.2.2 rmind * Copyright (c) 2007, Mindaugas Rasiukevicius
5 1.3.2.2 rmind *
6 1.3.2.2 rmind * Redistribution and use in source and binary forms, with or without
7 1.3.2.2 rmind * modification, are permitted provided that the following conditions
8 1.3.2.2 rmind * are met:
9 1.3.2.2 rmind * 1. Redistributions of source code must retain the above copyright
10 1.3.2.2 rmind * notice, this list of conditions and the following disclaimer.
11 1.3.2.2 rmind * 2. Redistributions in binary form must reproduce the above copyright
12 1.3.2.2 rmind * notice, this list of conditions and the following disclaimer in the
13 1.3.2.2 rmind * documentation and/or other materials provided with the distribution.
14 1.3.2.2 rmind *
15 1.3.2.2 rmind * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 1.3.2.2 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 1.3.2.2 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 1.3.2.2 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
19 1.3.2.2 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 1.3.2.2 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 1.3.2.2 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 1.3.2.2 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 1.3.2.2 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 1.3.2.2 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 1.3.2.2 rmind * POSSIBILITY OF SUCH DAMAGE.
26 1.3.2.2 rmind */
27 1.3.2.2 rmind
28 1.3.2.2 rmind /*
29 1.3.2.2 rmind * TODO:
30 1.3.2.2 rmind * - Implementation of fair share queue;
31 1.3.2.2 rmind * - Support for NUMA;
32 1.3.2.2 rmind */
33 1.3.2.2 rmind
34 1.3.2.2 rmind #include <sys/cdefs.h>
35 1.3.2.3 rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.3.2.3 2007/10/11 20:43:32 rmind Exp $");
36 1.3.2.2 rmind
37 1.3.2.2 rmind #include <sys/param.h>
38 1.3.2.2 rmind
39 1.3.2.2 rmind #include <sys/cpu.h>
40 1.3.2.2 rmind #include <sys/callout.h>
41 1.3.2.2 rmind #include <sys/errno.h>
42 1.3.2.2 rmind #include <sys/kernel.h>
43 1.3.2.2 rmind #include <sys/kmem.h>
44 1.3.2.2 rmind #include <sys/lwp.h>
45 1.3.2.2 rmind #include <sys/mutex.h>
46 1.3.2.2 rmind #include <sys/pool.h>
47 1.3.2.2 rmind #include <sys/proc.h>
48 1.3.2.2 rmind #include <sys/resource.h>
49 1.3.2.2 rmind #include <sys/resourcevar.h>
50 1.3.2.2 rmind #include <sys/sched.h>
51 1.3.2.2 rmind #include <sys/syscallargs.h>
52 1.3.2.2 rmind #include <sys/sysctl.h>
53 1.3.2.2 rmind #include <sys/types.h>
54 1.3.2.2 rmind
55 1.3.2.2 rmind #include <machine/cpu.h>
56 1.3.2.2 rmind
57 1.3.2.2 rmind /*
58 1.3.2.3 rmind * Priority related defintions.
59 1.3.2.2 rmind */
60 1.3.2.3 rmind #define PRI_TS_COUNT (NPRI_USER)
61 1.3.2.3 rmind #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
62 1.3.2.3 rmind #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
63 1.3.2.3 rmind
64 1.3.2.3 rmind #define PRI_HIGHEST_TS (PRI_KERNEL - 1)
65 1.3.2.3 rmind #define PRI_DEFAULT (NPRI_USER >> 1)
66 1.3.2.3 rmind
67 1.3.2.3 rmind const int schedppq = 1;
68 1.3.2.2 rmind
69 1.3.2.2 rmind /*
70 1.3.2.2 rmind * Bits per map.
71 1.3.2.2 rmind */
72 1.3.2.3 rmind #define BITMAP_BITS (32)
73 1.3.2.3 rmind #define BITMAP_SHIFT (5)
74 1.3.2.3 rmind #define BITMAP_MSB (0x80000000)
75 1.3.2.3 rmind #define BITMAP_MASK (BITMAP_BITS - 1)
76 1.3.2.2 rmind
77 1.3.2.2 rmind /*
78 1.3.2.2 rmind * Time-slices and priorities.
79 1.3.2.2 rmind */
80 1.3.2.2 rmind static u_int min_ts; /* Minimal time-slice */
81 1.3.2.2 rmind static u_int max_ts; /* Maximal time-slice */
82 1.3.2.2 rmind static u_int rt_ts; /* Real-time time-slice */
83 1.3.2.2 rmind static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
84 1.3.2.2 rmind static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
85 1.3.2.2 rmind
86 1.3.2.2 rmind /*
87 1.3.2.2 rmind * Migration and balancing.
88 1.3.2.2 rmind */
89 1.3.2.2 rmind #ifdef MULTIPROCESSOR
90 1.3.2.2 rmind static u_int cacheht_time; /* Cache hotness time */
91 1.3.2.2 rmind static u_int min_catch; /* Minimal LWP count for catching */
92 1.3.2.2 rmind
93 1.3.2.2 rmind static u_int balance_period; /* Balance period */
94 1.3.2.2 rmind static struct callout balance_ch; /* Callout of balancer */
95 1.3.2.2 rmind
96 1.3.2.2 rmind static struct cpu_info * volatile worker_ci;
97 1.3.2.2 rmind
98 1.3.2.2 rmind #define CACHE_HOT(sil) (sil->sl_lrtime && \
99 1.3.2.2 rmind (hardclock_ticks - sil->sl_lrtime < cacheht_time))
100 1.3.2.2 rmind
101 1.3.2.2 rmind #endif
102 1.3.2.2 rmind
103 1.3.2.2 rmind /*
104 1.3.2.2 rmind * Structures, runqueue.
105 1.3.2.2 rmind */
106 1.3.2.2 rmind
107 1.3.2.2 rmind typedef struct {
108 1.3.2.2 rmind TAILQ_HEAD(, lwp) q_head;
109 1.3.2.2 rmind } queue_t;
110 1.3.2.2 rmind
111 1.3.2.2 rmind typedef struct {
112 1.3.2.2 rmind /* Lock and bitmap */
113 1.3.2.2 rmind kmutex_t r_rq_mutex;
114 1.3.2.3 rmind uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
115 1.3.2.2 rmind /* Counters */
116 1.3.2.2 rmind u_int r_count; /* Count of the threads */
117 1.3.2.2 rmind pri_t r_highest_pri; /* Highest priority */
118 1.3.2.2 rmind u_int r_avgcount; /* Average count of threads */
119 1.3.2.2 rmind u_int r_mcount; /* Count of migratable threads */
120 1.3.2.2 rmind /* Runqueues */
121 1.3.2.2 rmind queue_t r_rt_queue[PRI_RT_COUNT];
122 1.3.2.2 rmind queue_t r_ts_queue[PRI_TS_COUNT];
123 1.3.2.2 rmind } runqueue_t;
124 1.3.2.2 rmind
125 1.3.2.2 rmind typedef struct {
126 1.3.2.2 rmind u_int sl_flags;
127 1.3.2.2 rmind u_int sl_timeslice; /* Time-slice of thread */
128 1.3.2.2 rmind u_int sl_slept; /* Saved sleep time for sleep sum */
129 1.3.2.2 rmind u_int sl_slpsum; /* Sum of sleep time */
130 1.3.2.2 rmind u_int sl_rtime; /* Saved start time of run */
131 1.3.2.2 rmind u_int sl_rtsum; /* Sum of the run time */
132 1.3.2.2 rmind u_int sl_lrtime; /* Last run time */
133 1.3.2.2 rmind } sched_info_lwp_t;
134 1.3.2.2 rmind
135 1.3.2.2 rmind /* Flags */
136 1.3.2.2 rmind #define SL_BATCH 0x01
137 1.3.2.2 rmind
138 1.3.2.2 rmind /* Pool of the scheduler-specific structures for threads */
139 1.3.2.2 rmind static struct pool sil_pool;
140 1.3.2.2 rmind
141 1.3.2.2 rmind /*
142 1.3.2.2 rmind * Prototypes.
143 1.3.2.2 rmind */
144 1.3.2.2 rmind
145 1.3.2.2 rmind static inline void * sched_getrq(runqueue_t *, const pri_t);
146 1.3.2.2 rmind static inline void sched_newts(struct lwp *);
147 1.3.2.2 rmind static void sched_precalcts(void);
148 1.3.2.2 rmind
149 1.3.2.2 rmind #ifdef MULTIPROCESSOR
150 1.3.2.2 rmind static struct lwp * sched_catchlwp(void);
151 1.3.2.2 rmind static void sched_balance(void *);
152 1.3.2.2 rmind #endif
153 1.3.2.2 rmind
154 1.3.2.2 rmind /*
155 1.3.2.2 rmind * Initialization and setup.
156 1.3.2.2 rmind */
157 1.3.2.2 rmind
158 1.3.2.2 rmind void
159 1.3.2.2 rmind sched_rqinit(void)
160 1.3.2.2 rmind {
161 1.3.2.2 rmind struct cpu_info *ci = curcpu();
162 1.3.2.2 rmind
163 1.3.2.2 rmind if (hz < 100) {
164 1.3.2.2 rmind panic("sched_rqinit: value of HZ is too low\n");
165 1.3.2.2 rmind }
166 1.3.2.2 rmind
167 1.3.2.2 rmind /* Default timing ranges */
168 1.3.2.2 rmind min_ts = mstohz(50); /* ~50ms */
169 1.3.2.2 rmind max_ts = mstohz(150); /* ~150ms */
170 1.3.2.2 rmind rt_ts = mstohz(100); /* ~100ms */
171 1.3.2.2 rmind sched_precalcts();
172 1.3.2.2 rmind
173 1.3.2.2 rmind #ifdef MULTIPROCESSOR
174 1.3.2.2 rmind /* Balancing */
175 1.3.2.2 rmind worker_ci = ci;
176 1.3.2.2 rmind cacheht_time = mstohz(5); /* ~5 ms */
177 1.3.2.2 rmind balance_period = mstohz(300); /* ~300ms */
178 1.3.2.2 rmind min_catch = ~0;
179 1.3.2.2 rmind #endif
180 1.3.2.2 rmind
181 1.3.2.2 rmind /* Pool of the scheduler-specific structures */
182 1.3.2.2 rmind pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
183 1.3.2.2 rmind "lwpsd", &pool_allocator_nointr, IPL_NONE);
184 1.3.2.2 rmind
185 1.3.2.2 rmind /* Attach the primary CPU here */
186 1.3.2.2 rmind sched_cpuattach(ci);
187 1.3.2.2 rmind
188 1.3.2.2 rmind /* Initialize the scheduler structure of the primary LWP */
189 1.3.2.2 rmind lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
190 1.3.2.2 rmind sched_lwp_fork(&lwp0);
191 1.3.2.2 rmind sched_newts(&lwp0);
192 1.3.2.2 rmind }
193 1.3.2.2 rmind
194 1.3.2.2 rmind void
195 1.3.2.2 rmind sched_setup(void)
196 1.3.2.2 rmind {
197 1.3.2.2 rmind
198 1.3.2.2 rmind #ifdef MULTIPROCESSOR
199 1.3.2.2 rmind /* Minimal count of LWPs for catching: log2(count of CPUs) */
200 1.3.2.2 rmind min_catch = min(ffs(ncpu) - 1, 4);
201 1.3.2.2 rmind
202 1.3.2.2 rmind /* Initialize balancing callout and run it */
203 1.3.2.2 rmind callout_init(&balance_ch, CALLOUT_MPSAFE);
204 1.3.2.2 rmind callout_setfunc(&balance_ch, sched_balance, NULL);
205 1.3.2.2 rmind callout_schedule(&balance_ch, balance_period);
206 1.3.2.2 rmind #endif
207 1.3.2.2 rmind }
208 1.3.2.2 rmind
209 1.3.2.2 rmind void
210 1.3.2.2 rmind sched_cpuattach(struct cpu_info *ci)
211 1.3.2.2 rmind {
212 1.3.2.2 rmind runqueue_t *ci_rq;
213 1.3.2.2 rmind void *rq_ptr;
214 1.3.2.2 rmind u_int i, size;
215 1.3.2.2 rmind
216 1.3.2.2 rmind /*
217 1.3.2.2 rmind * Allocate the run queue.
218 1.3.2.2 rmind * XXX: Estimate cache behaviour more..
219 1.3.2.2 rmind */
220 1.3.2.2 rmind size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
221 1.3.2.2 rmind rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
222 1.3.2.2 rmind if (rq_ptr == NULL) {
223 1.3.2.2 rmind panic("scheduler: could not allocate the runqueue");
224 1.3.2.2 rmind }
225 1.3.2.2 rmind /* XXX: Save the original pointer for future.. */
226 1.3.2.2 rmind ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
227 1.3.2.2 rmind
228 1.3.2.2 rmind /* Initialize run queues */
229 1.3.2.2 rmind mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
230 1.3.2.2 rmind for (i = 0; i < PRI_RT_COUNT; i++)
231 1.3.2.2 rmind TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
232 1.3.2.2 rmind for (i = 0; i < PRI_TS_COUNT; i++)
233 1.3.2.2 rmind TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
234 1.3.2.3 rmind ci_rq->r_highest_pri = 0;
235 1.3.2.2 rmind
236 1.3.2.2 rmind ci->ci_schedstate.spc_sched_info = ci_rq;
237 1.3.2.2 rmind ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
238 1.3.2.2 rmind }
239 1.3.2.2 rmind
240 1.3.2.2 rmind /* Pre-calculate the time-slices for the priorities */
241 1.3.2.2 rmind static void
242 1.3.2.2 rmind sched_precalcts(void)
243 1.3.2.2 rmind {
244 1.3.2.2 rmind pri_t p;
245 1.3.2.2 rmind
246 1.3.2.3 rmind /* Time-sharing range */
247 1.3.2.3 rmind for (p = 0; p <= PRI_HIGHEST_TS; p++) {
248 1.3.2.3 rmind ts_map[p] = max_ts -
249 1.3.2.3 rmind (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
250 1.3.2.3 rmind high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
251 1.3.2.3 rmind ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
252 1.3.2.2 rmind }
253 1.3.2.2 rmind
254 1.3.2.3 rmind /* Real-time range */
255 1.3.2.3 rmind for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
256 1.3.2.3 rmind ts_map[p] = rt_ts;
257 1.3.2.3 rmind high_pri[p] = p;
258 1.3.2.2 rmind }
259 1.3.2.2 rmind }
260 1.3.2.2 rmind
261 1.3.2.2 rmind /*
262 1.3.2.2 rmind * Hooks.
263 1.3.2.2 rmind */
264 1.3.2.2 rmind
265 1.3.2.2 rmind void
266 1.3.2.2 rmind sched_proc_fork(struct proc *parent, struct proc *child)
267 1.3.2.2 rmind {
268 1.3.2.2 rmind struct lwp *l;
269 1.3.2.2 rmind
270 1.3.2.2 rmind LIST_FOREACH(l, &child->p_lwps, l_sibling) {
271 1.3.2.2 rmind lwp_lock(l);
272 1.3.2.2 rmind sched_newts(l);
273 1.3.2.2 rmind lwp_unlock(l);
274 1.3.2.2 rmind }
275 1.3.2.2 rmind }
276 1.3.2.2 rmind
277 1.3.2.2 rmind void
278 1.3.2.2 rmind sched_proc_exit(struct proc *child, struct proc *parent)
279 1.3.2.2 rmind {
280 1.3.2.2 rmind
281 1.3.2.2 rmind /* Dummy */
282 1.3.2.2 rmind }
283 1.3.2.2 rmind
284 1.3.2.2 rmind void
285 1.3.2.2 rmind sched_lwp_fork(struct lwp *l)
286 1.3.2.2 rmind {
287 1.3.2.2 rmind
288 1.3.2.2 rmind KASSERT(l->l_sched_info == NULL);
289 1.3.2.2 rmind l->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
290 1.3.2.2 rmind memset(l->l_sched_info, 0, sizeof(sched_info_lwp_t));
291 1.3.2.3 rmind if (l->l_usrpri <= PRI_HIGHEST_TS) /* XXX: For now only.. */
292 1.3.2.2 rmind l->l_usrpri = l->l_priority = PRI_DEFAULT;
293 1.3.2.2 rmind }
294 1.3.2.2 rmind
295 1.3.2.2 rmind void
296 1.3.2.2 rmind sched_lwp_exit(struct lwp *l)
297 1.3.2.2 rmind {
298 1.3.2.2 rmind
299 1.3.2.2 rmind KASSERT(l->l_sched_info != NULL);
300 1.3.2.2 rmind pool_put(&sil_pool, l->l_sched_info);
301 1.3.2.2 rmind l->l_sched_info = NULL;
302 1.3.2.2 rmind }
303 1.3.2.2 rmind
304 1.3.2.2 rmind void
305 1.3.2.2 rmind sched_setrunnable(struct lwp *l)
306 1.3.2.2 rmind {
307 1.3.2.2 rmind
308 1.3.2.2 rmind /* Dummy */
309 1.3.2.2 rmind }
310 1.3.2.2 rmind
311 1.3.2.2 rmind void
312 1.3.2.2 rmind sched_schedclock(struct lwp *l)
313 1.3.2.2 rmind {
314 1.3.2.2 rmind
315 1.3.2.2 rmind /* Dummy */
316 1.3.2.2 rmind }
317 1.3.2.2 rmind
318 1.3.2.2 rmind /*
319 1.3.2.2 rmind * Priorities and time-slice.
320 1.3.2.2 rmind */
321 1.3.2.2 rmind
322 1.3.2.2 rmind void
323 1.3.2.2 rmind sched_nice(struct proc *p, int prio)
324 1.3.2.2 rmind {
325 1.3.2.2 rmind int nprio;
326 1.3.2.2 rmind struct lwp *l;
327 1.3.2.2 rmind
328 1.3.2.2 rmind KASSERT(mutex_owned(&p->p_stmutex));
329 1.3.2.2 rmind
330 1.3.2.2 rmind p->p_nice = prio;
331 1.3.2.3 rmind nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
332 1.3.2.2 rmind
333 1.3.2.2 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
334 1.3.2.2 rmind lwp_lock(l);
335 1.3.2.2 rmind lwp_changepri(l, nprio);
336 1.3.2.2 rmind lwp_unlock(l);
337 1.3.2.2 rmind }
338 1.3.2.2 rmind }
339 1.3.2.2 rmind
340 1.3.2.2 rmind /* Recalculate the time-slice */
341 1.3.2.2 rmind static inline void
342 1.3.2.2 rmind sched_newts(struct lwp *l)
343 1.3.2.2 rmind {
344 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
345 1.3.2.2 rmind
346 1.3.2.2 rmind sil->sl_timeslice = ts_map[lwp_eprio(l)];
347 1.3.2.2 rmind }
348 1.3.2.2 rmind
349 1.3.2.2 rmind /*
350 1.3.2.2 rmind * Control of the runqueue.
351 1.3.2.2 rmind */
352 1.3.2.2 rmind
353 1.3.2.2 rmind static inline void *
354 1.3.2.2 rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
355 1.3.2.2 rmind {
356 1.3.2.2 rmind
357 1.3.2.2 rmind KASSERT(prio < PRI_COUNT);
358 1.3.2.3 rmind return (prio <= PRI_HIGHEST_TS) ?
359 1.3.2.3 rmind &ci_rq->r_ts_queue[prio].q_head :
360 1.3.2.3 rmind &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
361 1.3.2.2 rmind }
362 1.3.2.2 rmind
363 1.3.2.2 rmind void
364 1.3.2.2 rmind sched_enqueue(struct lwp *l, bool swtch)
365 1.3.2.2 rmind {
366 1.3.2.2 rmind runqueue_t *ci_rq;
367 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
368 1.3.2.2 rmind TAILQ_HEAD(, lwp) *q_head;
369 1.3.2.2 rmind const pri_t eprio = lwp_eprio(l);
370 1.3.2.2 rmind
371 1.3.2.2 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
372 1.3.2.2 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
373 1.3.2.2 rmind
374 1.3.2.2 rmind /* Update the last run time on switch */
375 1.3.2.2 rmind if (swtch == true) {
376 1.3.2.2 rmind sil->sl_lrtime = hardclock_ticks;
377 1.3.2.2 rmind sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
378 1.3.2.2 rmind } else
379 1.3.2.2 rmind sil->sl_lrtime = 0;
380 1.3.2.2 rmind
381 1.3.2.2 rmind /* Enqueue the thread */
382 1.3.2.2 rmind q_head = sched_getrq(ci_rq, eprio);
383 1.3.2.2 rmind if (TAILQ_EMPTY(q_head)) {
384 1.3.2.2 rmind u_int i;
385 1.3.2.2 rmind uint32_t q;
386 1.3.2.2 rmind
387 1.3.2.2 rmind /* Mark bit */
388 1.3.2.2 rmind i = eprio >> BITMAP_SHIFT;
389 1.3.2.3 rmind q = BITMAP_MSB >> (eprio & BITMAP_MASK);
390 1.3.2.3 rmind KASSERT((ci_rq->r_bitmap[i] & q) == 0);
391 1.3.2.3 rmind ci_rq->r_bitmap[i] |= q;
392 1.3.2.2 rmind }
393 1.3.2.2 rmind TAILQ_INSERT_TAIL(q_head, l, l_runq);
394 1.3.2.2 rmind ci_rq->r_count++;
395 1.3.2.2 rmind if ((l->l_flag & LW_BOUND) == 0)
396 1.3.2.2 rmind ci_rq->r_mcount++;
397 1.3.2.2 rmind
398 1.3.2.2 rmind /*
399 1.3.2.2 rmind * Update the value of highest priority in the runqueue,
400 1.3.2.2 rmind * if priority of this thread is higher.
401 1.3.2.2 rmind */
402 1.3.2.3 rmind if (eprio > ci_rq->r_highest_pri)
403 1.3.2.2 rmind ci_rq->r_highest_pri = eprio;
404 1.3.2.2 rmind
405 1.3.2.2 rmind sched_newts(l);
406 1.3.2.2 rmind }
407 1.3.2.2 rmind
408 1.3.2.2 rmind void
409 1.3.2.2 rmind sched_dequeue(struct lwp *l)
410 1.3.2.2 rmind {
411 1.3.2.2 rmind runqueue_t *ci_rq;
412 1.3.2.2 rmind TAILQ_HEAD(, lwp) *q_head;
413 1.3.2.2 rmind const pri_t eprio = lwp_eprio(l);
414 1.3.2.2 rmind
415 1.3.2.2 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
416 1.3.2.2 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
417 1.3.2.3 rmind KASSERT(eprio <= ci_rq->r_highest_pri);
418 1.3.2.2 rmind KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
419 1.3.2.2 rmind KASSERT(ci_rq->r_count > 0);
420 1.3.2.2 rmind
421 1.3.2.2 rmind ci_rq->r_count--;
422 1.3.2.2 rmind if ((l->l_flag & LW_BOUND) == 0)
423 1.3.2.2 rmind ci_rq->r_mcount--;
424 1.3.2.2 rmind
425 1.3.2.2 rmind q_head = sched_getrq(ci_rq, eprio);
426 1.3.2.2 rmind TAILQ_REMOVE(q_head, l, l_runq);
427 1.3.2.2 rmind if (TAILQ_EMPTY(q_head)) {
428 1.3.2.2 rmind u_int i;
429 1.3.2.2 rmind uint32_t q;
430 1.3.2.2 rmind
431 1.3.2.2 rmind /* Unmark bit */
432 1.3.2.2 rmind i = eprio >> BITMAP_SHIFT;
433 1.3.2.3 rmind q = BITMAP_MSB >> (eprio & BITMAP_MASK);
434 1.3.2.3 rmind KASSERT((ci_rq->r_bitmap[i] & q) != 0);
435 1.3.2.3 rmind ci_rq->r_bitmap[i] &= ~q;
436 1.3.2.2 rmind
437 1.3.2.2 rmind /*
438 1.3.2.2 rmind * Update the value of highest priority in the runqueue, in a
439 1.3.2.2 rmind * case it was a last thread in the queue of highest priority.
440 1.3.2.2 rmind */
441 1.3.2.2 rmind if (eprio != ci_rq->r_highest_pri)
442 1.3.2.2 rmind return;
443 1.3.2.2 rmind
444 1.3.2.2 rmind do {
445 1.3.2.2 rmind q = ffs(ci_rq->r_bitmap[i]);
446 1.3.2.2 rmind if (q) {
447 1.3.2.2 rmind ci_rq->r_highest_pri =
448 1.3.2.3 rmind (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
449 1.3.2.2 rmind return;
450 1.3.2.2 rmind }
451 1.3.2.3 rmind } while (i--);
452 1.3.2.2 rmind
453 1.3.2.3 rmind /* If not found - set the lowest value */
454 1.3.2.3 rmind ci_rq->r_highest_pri = 0;
455 1.3.2.2 rmind }
456 1.3.2.2 rmind }
457 1.3.2.2 rmind
458 1.3.2.2 rmind void
459 1.3.2.2 rmind sched_slept(struct lwp *l)
460 1.3.2.2 rmind {
461 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
462 1.3.2.2 rmind
463 1.3.2.2 rmind /* Save the time when thread has slept */
464 1.3.2.2 rmind sil->sl_slept = hardclock_ticks;
465 1.3.2.2 rmind
466 1.3.2.2 rmind /*
467 1.3.2.3 rmind * If thread is in time-sharing queue and batch flag is not marked,
468 1.3.2.3 rmind * increase the the priority, and run with the lower time-quantum.
469 1.3.2.2 rmind */
470 1.3.2.3 rmind if (l->l_usrpri < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
471 1.3.2.3 rmind KASSERT(l->l_policy == SCHED_OTHER);
472 1.3.2.3 rmind l->l_usrpri++;
473 1.3.2.3 rmind }
474 1.3.2.2 rmind }
475 1.3.2.2 rmind
476 1.3.2.2 rmind void
477 1.3.2.2 rmind sched_wakeup(struct lwp *l)
478 1.3.2.2 rmind {
479 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
480 1.3.2.2 rmind
481 1.3.2.2 rmind /* Update sleep time delta */
482 1.3.2.2 rmind sil->sl_slpsum += (l->l_slptime == 0) ?
483 1.3.2.2 rmind (hardclock_ticks - sil->sl_slept) : hz;
484 1.3.2.2 rmind
485 1.3.2.2 rmind /* If thread was sleeping a second or more - set a high priority */
486 1.3.2.2 rmind if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
487 1.3.2.2 rmind l->l_usrpri = l->l_priority = high_pri[l->l_usrpri];
488 1.3.2.2 rmind KASSERT(sil->sl_slept > 0);
489 1.3.2.2 rmind
490 1.3.2.2 rmind /* Also, consider looking for a better CPU to wake up */
491 1.3.2.2 rmind if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
492 1.3.2.2 rmind l->l_cpu = sched_takecpu(l);
493 1.3.2.2 rmind }
494 1.3.2.2 rmind
495 1.3.2.2 rmind void
496 1.3.2.2 rmind sched_pstats_hook(struct lwp *l)
497 1.3.2.2 rmind {
498 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
499 1.3.2.3 rmind const bool batch = (sil->sl_rtsum > sil->sl_slpsum);
500 1.3.2.3 rmind
501 1.3.2.3 rmind /* Reset the time sums */
502 1.3.2.3 rmind sil->sl_slpsum = 0;
503 1.3.2.3 rmind sil->sl_rtsum = 0;
504 1.3.2.3 rmind
505 1.3.2.3 rmind /* Estimate threads on time-sharing queue only */
506 1.3.2.3 rmind if (l->l_usrpri > PRI_HIGHEST_TS)
507 1.3.2.3 rmind return;
508 1.3.2.3 rmind KASSERT(l->l_policy == SCHED_OTHER);
509 1.3.2.2 rmind
510 1.3.2.2 rmind /*
511 1.3.2.2 rmind * Set that thread is more CPU-bound, if sum of run time exceeds the
512 1.3.2.2 rmind * sum of sleep time. If it is CPU-bound not a first time - decrease
513 1.3.2.2 rmind * the priority.
514 1.3.2.2 rmind */
515 1.3.2.3 rmind if (batch) {
516 1.3.2.3 rmind if ((sil->sl_flags & SL_BATCH) && l->l_usrpri)
517 1.3.2.3 rmind l->l_usrpri--;
518 1.3.2.2 rmind sil->sl_flags |= SL_BATCH;
519 1.3.2.2 rmind } else {
520 1.3.2.2 rmind sil->sl_flags &= ~SL_BATCH;
521 1.3.2.2 rmind }
522 1.3.2.2 rmind
523 1.3.2.2 rmind /* If thread was not ran a second or more - set a high priority */
524 1.3.2.3 rmind if (l->l_stat == LSRUN && sil->sl_lrtime &&
525 1.3.2.3 rmind (hardclock_ticks - sil->sl_lrtime >= hz))
526 1.3.2.2 rmind lwp_changepri(l, high_pri[l->l_usrpri]);
527 1.3.2.2 rmind }
528 1.3.2.2 rmind
529 1.3.2.2 rmind /*
530 1.3.2.2 rmind * Migration and balancing.
531 1.3.2.2 rmind */
532 1.3.2.2 rmind
533 1.3.2.2 rmind #ifdef MULTIPROCESSOR
534 1.3.2.2 rmind
535 1.3.2.2 rmind /* Check if LWP can migrate to the chosen CPU */
536 1.3.2.2 rmind static inline bool
537 1.3.2.2 rmind sched_migratable(const struct lwp *l, const struct cpu_info *ci)
538 1.3.2.2 rmind {
539 1.3.2.2 rmind
540 1.3.2.2 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
541 1.3.2.2 rmind return false;
542 1.3.2.2 rmind
543 1.3.2.2 rmind if ((l->l_flag & LW_BOUND) == 0)
544 1.3.2.2 rmind return true;
545 1.3.2.2 rmind #if 0
546 1.3.2.2 rmind return cpu_in_pset(ci, l->l_psid);
547 1.3.2.2 rmind #else
548 1.3.2.2 rmind return false;
549 1.3.2.2 rmind #endif
550 1.3.2.2 rmind }
551 1.3.2.2 rmind
552 1.3.2.2 rmind /*
553 1.3.2.2 rmind * Estimate the migration of LWP to the other CPU.
554 1.3.2.2 rmind * Take and return the CPU, if migration is needed.
555 1.3.2.2 rmind */
556 1.3.2.2 rmind struct cpu_info *
557 1.3.2.2 rmind sched_takecpu(struct lwp *l)
558 1.3.2.2 rmind {
559 1.3.2.2 rmind struct cpu_info *ci, *tci = NULL;
560 1.3.2.2 rmind struct schedstate_percpu *spc;
561 1.3.2.2 rmind runqueue_t *ci_rq;
562 1.3.2.2 rmind sched_info_lwp_t *sil;
563 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
564 1.3.2.2 rmind pri_t eprio, lpri;
565 1.3.2.2 rmind
566 1.3.2.2 rmind ci = l->l_cpu;
567 1.3.2.2 rmind spc = &ci->ci_schedstate;
568 1.3.2.2 rmind ci_rq = spc->spc_sched_info;
569 1.3.2.2 rmind
570 1.3.2.2 rmind /* CPU of this thread is idling - run there */
571 1.3.2.2 rmind if (ci_rq->r_count == 0)
572 1.3.2.2 rmind return ci;
573 1.3.2.2 rmind
574 1.3.2.2 rmind eprio = lwp_eprio(l);
575 1.3.2.2 rmind sil = l->l_sched_info;
576 1.3.2.2 rmind
577 1.3.2.2 rmind /* Stay if thread is cache-hot */
578 1.3.2.2 rmind if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
579 1.3.2.3 rmind CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
580 1.3.2.2 rmind return ci;
581 1.3.2.2 rmind
582 1.3.2.2 rmind /* Run on current CPU if priority of thread is higher */
583 1.3.2.2 rmind ci = curcpu();
584 1.3.2.2 rmind spc = &ci->ci_schedstate;
585 1.3.2.3 rmind if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
586 1.3.2.2 rmind return ci;
587 1.3.2.2 rmind
588 1.3.2.2 rmind /*
589 1.3.2.2 rmind * Look for the CPU with the lowest priority thread. In case of
590 1.3.2.2 rmind * equal the priority - check the lower count of the threads.
591 1.3.2.2 rmind */
592 1.3.2.3 rmind lpri = PRI_COUNT;
593 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci)) {
594 1.3.2.2 rmind runqueue_t *ici_rq;
595 1.3.2.2 rmind pri_t pri;
596 1.3.2.2 rmind
597 1.3.2.2 rmind spc = &ci->ci_schedstate;
598 1.3.2.2 rmind ici_rq = spc->spc_sched_info;
599 1.3.2.3 rmind pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
600 1.3.2.3 rmind if (pri > lpri)
601 1.3.2.2 rmind continue;
602 1.3.2.2 rmind
603 1.3.2.3 rmind if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
604 1.3.2.2 rmind continue;
605 1.3.2.2 rmind
606 1.3.2.2 rmind if (sched_migratable(l, ci) == false)
607 1.3.2.2 rmind continue;
608 1.3.2.2 rmind
609 1.3.2.2 rmind lpri = pri;
610 1.3.2.2 rmind tci = ci;
611 1.3.2.2 rmind ci_rq = ici_rq;
612 1.3.2.2 rmind }
613 1.3.2.2 rmind
614 1.3.2.3 rmind KASSERT(tci != NULL);
615 1.3.2.2 rmind return tci;
616 1.3.2.2 rmind }
617 1.3.2.2 rmind
618 1.3.2.2 rmind /*
619 1.3.2.2 rmind * Tries to catch an LWP from the runqueue of other CPU.
620 1.3.2.2 rmind */
621 1.3.2.2 rmind static struct lwp *
622 1.3.2.2 rmind sched_catchlwp(void)
623 1.3.2.2 rmind {
624 1.3.2.2 rmind struct cpu_info *curci = curcpu(), *ci = worker_ci;
625 1.3.2.2 rmind TAILQ_HEAD(, lwp) *q_head;
626 1.3.2.2 rmind runqueue_t *ci_rq;
627 1.3.2.2 rmind struct lwp *l;
628 1.3.2.2 rmind
629 1.3.2.2 rmind if (curci == ci)
630 1.3.2.2 rmind return NULL;
631 1.3.2.2 rmind
632 1.3.2.2 rmind /* Lockless check */
633 1.3.2.2 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
634 1.3.2.2 rmind if (ci_rq->r_count < min_catch)
635 1.3.2.2 rmind return NULL;
636 1.3.2.2 rmind
637 1.3.2.2 rmind /*
638 1.3.2.2 rmind * Double-lock the runqueues.
639 1.3.2.2 rmind */
640 1.3.2.2 rmind if (curci < ci) {
641 1.3.2.2 rmind spc_lock(ci);
642 1.3.2.2 rmind } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
643 1.3.2.2 rmind const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
644 1.3.2.2 rmind
645 1.3.2.2 rmind spc_unlock(curci);
646 1.3.2.2 rmind spc_lock(ci);
647 1.3.2.2 rmind spc_lock(curci);
648 1.3.2.2 rmind
649 1.3.2.2 rmind if (cur_rq->r_count) {
650 1.3.2.2 rmind spc_unlock(ci);
651 1.3.2.2 rmind return NULL;
652 1.3.2.2 rmind }
653 1.3.2.2 rmind }
654 1.3.2.2 rmind
655 1.3.2.2 rmind if (ci_rq->r_count < min_catch) {
656 1.3.2.2 rmind spc_unlock(ci);
657 1.3.2.2 rmind return NULL;
658 1.3.2.2 rmind }
659 1.3.2.2 rmind
660 1.3.2.2 rmind /* Take the highest priority thread */
661 1.3.2.2 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
662 1.3.2.2 rmind l = TAILQ_FIRST(q_head);
663 1.3.2.2 rmind
664 1.3.2.2 rmind for (;;) {
665 1.3.2.2 rmind sched_info_lwp_t *sil;
666 1.3.2.2 rmind
667 1.3.2.2 rmind /* Check the first and next result from the queue */
668 1.3.2.2 rmind if (l == NULL)
669 1.3.2.2 rmind break;
670 1.3.2.2 rmind
671 1.3.2.2 rmind /* Look for threads, whose are allowed to migrate */
672 1.3.2.2 rmind sil = l->l_sched_info;
673 1.3.2.2 rmind if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
674 1.3.2.2 rmind sched_migratable(l, curci) == false) {
675 1.3.2.2 rmind l = TAILQ_NEXT(l, l_runq);
676 1.3.2.2 rmind continue;
677 1.3.2.2 rmind }
678 1.3.2.2 rmind /* Recheck if chosen thread is still on the runqueue */
679 1.3.2.2 rmind if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
680 1.3.2.2 rmind sched_dequeue(l);
681 1.3.2.2 rmind l->l_cpu = curci;
682 1.3.2.2 rmind lwp_setlock(l, curci->ci_schedstate.spc_mutex);
683 1.3.2.2 rmind sched_enqueue(l, false);
684 1.3.2.2 rmind break;
685 1.3.2.2 rmind }
686 1.3.2.2 rmind l = TAILQ_NEXT(l, l_runq);
687 1.3.2.2 rmind }
688 1.3.2.2 rmind spc_unlock(ci);
689 1.3.2.2 rmind
690 1.3.2.2 rmind return l;
691 1.3.2.2 rmind }
692 1.3.2.2 rmind
693 1.3.2.2 rmind /*
694 1.3.2.2 rmind * Periodical calculations for balancing.
695 1.3.2.2 rmind */
696 1.3.2.2 rmind static void
697 1.3.2.2 rmind sched_balance(void *nocallout)
698 1.3.2.2 rmind {
699 1.3.2.2 rmind struct cpu_info *ci, *hci;
700 1.3.2.2 rmind runqueue_t *ci_rq;
701 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
702 1.3.2.2 rmind u_int highest;
703 1.3.2.2 rmind
704 1.3.2.2 rmind hci = curcpu();
705 1.3.2.2 rmind highest = 0;
706 1.3.2.2 rmind
707 1.3.2.2 rmind /* Make lockless countings */
708 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci)) {
709 1.3.2.2 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
710 1.3.2.2 rmind
711 1.3.2.2 rmind /* Average count of the threads */
712 1.3.2.2 rmind ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
713 1.3.2.2 rmind
714 1.3.2.2 rmind /* Look for CPU with the highest average */
715 1.3.2.2 rmind if (ci_rq->r_avgcount > highest) {
716 1.3.2.2 rmind hci = ci;
717 1.3.2.2 rmind highest = ci_rq->r_avgcount;
718 1.3.2.2 rmind }
719 1.3.2.2 rmind }
720 1.3.2.2 rmind
721 1.3.2.2 rmind /* Update the worker */
722 1.3.2.2 rmind worker_ci = hci;
723 1.3.2.2 rmind
724 1.3.2.2 rmind if (nocallout == NULL)
725 1.3.2.2 rmind callout_schedule(&balance_ch, balance_period);
726 1.3.2.2 rmind }
727 1.3.2.2 rmind
728 1.3.2.2 rmind #else
729 1.3.2.2 rmind
730 1.3.2.2 rmind struct cpu_info *
731 1.3.2.2 rmind sched_takecpu(struct lwp *l)
732 1.3.2.2 rmind {
733 1.3.2.2 rmind
734 1.3.2.2 rmind return l->l_cpu;
735 1.3.2.2 rmind }
736 1.3.2.2 rmind
737 1.3.2.2 rmind #endif /* MULTIPROCESSOR */
738 1.3.2.2 rmind
739 1.3.2.2 rmind /*
740 1.3.2.2 rmind * Scheduler mill.
741 1.3.2.2 rmind */
742 1.3.2.2 rmind struct lwp *
743 1.3.2.2 rmind sched_nextlwp(void)
744 1.3.2.2 rmind {
745 1.3.2.2 rmind struct cpu_info *ci = curcpu();
746 1.3.2.2 rmind struct schedstate_percpu *spc;
747 1.3.2.2 rmind TAILQ_HEAD(, lwp) *q_head;
748 1.3.2.2 rmind sched_info_lwp_t *sil;
749 1.3.2.2 rmind runqueue_t *ci_rq;
750 1.3.2.2 rmind struct lwp *l;
751 1.3.2.2 rmind
752 1.3.2.2 rmind spc = &ci->ci_schedstate;
753 1.3.2.2 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
754 1.3.2.2 rmind
755 1.3.2.2 rmind #ifdef MULTIPROCESSOR
756 1.3.2.2 rmind /* If runqueue is empty, try to catch some thread from other CPU */
757 1.3.2.2 rmind if (spc->spc_flags & SPCF_OFFLINE) {
758 1.3.2.2 rmind if (ci_rq->r_mcount == 0)
759 1.3.2.2 rmind return NULL;
760 1.3.2.2 rmind } else if (ci_rq->r_count == 0) {
761 1.3.2.2 rmind /* Reset the counter, and call the balancer */
762 1.3.2.2 rmind ci_rq->r_avgcount = 0;
763 1.3.2.2 rmind sched_balance(ci);
764 1.3.2.2 rmind
765 1.3.2.2 rmind /* The re-locking will be done inside */
766 1.3.2.2 rmind return sched_catchlwp();
767 1.3.2.2 rmind }
768 1.3.2.2 rmind #else
769 1.3.2.2 rmind if (ci_rq->r_count == 0)
770 1.3.2.2 rmind return NULL;
771 1.3.2.2 rmind #endif
772 1.3.2.2 rmind
773 1.3.2.2 rmind /* Take the highest priority thread */
774 1.3.2.2 rmind KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
775 1.3.2.2 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
776 1.3.2.2 rmind l = TAILQ_FIRST(q_head);
777 1.3.2.2 rmind KASSERT(l != NULL);
778 1.3.2.2 rmind
779 1.3.2.2 rmind /* Update the counters */
780 1.3.2.2 rmind sil = l->l_sched_info;
781 1.3.2.2 rmind KASSERT(sil->sl_timeslice >= min_ts);
782 1.3.2.2 rmind KASSERT(sil->sl_timeslice <= max_ts);
783 1.3.2.2 rmind spc->spc_ticks = sil->sl_timeslice;
784 1.3.2.2 rmind sil->sl_rtime = hardclock_ticks;
785 1.3.2.2 rmind
786 1.3.2.2 rmind return l;
787 1.3.2.2 rmind }
788 1.3.2.2 rmind
789 1.3.2.2 rmind bool
790 1.3.2.2 rmind sched_curcpu_runnable_p(void)
791 1.3.2.2 rmind {
792 1.3.2.2 rmind const struct cpu_info *ci = curcpu();
793 1.3.2.2 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
794 1.3.2.2 rmind
795 1.3.2.2 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
796 1.3.2.2 rmind return ci_rq->r_mcount;
797 1.3.2.2 rmind
798 1.3.2.2 rmind return ci_rq->r_count;
799 1.3.2.2 rmind }
800 1.3.2.2 rmind
801 1.3.2.2 rmind /*
802 1.3.2.2 rmind * Time-driven events.
803 1.3.2.2 rmind */
804 1.3.2.2 rmind
805 1.3.2.2 rmind /*
806 1.3.2.2 rmind * Called once per time-quantum. This routine is CPU-local and runs at
807 1.3.2.2 rmind * IPL_SCHED, thus the locking is not needed.
808 1.3.2.2 rmind */
809 1.3.2.2 rmind void
810 1.3.2.2 rmind sched_tick(struct cpu_info *ci)
811 1.3.2.2 rmind {
812 1.3.2.2 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
813 1.3.2.2 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
814 1.3.2.2 rmind struct lwp *l = curlwp;
815 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
816 1.3.2.2 rmind
817 1.3.2.2 rmind if (CURCPU_IDLE_P())
818 1.3.2.2 rmind return;
819 1.3.2.2 rmind
820 1.3.2.2 rmind switch (l->l_policy) {
821 1.3.2.2 rmind case SCHED_FIFO:
822 1.3.2.2 rmind /*
823 1.3.2.2 rmind * Update the time-quantum, and continue running,
824 1.3.2.2 rmind * if thread runs on FIFO real-time policy.
825 1.3.2.2 rmind */
826 1.3.2.2 rmind spc->spc_ticks = sil->sl_timeslice;
827 1.3.2.2 rmind return;
828 1.3.2.2 rmind case SCHED_OTHER:
829 1.3.2.3 rmind /*
830 1.3.2.3 rmind * If thread is in time-sharing queue, decrease the priority,
831 1.3.2.3 rmind * and run with a higher time-quantum.
832 1.3.2.3 rmind */
833 1.3.2.3 rmind if (l->l_usrpri > PRI_HIGHEST_TS || l->l_usrpri == 0)
834 1.3.2.2 rmind break;
835 1.3.2.3 rmind l->l_priority = --l->l_usrpri;
836 1.3.2.2 rmind break;
837 1.3.2.2 rmind }
838 1.3.2.2 rmind
839 1.3.2.2 rmind /*
840 1.3.2.2 rmind * If there are higher priority threads or threads in the same queue,
841 1.3.2.2 rmind * mark that thread should yield, otherwise, continue running.
842 1.3.2.2 rmind */
843 1.3.2.3 rmind if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
844 1.3.2.2 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
845 1.3.2.2 rmind cpu_need_resched(ci, 0);
846 1.3.2.2 rmind } else
847 1.3.2.2 rmind spc->spc_ticks = sil->sl_timeslice;
848 1.3.2.2 rmind }
849 1.3.2.2 rmind
850 1.3.2.2 rmind /*
851 1.3.2.2 rmind * Sysctl nodes and initialization.
852 1.3.2.2 rmind */
853 1.3.2.2 rmind
854 1.3.2.2 rmind static int
855 1.3.2.2 rmind sysctl_sched_mints(SYSCTLFN_ARGS)
856 1.3.2.2 rmind {
857 1.3.2.2 rmind struct sysctlnode node;
858 1.3.2.2 rmind struct cpu_info *ci;
859 1.3.2.2 rmind int error, newsize;
860 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
861 1.3.2.2 rmind
862 1.3.2.2 rmind node = *rnode;
863 1.3.2.2 rmind node.sysctl_data = &newsize;
864 1.3.2.2 rmind
865 1.3.2.2 rmind newsize = hztoms(min_ts);
866 1.3.2.2 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
867 1.3.2.2 rmind if (error || newp == NULL)
868 1.3.2.2 rmind return error;
869 1.3.2.2 rmind
870 1.3.2.2 rmind if (newsize < 1 || newsize > hz || newsize >= max_ts)
871 1.3.2.2 rmind return EINVAL;
872 1.3.2.2 rmind
873 1.3.2.2 rmind /* It is safe to do this in such order */
874 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci))
875 1.3.2.2 rmind spc_lock(ci);
876 1.3.2.2 rmind
877 1.3.2.2 rmind min_ts = mstohz(newsize);
878 1.3.2.2 rmind sched_precalcts();
879 1.3.2.2 rmind
880 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci))
881 1.3.2.2 rmind spc_unlock(ci);
882 1.3.2.2 rmind
883 1.3.2.2 rmind return 0;
884 1.3.2.2 rmind }
885 1.3.2.2 rmind
886 1.3.2.2 rmind static int
887 1.3.2.2 rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
888 1.3.2.2 rmind {
889 1.3.2.2 rmind struct sysctlnode node;
890 1.3.2.2 rmind struct cpu_info *ci;
891 1.3.2.2 rmind int error, newsize;
892 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
893 1.3.2.2 rmind
894 1.3.2.2 rmind node = *rnode;
895 1.3.2.2 rmind node.sysctl_data = &newsize;
896 1.3.2.2 rmind
897 1.3.2.2 rmind newsize = hztoms(max_ts);
898 1.3.2.2 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
899 1.3.2.2 rmind if (error || newp == NULL)
900 1.3.2.2 rmind return error;
901 1.3.2.2 rmind
902 1.3.2.2 rmind if (newsize < 10 || newsize > hz || newsize <= min_ts)
903 1.3.2.2 rmind return EINVAL;
904 1.3.2.2 rmind
905 1.3.2.2 rmind /* It is safe to do this in such order */
906 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci))
907 1.3.2.2 rmind spc_lock(ci);
908 1.3.2.2 rmind
909 1.3.2.2 rmind max_ts = mstohz(newsize);
910 1.3.2.2 rmind sched_precalcts();
911 1.3.2.2 rmind
912 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci))
913 1.3.2.2 rmind spc_unlock(ci);
914 1.3.2.2 rmind
915 1.3.2.2 rmind return 0;
916 1.3.2.2 rmind }
917 1.3.2.2 rmind
918 1.3.2.2 rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
919 1.3.2.2 rmind {
920 1.3.2.2 rmind const struct sysctlnode *node = NULL;
921 1.3.2.2 rmind
922 1.3.2.2 rmind sysctl_createv(clog, 0, NULL, NULL,
923 1.3.2.2 rmind CTLFLAG_PERMANENT,
924 1.3.2.2 rmind CTLTYPE_NODE, "kern", NULL,
925 1.3.2.2 rmind NULL, 0, NULL, 0,
926 1.3.2.2 rmind CTL_KERN, CTL_EOL);
927 1.3.2.2 rmind sysctl_createv(clog, 0, NULL, &node,
928 1.3.2.2 rmind CTLFLAG_PERMANENT,
929 1.3.2.2 rmind CTLTYPE_NODE, "sched",
930 1.3.2.2 rmind SYSCTL_DESCR("Scheduler options"),
931 1.3.2.2 rmind NULL, 0, NULL, 0,
932 1.3.2.2 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
933 1.3.2.2 rmind
934 1.3.2.2 rmind if (node == NULL)
935 1.3.2.2 rmind return;
936 1.3.2.2 rmind
937 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
938 1.3.2.2 rmind CTLFLAG_PERMANENT,
939 1.3.2.2 rmind CTLTYPE_STRING, "name", NULL,
940 1.3.2.2 rmind NULL, 0, __UNCONST("M2"), 0,
941 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
942 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
943 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
944 1.3.2.2 rmind CTLTYPE_INT, "maxts",
945 1.3.2.2 rmind SYSCTL_DESCR("Maximal time quantum (in microseconds)"),
946 1.3.2.2 rmind sysctl_sched_maxts, 0, &max_ts, 0,
947 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
948 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
949 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
950 1.3.2.2 rmind CTLTYPE_INT, "mints",
951 1.3.2.2 rmind SYSCTL_DESCR("Minimal time quantum (in microseconds)"),
952 1.3.2.2 rmind sysctl_sched_mints, 0, &min_ts, 0,
953 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
954 1.3.2.2 rmind
955 1.3.2.2 rmind #ifdef MULTIPROCESSOR
956 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
957 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
958 1.3.2.2 rmind CTLTYPE_INT, "cacheht_time",
959 1.3.2.2 rmind SYSCTL_DESCR("Cache hotness time"),
960 1.3.2.2 rmind NULL, 0, &cacheht_time, 0,
961 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
962 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
963 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
964 1.3.2.2 rmind CTLTYPE_INT, "balance_period",
965 1.3.2.2 rmind SYSCTL_DESCR("Balance period"),
966 1.3.2.2 rmind NULL, 0, &balance_period, 0,
967 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
968 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
969 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
970 1.3.2.2 rmind CTLTYPE_INT, "min_catch",
971 1.3.2.2 rmind SYSCTL_DESCR("Minimal count of threads for catching"),
972 1.3.2.2 rmind NULL, 0, &min_catch, 0,
973 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
974 1.3.2.2 rmind #endif
975 1.3.2.2 rmind }
976 1.3.2.2 rmind
977 1.3.2.2 rmind /*
978 1.3.2.2 rmind * Debugging.
979 1.3.2.2 rmind */
980 1.3.2.2 rmind
981 1.3.2.2 rmind #ifdef DDB
982 1.3.2.2 rmind
983 1.3.2.2 rmind void
984 1.3.2.2 rmind sched_print_runqueue(void (*pr)(const char *, ...))
985 1.3.2.2 rmind {
986 1.3.2.2 rmind runqueue_t *ci_rq;
987 1.3.2.2 rmind sched_info_lwp_t *sil;
988 1.3.2.2 rmind struct lwp *l;
989 1.3.2.2 rmind struct proc *p;
990 1.3.2.2 rmind int i;
991 1.3.2.2 rmind
992 1.3.2.2 rmind struct cpu_info *ci;
993 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
994 1.3.2.2 rmind
995 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci)) {
996 1.3.2.2 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
997 1.3.2.2 rmind
998 1.3.2.2 rmind (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
999 1.3.2.2 rmind (*pr)(" pid.lid = %d.%d, threads count = %u, "
1000 1.3.2.2 rmind "avgcount = %u, highest pri = %d\n",
1001 1.3.2.2 rmind ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1002 1.3.2.2 rmind ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1003 1.3.2.3 rmind i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1004 1.3.2.2 rmind do {
1005 1.3.2.3 rmind uint32_t q;
1006 1.3.2.3 rmind q = ci_rq->r_bitmap[i];
1007 1.3.2.3 rmind (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1008 1.3.2.3 rmind } while (i--);
1009 1.3.2.2 rmind }
1010 1.3.2.2 rmind
1011 1.3.2.2 rmind (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1012 1.3.2.2 rmind "LID", "PRI", "UPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1013 1.3.2.2 rmind
1014 1.3.2.2 rmind PROCLIST_FOREACH(p, &allproc) {
1015 1.3.2.2 rmind (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1016 1.3.2.2 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1017 1.3.2.2 rmind sil = l->l_sched_info;
1018 1.3.2.2 rmind ci = l->l_cpu;
1019 1.3.2.2 rmind (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1020 1.3.2.2 rmind "%u ST=%d RT=%d %d\n",
1021 1.3.2.2 rmind (int)l->l_lid, l->l_priority, l->l_usrpri,
1022 1.3.2.2 rmind l->l_flag, l->l_stat == LSRUN ? "RQ" :
1023 1.3.2.2 rmind (l->l_stat == LSSLEEP ? "SQ" : "-"),
1024 1.3.2.2 rmind sil->sl_timeslice, l, ci->ci_cpuid,
1025 1.3.2.2 rmind (u_int)(hardclock_ticks - sil->sl_lrtime),
1026 1.3.2.2 rmind sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1027 1.3.2.2 rmind }
1028 1.3.2.2 rmind }
1029 1.3.2.2 rmind }
1030 1.3.2.2 rmind
1031 1.3.2.2 rmind #endif /* defined(DDB) */
1032