sched_m2.c revision 1.3.2.6 1 1.3.2.6 ad /* $NetBSD: sched_m2.c,v 1.3.2.6 2007/11/01 21:58:22 ad Exp $ */
2 1.3.2.2 rmind
3 1.3.2.2 rmind /*
4 1.3.2.2 rmind * Copyright (c) 2007, Mindaugas Rasiukevicius
5 1.3.2.2 rmind *
6 1.3.2.2 rmind * Redistribution and use in source and binary forms, with or without
7 1.3.2.2 rmind * modification, are permitted provided that the following conditions
8 1.3.2.2 rmind * are met:
9 1.3.2.2 rmind * 1. Redistributions of source code must retain the above copyright
10 1.3.2.2 rmind * notice, this list of conditions and the following disclaimer.
11 1.3.2.2 rmind * 2. Redistributions in binary form must reproduce the above copyright
12 1.3.2.2 rmind * notice, this list of conditions and the following disclaimer in the
13 1.3.2.2 rmind * documentation and/or other materials provided with the distribution.
14 1.3.2.2 rmind *
15 1.3.2.2 rmind * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 1.3.2.2 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 1.3.2.2 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 1.3.2.2 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
19 1.3.2.2 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 1.3.2.2 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 1.3.2.2 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 1.3.2.2 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 1.3.2.2 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 1.3.2.2 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 1.3.2.2 rmind * POSSIBILITY OF SUCH DAMAGE.
26 1.3.2.2 rmind */
27 1.3.2.2 rmind
28 1.3.2.2 rmind /*
29 1.3.2.2 rmind * TODO:
30 1.3.2.2 rmind * - Implementation of fair share queue;
31 1.3.2.2 rmind * - Support for NUMA;
32 1.3.2.2 rmind */
33 1.3.2.2 rmind
34 1.3.2.2 rmind #include <sys/cdefs.h>
35 1.3.2.6 ad __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.3.2.6 2007/11/01 21:58:22 ad Exp $");
36 1.3.2.2 rmind
37 1.3.2.2 rmind #include <sys/param.h>
38 1.3.2.2 rmind
39 1.3.2.2 rmind #include <sys/cpu.h>
40 1.3.2.2 rmind #include <sys/callout.h>
41 1.3.2.2 rmind #include <sys/errno.h>
42 1.3.2.2 rmind #include <sys/kernel.h>
43 1.3.2.2 rmind #include <sys/kmem.h>
44 1.3.2.2 rmind #include <sys/lwp.h>
45 1.3.2.2 rmind #include <sys/mutex.h>
46 1.3.2.2 rmind #include <sys/pool.h>
47 1.3.2.2 rmind #include <sys/proc.h>
48 1.3.2.2 rmind #include <sys/resource.h>
49 1.3.2.2 rmind #include <sys/resourcevar.h>
50 1.3.2.2 rmind #include <sys/sched.h>
51 1.3.2.2 rmind #include <sys/syscallargs.h>
52 1.3.2.2 rmind #include <sys/sysctl.h>
53 1.3.2.2 rmind #include <sys/types.h>
54 1.3.2.2 rmind
55 1.3.2.2 rmind /*
56 1.3.2.3 rmind * Priority related defintions.
57 1.3.2.2 rmind */
58 1.3.2.3 rmind #define PRI_TS_COUNT (NPRI_USER)
59 1.3.2.3 rmind #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
60 1.3.2.3 rmind #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
61 1.3.2.3 rmind
62 1.3.2.3 rmind #define PRI_HIGHEST_TS (PRI_KERNEL - 1)
63 1.3.2.3 rmind #define PRI_DEFAULT (NPRI_USER >> 1)
64 1.3.2.3 rmind
65 1.3.2.3 rmind const int schedppq = 1;
66 1.3.2.2 rmind
67 1.3.2.2 rmind /*
68 1.3.2.2 rmind * Bits per map.
69 1.3.2.2 rmind */
70 1.3.2.3 rmind #define BITMAP_BITS (32)
71 1.3.2.3 rmind #define BITMAP_SHIFT (5)
72 1.3.2.3 rmind #define BITMAP_MSB (0x80000000)
73 1.3.2.3 rmind #define BITMAP_MASK (BITMAP_BITS - 1)
74 1.3.2.2 rmind
75 1.3.2.2 rmind /*
76 1.3.2.2 rmind * Time-slices and priorities.
77 1.3.2.2 rmind */
78 1.3.2.2 rmind static u_int min_ts; /* Minimal time-slice */
79 1.3.2.2 rmind static u_int max_ts; /* Maximal time-slice */
80 1.3.2.2 rmind static u_int rt_ts; /* Real-time time-slice */
81 1.3.2.2 rmind static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
82 1.3.2.2 rmind static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
83 1.3.2.2 rmind
84 1.3.2.2 rmind /*
85 1.3.2.2 rmind * Migration and balancing.
86 1.3.2.2 rmind */
87 1.3.2.2 rmind #ifdef MULTIPROCESSOR
88 1.3.2.2 rmind static u_int cacheht_time; /* Cache hotness time */
89 1.3.2.2 rmind static u_int min_catch; /* Minimal LWP count for catching */
90 1.3.2.2 rmind
91 1.3.2.2 rmind static u_int balance_period; /* Balance period */
92 1.3.2.2 rmind static struct callout balance_ch; /* Callout of balancer */
93 1.3.2.2 rmind
94 1.3.2.2 rmind static struct cpu_info * volatile worker_ci;
95 1.3.2.2 rmind
96 1.3.2.2 rmind #define CACHE_HOT(sil) (sil->sl_lrtime && \
97 1.3.2.2 rmind (hardclock_ticks - sil->sl_lrtime < cacheht_time))
98 1.3.2.2 rmind
99 1.3.2.2 rmind #endif
100 1.3.2.2 rmind
101 1.3.2.2 rmind /*
102 1.3.2.2 rmind * Structures, runqueue.
103 1.3.2.2 rmind */
104 1.3.2.2 rmind
105 1.3.2.2 rmind typedef struct {
106 1.3.2.2 rmind TAILQ_HEAD(, lwp) q_head;
107 1.3.2.2 rmind } queue_t;
108 1.3.2.2 rmind
109 1.3.2.2 rmind typedef struct {
110 1.3.2.2 rmind /* Lock and bitmap */
111 1.3.2.2 rmind kmutex_t r_rq_mutex;
112 1.3.2.3 rmind uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
113 1.3.2.2 rmind /* Counters */
114 1.3.2.2 rmind u_int r_count; /* Count of the threads */
115 1.3.2.2 rmind pri_t r_highest_pri; /* Highest priority */
116 1.3.2.2 rmind u_int r_avgcount; /* Average count of threads */
117 1.3.2.2 rmind u_int r_mcount; /* Count of migratable threads */
118 1.3.2.2 rmind /* Runqueues */
119 1.3.2.2 rmind queue_t r_rt_queue[PRI_RT_COUNT];
120 1.3.2.2 rmind queue_t r_ts_queue[PRI_TS_COUNT];
121 1.3.2.2 rmind } runqueue_t;
122 1.3.2.2 rmind
123 1.3.2.2 rmind typedef struct {
124 1.3.2.2 rmind u_int sl_flags;
125 1.3.2.2 rmind u_int sl_timeslice; /* Time-slice of thread */
126 1.3.2.2 rmind u_int sl_slept; /* Saved sleep time for sleep sum */
127 1.3.2.2 rmind u_int sl_slpsum; /* Sum of sleep time */
128 1.3.2.2 rmind u_int sl_rtime; /* Saved start time of run */
129 1.3.2.2 rmind u_int sl_rtsum; /* Sum of the run time */
130 1.3.2.2 rmind u_int sl_lrtime; /* Last run time */
131 1.3.2.2 rmind } sched_info_lwp_t;
132 1.3.2.2 rmind
133 1.3.2.2 rmind /* Flags */
134 1.3.2.2 rmind #define SL_BATCH 0x01
135 1.3.2.2 rmind
136 1.3.2.2 rmind /* Pool of the scheduler-specific structures for threads */
137 1.3.2.2 rmind static struct pool sil_pool;
138 1.3.2.2 rmind
139 1.3.2.2 rmind /*
140 1.3.2.2 rmind * Prototypes.
141 1.3.2.2 rmind */
142 1.3.2.2 rmind
143 1.3.2.2 rmind static inline void * sched_getrq(runqueue_t *, const pri_t);
144 1.3.2.2 rmind static inline void sched_newts(struct lwp *);
145 1.3.2.2 rmind static void sched_precalcts(void);
146 1.3.2.2 rmind
147 1.3.2.2 rmind #ifdef MULTIPROCESSOR
148 1.3.2.2 rmind static struct lwp * sched_catchlwp(void);
149 1.3.2.2 rmind static void sched_balance(void *);
150 1.3.2.2 rmind #endif
151 1.3.2.2 rmind
152 1.3.2.2 rmind /*
153 1.3.2.2 rmind * Initialization and setup.
154 1.3.2.2 rmind */
155 1.3.2.2 rmind
156 1.3.2.2 rmind void
157 1.3.2.2 rmind sched_rqinit(void)
158 1.3.2.2 rmind {
159 1.3.2.2 rmind struct cpu_info *ci = curcpu();
160 1.3.2.2 rmind
161 1.3.2.2 rmind if (hz < 100) {
162 1.3.2.2 rmind panic("sched_rqinit: value of HZ is too low\n");
163 1.3.2.2 rmind }
164 1.3.2.2 rmind
165 1.3.2.2 rmind /* Default timing ranges */
166 1.3.2.2 rmind min_ts = mstohz(50); /* ~50ms */
167 1.3.2.2 rmind max_ts = mstohz(150); /* ~150ms */
168 1.3.2.2 rmind rt_ts = mstohz(100); /* ~100ms */
169 1.3.2.2 rmind sched_precalcts();
170 1.3.2.2 rmind
171 1.3.2.2 rmind #ifdef MULTIPROCESSOR
172 1.3.2.2 rmind /* Balancing */
173 1.3.2.2 rmind worker_ci = ci;
174 1.3.2.2 rmind cacheht_time = mstohz(5); /* ~5 ms */
175 1.3.2.2 rmind balance_period = mstohz(300); /* ~300ms */
176 1.3.2.2 rmind min_catch = ~0;
177 1.3.2.2 rmind #endif
178 1.3.2.2 rmind
179 1.3.2.2 rmind /* Pool of the scheduler-specific structures */
180 1.3.2.2 rmind pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
181 1.3.2.2 rmind "lwpsd", &pool_allocator_nointr, IPL_NONE);
182 1.3.2.2 rmind
183 1.3.2.2 rmind /* Attach the primary CPU here */
184 1.3.2.2 rmind sched_cpuattach(ci);
185 1.3.2.2 rmind
186 1.3.2.2 rmind /* Initialize the scheduler structure of the primary LWP */
187 1.3.2.2 rmind lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
188 1.3.2.2 rmind sched_lwp_fork(&lwp0);
189 1.3.2.2 rmind sched_newts(&lwp0);
190 1.3.2.2 rmind }
191 1.3.2.2 rmind
192 1.3.2.2 rmind void
193 1.3.2.2 rmind sched_setup(void)
194 1.3.2.2 rmind {
195 1.3.2.2 rmind
196 1.3.2.2 rmind #ifdef MULTIPROCESSOR
197 1.3.2.2 rmind /* Minimal count of LWPs for catching: log2(count of CPUs) */
198 1.3.2.2 rmind min_catch = min(ffs(ncpu) - 1, 4);
199 1.3.2.2 rmind
200 1.3.2.2 rmind /* Initialize balancing callout and run it */
201 1.3.2.2 rmind callout_init(&balance_ch, CALLOUT_MPSAFE);
202 1.3.2.2 rmind callout_setfunc(&balance_ch, sched_balance, NULL);
203 1.3.2.2 rmind callout_schedule(&balance_ch, balance_period);
204 1.3.2.2 rmind #endif
205 1.3.2.2 rmind }
206 1.3.2.2 rmind
207 1.3.2.2 rmind void
208 1.3.2.2 rmind sched_cpuattach(struct cpu_info *ci)
209 1.3.2.2 rmind {
210 1.3.2.2 rmind runqueue_t *ci_rq;
211 1.3.2.2 rmind void *rq_ptr;
212 1.3.2.2 rmind u_int i, size;
213 1.3.2.2 rmind
214 1.3.2.2 rmind /*
215 1.3.2.2 rmind * Allocate the run queue.
216 1.3.2.2 rmind * XXX: Estimate cache behaviour more..
217 1.3.2.2 rmind */
218 1.3.2.2 rmind size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
219 1.3.2.2 rmind rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
220 1.3.2.2 rmind if (rq_ptr == NULL) {
221 1.3.2.2 rmind panic("scheduler: could not allocate the runqueue");
222 1.3.2.2 rmind }
223 1.3.2.2 rmind /* XXX: Save the original pointer for future.. */
224 1.3.2.2 rmind ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
225 1.3.2.2 rmind
226 1.3.2.2 rmind /* Initialize run queues */
227 1.3.2.2 rmind mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
228 1.3.2.2 rmind for (i = 0; i < PRI_RT_COUNT; i++)
229 1.3.2.2 rmind TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
230 1.3.2.2 rmind for (i = 0; i < PRI_TS_COUNT; i++)
231 1.3.2.2 rmind TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
232 1.3.2.3 rmind ci_rq->r_highest_pri = 0;
233 1.3.2.2 rmind
234 1.3.2.2 rmind ci->ci_schedstate.spc_sched_info = ci_rq;
235 1.3.2.2 rmind ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
236 1.3.2.2 rmind }
237 1.3.2.2 rmind
238 1.3.2.2 rmind /* Pre-calculate the time-slices for the priorities */
239 1.3.2.2 rmind static void
240 1.3.2.2 rmind sched_precalcts(void)
241 1.3.2.2 rmind {
242 1.3.2.2 rmind pri_t p;
243 1.3.2.2 rmind
244 1.3.2.3 rmind /* Time-sharing range */
245 1.3.2.3 rmind for (p = 0; p <= PRI_HIGHEST_TS; p++) {
246 1.3.2.3 rmind ts_map[p] = max_ts -
247 1.3.2.3 rmind (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
248 1.3.2.3 rmind high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
249 1.3.2.3 rmind ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
250 1.3.2.2 rmind }
251 1.3.2.2 rmind
252 1.3.2.3 rmind /* Real-time range */
253 1.3.2.3 rmind for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
254 1.3.2.3 rmind ts_map[p] = rt_ts;
255 1.3.2.3 rmind high_pri[p] = p;
256 1.3.2.2 rmind }
257 1.3.2.2 rmind }
258 1.3.2.2 rmind
259 1.3.2.2 rmind /*
260 1.3.2.2 rmind * Hooks.
261 1.3.2.2 rmind */
262 1.3.2.2 rmind
263 1.3.2.2 rmind void
264 1.3.2.2 rmind sched_proc_fork(struct proc *parent, struct proc *child)
265 1.3.2.2 rmind {
266 1.3.2.2 rmind struct lwp *l;
267 1.3.2.2 rmind
268 1.3.2.2 rmind LIST_FOREACH(l, &child->p_lwps, l_sibling) {
269 1.3.2.2 rmind lwp_lock(l);
270 1.3.2.2 rmind sched_newts(l);
271 1.3.2.2 rmind lwp_unlock(l);
272 1.3.2.2 rmind }
273 1.3.2.2 rmind }
274 1.3.2.2 rmind
275 1.3.2.2 rmind void
276 1.3.2.2 rmind sched_proc_exit(struct proc *child, struct proc *parent)
277 1.3.2.2 rmind {
278 1.3.2.2 rmind
279 1.3.2.2 rmind /* Dummy */
280 1.3.2.2 rmind }
281 1.3.2.2 rmind
282 1.3.2.2 rmind void
283 1.3.2.2 rmind sched_lwp_fork(struct lwp *l)
284 1.3.2.2 rmind {
285 1.3.2.2 rmind
286 1.3.2.2 rmind KASSERT(l->l_sched_info == NULL);
287 1.3.2.2 rmind l->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
288 1.3.2.2 rmind memset(l->l_sched_info, 0, sizeof(sched_info_lwp_t));
289 1.3.2.6 ad if (l->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
290 1.3.2.6 ad l->l_priority = PRI_DEFAULT;
291 1.3.2.2 rmind }
292 1.3.2.2 rmind
293 1.3.2.2 rmind void
294 1.3.2.2 rmind sched_lwp_exit(struct lwp *l)
295 1.3.2.2 rmind {
296 1.3.2.2 rmind
297 1.3.2.2 rmind KASSERT(l->l_sched_info != NULL);
298 1.3.2.2 rmind pool_put(&sil_pool, l->l_sched_info);
299 1.3.2.2 rmind l->l_sched_info = NULL;
300 1.3.2.2 rmind }
301 1.3.2.2 rmind
302 1.3.2.2 rmind void
303 1.3.2.2 rmind sched_setrunnable(struct lwp *l)
304 1.3.2.2 rmind {
305 1.3.2.2 rmind
306 1.3.2.2 rmind /* Dummy */
307 1.3.2.2 rmind }
308 1.3.2.2 rmind
309 1.3.2.2 rmind void
310 1.3.2.2 rmind sched_schedclock(struct lwp *l)
311 1.3.2.2 rmind {
312 1.3.2.2 rmind
313 1.3.2.2 rmind /* Dummy */
314 1.3.2.2 rmind }
315 1.3.2.2 rmind
316 1.3.2.2 rmind /*
317 1.3.2.2 rmind * Priorities and time-slice.
318 1.3.2.2 rmind */
319 1.3.2.2 rmind
320 1.3.2.2 rmind void
321 1.3.2.2 rmind sched_nice(struct proc *p, int prio)
322 1.3.2.2 rmind {
323 1.3.2.2 rmind int nprio;
324 1.3.2.2 rmind struct lwp *l;
325 1.3.2.2 rmind
326 1.3.2.2 rmind KASSERT(mutex_owned(&p->p_stmutex));
327 1.3.2.2 rmind
328 1.3.2.2 rmind p->p_nice = prio;
329 1.3.2.3 rmind nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
330 1.3.2.2 rmind
331 1.3.2.2 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
332 1.3.2.2 rmind lwp_lock(l);
333 1.3.2.2 rmind lwp_changepri(l, nprio);
334 1.3.2.2 rmind lwp_unlock(l);
335 1.3.2.2 rmind }
336 1.3.2.2 rmind }
337 1.3.2.2 rmind
338 1.3.2.2 rmind /* Recalculate the time-slice */
339 1.3.2.2 rmind static inline void
340 1.3.2.2 rmind sched_newts(struct lwp *l)
341 1.3.2.2 rmind {
342 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
343 1.3.2.2 rmind
344 1.3.2.2 rmind sil->sl_timeslice = ts_map[lwp_eprio(l)];
345 1.3.2.2 rmind }
346 1.3.2.2 rmind
347 1.3.2.2 rmind /*
348 1.3.2.2 rmind * Control of the runqueue.
349 1.3.2.2 rmind */
350 1.3.2.2 rmind
351 1.3.2.2 rmind static inline void *
352 1.3.2.2 rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
353 1.3.2.2 rmind {
354 1.3.2.2 rmind
355 1.3.2.2 rmind KASSERT(prio < PRI_COUNT);
356 1.3.2.3 rmind return (prio <= PRI_HIGHEST_TS) ?
357 1.3.2.3 rmind &ci_rq->r_ts_queue[prio].q_head :
358 1.3.2.3 rmind &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
359 1.3.2.2 rmind }
360 1.3.2.2 rmind
361 1.3.2.2 rmind void
362 1.3.2.2 rmind sched_enqueue(struct lwp *l, bool swtch)
363 1.3.2.2 rmind {
364 1.3.2.2 rmind runqueue_t *ci_rq;
365 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
366 1.3.2.2 rmind TAILQ_HEAD(, lwp) *q_head;
367 1.3.2.2 rmind const pri_t eprio = lwp_eprio(l);
368 1.3.2.2 rmind
369 1.3.2.2 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
370 1.3.2.2 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
371 1.3.2.2 rmind
372 1.3.2.2 rmind /* Update the last run time on switch */
373 1.3.2.2 rmind if (swtch == true) {
374 1.3.2.2 rmind sil->sl_lrtime = hardclock_ticks;
375 1.3.2.2 rmind sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
376 1.3.2.2 rmind } else
377 1.3.2.2 rmind sil->sl_lrtime = 0;
378 1.3.2.2 rmind
379 1.3.2.2 rmind /* Enqueue the thread */
380 1.3.2.2 rmind q_head = sched_getrq(ci_rq, eprio);
381 1.3.2.2 rmind if (TAILQ_EMPTY(q_head)) {
382 1.3.2.2 rmind u_int i;
383 1.3.2.2 rmind uint32_t q;
384 1.3.2.2 rmind
385 1.3.2.2 rmind /* Mark bit */
386 1.3.2.2 rmind i = eprio >> BITMAP_SHIFT;
387 1.3.2.3 rmind q = BITMAP_MSB >> (eprio & BITMAP_MASK);
388 1.3.2.3 rmind KASSERT((ci_rq->r_bitmap[i] & q) == 0);
389 1.3.2.3 rmind ci_rq->r_bitmap[i] |= q;
390 1.3.2.2 rmind }
391 1.3.2.2 rmind TAILQ_INSERT_TAIL(q_head, l, l_runq);
392 1.3.2.2 rmind ci_rq->r_count++;
393 1.3.2.2 rmind if ((l->l_flag & LW_BOUND) == 0)
394 1.3.2.2 rmind ci_rq->r_mcount++;
395 1.3.2.2 rmind
396 1.3.2.2 rmind /*
397 1.3.2.2 rmind * Update the value of highest priority in the runqueue,
398 1.3.2.2 rmind * if priority of this thread is higher.
399 1.3.2.2 rmind */
400 1.3.2.3 rmind if (eprio > ci_rq->r_highest_pri)
401 1.3.2.2 rmind ci_rq->r_highest_pri = eprio;
402 1.3.2.2 rmind
403 1.3.2.2 rmind sched_newts(l);
404 1.3.2.2 rmind }
405 1.3.2.2 rmind
406 1.3.2.2 rmind void
407 1.3.2.2 rmind sched_dequeue(struct lwp *l)
408 1.3.2.2 rmind {
409 1.3.2.2 rmind runqueue_t *ci_rq;
410 1.3.2.2 rmind TAILQ_HEAD(, lwp) *q_head;
411 1.3.2.2 rmind const pri_t eprio = lwp_eprio(l);
412 1.3.2.2 rmind
413 1.3.2.2 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
414 1.3.2.2 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
415 1.3.2.3 rmind KASSERT(eprio <= ci_rq->r_highest_pri);
416 1.3.2.2 rmind KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
417 1.3.2.2 rmind KASSERT(ci_rq->r_count > 0);
418 1.3.2.2 rmind
419 1.3.2.2 rmind ci_rq->r_count--;
420 1.3.2.2 rmind if ((l->l_flag & LW_BOUND) == 0)
421 1.3.2.2 rmind ci_rq->r_mcount--;
422 1.3.2.2 rmind
423 1.3.2.2 rmind q_head = sched_getrq(ci_rq, eprio);
424 1.3.2.2 rmind TAILQ_REMOVE(q_head, l, l_runq);
425 1.3.2.2 rmind if (TAILQ_EMPTY(q_head)) {
426 1.3.2.2 rmind u_int i;
427 1.3.2.2 rmind uint32_t q;
428 1.3.2.2 rmind
429 1.3.2.2 rmind /* Unmark bit */
430 1.3.2.2 rmind i = eprio >> BITMAP_SHIFT;
431 1.3.2.3 rmind q = BITMAP_MSB >> (eprio & BITMAP_MASK);
432 1.3.2.3 rmind KASSERT((ci_rq->r_bitmap[i] & q) != 0);
433 1.3.2.3 rmind ci_rq->r_bitmap[i] &= ~q;
434 1.3.2.2 rmind
435 1.3.2.2 rmind /*
436 1.3.2.2 rmind * Update the value of highest priority in the runqueue, in a
437 1.3.2.2 rmind * case it was a last thread in the queue of highest priority.
438 1.3.2.2 rmind */
439 1.3.2.2 rmind if (eprio != ci_rq->r_highest_pri)
440 1.3.2.2 rmind return;
441 1.3.2.2 rmind
442 1.3.2.2 rmind do {
443 1.3.2.2 rmind q = ffs(ci_rq->r_bitmap[i]);
444 1.3.2.2 rmind if (q) {
445 1.3.2.2 rmind ci_rq->r_highest_pri =
446 1.3.2.3 rmind (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
447 1.3.2.2 rmind return;
448 1.3.2.2 rmind }
449 1.3.2.3 rmind } while (i--);
450 1.3.2.2 rmind
451 1.3.2.3 rmind /* If not found - set the lowest value */
452 1.3.2.3 rmind ci_rq->r_highest_pri = 0;
453 1.3.2.2 rmind }
454 1.3.2.2 rmind }
455 1.3.2.2 rmind
456 1.3.2.2 rmind void
457 1.3.2.2 rmind sched_slept(struct lwp *l)
458 1.3.2.2 rmind {
459 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
460 1.3.2.2 rmind
461 1.3.2.2 rmind /* Save the time when thread has slept */
462 1.3.2.2 rmind sil->sl_slept = hardclock_ticks;
463 1.3.2.2 rmind
464 1.3.2.2 rmind /*
465 1.3.2.3 rmind * If thread is in time-sharing queue and batch flag is not marked,
466 1.3.2.3 rmind * increase the the priority, and run with the lower time-quantum.
467 1.3.2.2 rmind */
468 1.3.2.6 ad if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
469 1.3.2.3 rmind KASSERT(l->l_policy == SCHED_OTHER);
470 1.3.2.6 ad l->l_priority++;
471 1.3.2.3 rmind }
472 1.3.2.2 rmind }
473 1.3.2.2 rmind
474 1.3.2.2 rmind void
475 1.3.2.2 rmind sched_wakeup(struct lwp *l)
476 1.3.2.2 rmind {
477 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
478 1.3.2.2 rmind
479 1.3.2.2 rmind /* Update sleep time delta */
480 1.3.2.2 rmind sil->sl_slpsum += (l->l_slptime == 0) ?
481 1.3.2.2 rmind (hardclock_ticks - sil->sl_slept) : hz;
482 1.3.2.2 rmind
483 1.3.2.2 rmind /* If thread was sleeping a second or more - set a high priority */
484 1.3.2.2 rmind if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
485 1.3.2.6 ad l->l_priority = high_pri[l->l_priority];
486 1.3.2.2 rmind
487 1.3.2.2 rmind /* Also, consider looking for a better CPU to wake up */
488 1.3.2.2 rmind if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
489 1.3.2.2 rmind l->l_cpu = sched_takecpu(l);
490 1.3.2.2 rmind }
491 1.3.2.2 rmind
492 1.3.2.2 rmind void
493 1.3.2.2 rmind sched_pstats_hook(struct lwp *l)
494 1.3.2.2 rmind {
495 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
496 1.3.2.4 rmind bool batch;
497 1.3.2.4 rmind
498 1.3.2.6 ad if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
499 1.3.2.6 ad l->l_stat == LSSUSPENDED)
500 1.3.2.6 ad l->l_slptime++;
501 1.3.2.6 ad
502 1.3.2.4 rmind /*
503 1.3.2.4 rmind * Set that thread is more CPU-bound, if sum of run time exceeds the
504 1.3.2.4 rmind * sum of sleep time. Check if thread is CPU-bound a first time.
505 1.3.2.4 rmind */
506 1.3.2.4 rmind batch = (sil->sl_rtsum > sil->sl_slpsum);
507 1.3.2.4 rmind if (batch) {
508 1.3.2.4 rmind if ((sil->sl_flags & SL_BATCH) == 0)
509 1.3.2.4 rmind batch = false;
510 1.3.2.4 rmind sil->sl_flags |= SL_BATCH;
511 1.3.2.4 rmind } else
512 1.3.2.4 rmind sil->sl_flags &= ~SL_BATCH;
513 1.3.2.3 rmind
514 1.3.2.3 rmind /* Reset the time sums */
515 1.3.2.3 rmind sil->sl_slpsum = 0;
516 1.3.2.3 rmind sil->sl_rtsum = 0;
517 1.3.2.3 rmind
518 1.3.2.3 rmind /* Estimate threads on time-sharing queue only */
519 1.3.2.6 ad if (l->l_priority >= PRI_HIGHEST_TS)
520 1.3.2.3 rmind return;
521 1.3.2.2 rmind
522 1.3.2.4 rmind /* If it is CPU-bound not a first time - decrease the priority */
523 1.3.2.6 ad if (batch && l->l_priority != 0)
524 1.3.2.6 ad l->l_priority--;
525 1.3.2.2 rmind
526 1.3.2.2 rmind /* If thread was not ran a second or more - set a high priority */
527 1.3.2.3 rmind if (l->l_stat == LSRUN && sil->sl_lrtime &&
528 1.3.2.3 rmind (hardclock_ticks - sil->sl_lrtime >= hz))
529 1.3.2.6 ad lwp_changepri(l, high_pri[l->l_priority]);
530 1.3.2.2 rmind }
531 1.3.2.2 rmind
532 1.3.2.2 rmind /*
533 1.3.2.2 rmind * Migration and balancing.
534 1.3.2.2 rmind */
535 1.3.2.2 rmind
536 1.3.2.2 rmind #ifdef MULTIPROCESSOR
537 1.3.2.2 rmind
538 1.3.2.2 rmind /* Check if LWP can migrate to the chosen CPU */
539 1.3.2.2 rmind static inline bool
540 1.3.2.2 rmind sched_migratable(const struct lwp *l, const struct cpu_info *ci)
541 1.3.2.2 rmind {
542 1.3.2.2 rmind
543 1.3.2.2 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
544 1.3.2.2 rmind return false;
545 1.3.2.2 rmind
546 1.3.2.2 rmind if ((l->l_flag & LW_BOUND) == 0)
547 1.3.2.2 rmind return true;
548 1.3.2.2 rmind #if 0
549 1.3.2.2 rmind return cpu_in_pset(ci, l->l_psid);
550 1.3.2.2 rmind #else
551 1.3.2.2 rmind return false;
552 1.3.2.2 rmind #endif
553 1.3.2.2 rmind }
554 1.3.2.2 rmind
555 1.3.2.2 rmind /*
556 1.3.2.2 rmind * Estimate the migration of LWP to the other CPU.
557 1.3.2.2 rmind * Take and return the CPU, if migration is needed.
558 1.3.2.2 rmind */
559 1.3.2.2 rmind struct cpu_info *
560 1.3.2.2 rmind sched_takecpu(struct lwp *l)
561 1.3.2.2 rmind {
562 1.3.2.2 rmind struct cpu_info *ci, *tci = NULL;
563 1.3.2.2 rmind struct schedstate_percpu *spc;
564 1.3.2.2 rmind runqueue_t *ci_rq;
565 1.3.2.2 rmind sched_info_lwp_t *sil;
566 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
567 1.3.2.2 rmind pri_t eprio, lpri;
568 1.3.2.2 rmind
569 1.3.2.2 rmind ci = l->l_cpu;
570 1.3.2.2 rmind spc = &ci->ci_schedstate;
571 1.3.2.2 rmind ci_rq = spc->spc_sched_info;
572 1.3.2.2 rmind
573 1.3.2.2 rmind /* CPU of this thread is idling - run there */
574 1.3.2.2 rmind if (ci_rq->r_count == 0)
575 1.3.2.2 rmind return ci;
576 1.3.2.2 rmind
577 1.3.2.2 rmind eprio = lwp_eprio(l);
578 1.3.2.2 rmind sil = l->l_sched_info;
579 1.3.2.2 rmind
580 1.3.2.2 rmind /* Stay if thread is cache-hot */
581 1.3.2.2 rmind if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
582 1.3.2.3 rmind CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
583 1.3.2.2 rmind return ci;
584 1.3.2.2 rmind
585 1.3.2.2 rmind /* Run on current CPU if priority of thread is higher */
586 1.3.2.2 rmind ci = curcpu();
587 1.3.2.2 rmind spc = &ci->ci_schedstate;
588 1.3.2.3 rmind if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
589 1.3.2.2 rmind return ci;
590 1.3.2.2 rmind
591 1.3.2.2 rmind /*
592 1.3.2.2 rmind * Look for the CPU with the lowest priority thread. In case of
593 1.3.2.2 rmind * equal the priority - check the lower count of the threads.
594 1.3.2.2 rmind */
595 1.3.2.3 rmind lpri = PRI_COUNT;
596 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci)) {
597 1.3.2.2 rmind runqueue_t *ici_rq;
598 1.3.2.2 rmind pri_t pri;
599 1.3.2.2 rmind
600 1.3.2.2 rmind spc = &ci->ci_schedstate;
601 1.3.2.2 rmind ici_rq = spc->spc_sched_info;
602 1.3.2.3 rmind pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
603 1.3.2.3 rmind if (pri > lpri)
604 1.3.2.2 rmind continue;
605 1.3.2.2 rmind
606 1.3.2.3 rmind if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
607 1.3.2.2 rmind continue;
608 1.3.2.2 rmind
609 1.3.2.2 rmind if (sched_migratable(l, ci) == false)
610 1.3.2.2 rmind continue;
611 1.3.2.2 rmind
612 1.3.2.2 rmind lpri = pri;
613 1.3.2.2 rmind tci = ci;
614 1.3.2.2 rmind ci_rq = ici_rq;
615 1.3.2.2 rmind }
616 1.3.2.2 rmind
617 1.3.2.3 rmind KASSERT(tci != NULL);
618 1.3.2.2 rmind return tci;
619 1.3.2.2 rmind }
620 1.3.2.2 rmind
621 1.3.2.2 rmind /*
622 1.3.2.2 rmind * Tries to catch an LWP from the runqueue of other CPU.
623 1.3.2.2 rmind */
624 1.3.2.2 rmind static struct lwp *
625 1.3.2.2 rmind sched_catchlwp(void)
626 1.3.2.2 rmind {
627 1.3.2.2 rmind struct cpu_info *curci = curcpu(), *ci = worker_ci;
628 1.3.2.2 rmind TAILQ_HEAD(, lwp) *q_head;
629 1.3.2.2 rmind runqueue_t *ci_rq;
630 1.3.2.2 rmind struct lwp *l;
631 1.3.2.2 rmind
632 1.3.2.2 rmind if (curci == ci)
633 1.3.2.2 rmind return NULL;
634 1.3.2.2 rmind
635 1.3.2.2 rmind /* Lockless check */
636 1.3.2.2 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
637 1.3.2.2 rmind if (ci_rq->r_count < min_catch)
638 1.3.2.2 rmind return NULL;
639 1.3.2.2 rmind
640 1.3.2.2 rmind /*
641 1.3.2.2 rmind * Double-lock the runqueues.
642 1.3.2.2 rmind */
643 1.3.2.2 rmind if (curci < ci) {
644 1.3.2.2 rmind spc_lock(ci);
645 1.3.2.2 rmind } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
646 1.3.2.2 rmind const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
647 1.3.2.2 rmind
648 1.3.2.2 rmind spc_unlock(curci);
649 1.3.2.2 rmind spc_lock(ci);
650 1.3.2.2 rmind spc_lock(curci);
651 1.3.2.2 rmind
652 1.3.2.2 rmind if (cur_rq->r_count) {
653 1.3.2.2 rmind spc_unlock(ci);
654 1.3.2.2 rmind return NULL;
655 1.3.2.2 rmind }
656 1.3.2.2 rmind }
657 1.3.2.2 rmind
658 1.3.2.2 rmind if (ci_rq->r_count < min_catch) {
659 1.3.2.2 rmind spc_unlock(ci);
660 1.3.2.2 rmind return NULL;
661 1.3.2.2 rmind }
662 1.3.2.2 rmind
663 1.3.2.2 rmind /* Take the highest priority thread */
664 1.3.2.2 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
665 1.3.2.2 rmind l = TAILQ_FIRST(q_head);
666 1.3.2.2 rmind
667 1.3.2.2 rmind for (;;) {
668 1.3.2.2 rmind sched_info_lwp_t *sil;
669 1.3.2.2 rmind
670 1.3.2.2 rmind /* Check the first and next result from the queue */
671 1.3.2.2 rmind if (l == NULL)
672 1.3.2.2 rmind break;
673 1.3.2.2 rmind
674 1.3.2.2 rmind /* Look for threads, whose are allowed to migrate */
675 1.3.2.2 rmind sil = l->l_sched_info;
676 1.3.2.2 rmind if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
677 1.3.2.2 rmind sched_migratable(l, curci) == false) {
678 1.3.2.2 rmind l = TAILQ_NEXT(l, l_runq);
679 1.3.2.2 rmind continue;
680 1.3.2.2 rmind }
681 1.3.2.2 rmind /* Recheck if chosen thread is still on the runqueue */
682 1.3.2.2 rmind if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
683 1.3.2.2 rmind sched_dequeue(l);
684 1.3.2.2 rmind l->l_cpu = curci;
685 1.3.2.2 rmind lwp_setlock(l, curci->ci_schedstate.spc_mutex);
686 1.3.2.2 rmind sched_enqueue(l, false);
687 1.3.2.2 rmind break;
688 1.3.2.2 rmind }
689 1.3.2.2 rmind l = TAILQ_NEXT(l, l_runq);
690 1.3.2.2 rmind }
691 1.3.2.2 rmind spc_unlock(ci);
692 1.3.2.2 rmind
693 1.3.2.2 rmind return l;
694 1.3.2.2 rmind }
695 1.3.2.2 rmind
696 1.3.2.2 rmind /*
697 1.3.2.2 rmind * Periodical calculations for balancing.
698 1.3.2.2 rmind */
699 1.3.2.2 rmind static void
700 1.3.2.2 rmind sched_balance(void *nocallout)
701 1.3.2.2 rmind {
702 1.3.2.2 rmind struct cpu_info *ci, *hci;
703 1.3.2.2 rmind runqueue_t *ci_rq;
704 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
705 1.3.2.2 rmind u_int highest;
706 1.3.2.2 rmind
707 1.3.2.2 rmind hci = curcpu();
708 1.3.2.2 rmind highest = 0;
709 1.3.2.2 rmind
710 1.3.2.2 rmind /* Make lockless countings */
711 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci)) {
712 1.3.2.2 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
713 1.3.2.2 rmind
714 1.3.2.2 rmind /* Average count of the threads */
715 1.3.2.2 rmind ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
716 1.3.2.2 rmind
717 1.3.2.2 rmind /* Look for CPU with the highest average */
718 1.3.2.2 rmind if (ci_rq->r_avgcount > highest) {
719 1.3.2.2 rmind hci = ci;
720 1.3.2.2 rmind highest = ci_rq->r_avgcount;
721 1.3.2.2 rmind }
722 1.3.2.2 rmind }
723 1.3.2.2 rmind
724 1.3.2.2 rmind /* Update the worker */
725 1.3.2.2 rmind worker_ci = hci;
726 1.3.2.2 rmind
727 1.3.2.2 rmind if (nocallout == NULL)
728 1.3.2.2 rmind callout_schedule(&balance_ch, balance_period);
729 1.3.2.2 rmind }
730 1.3.2.2 rmind
731 1.3.2.2 rmind #else
732 1.3.2.2 rmind
733 1.3.2.2 rmind struct cpu_info *
734 1.3.2.2 rmind sched_takecpu(struct lwp *l)
735 1.3.2.2 rmind {
736 1.3.2.2 rmind
737 1.3.2.2 rmind return l->l_cpu;
738 1.3.2.2 rmind }
739 1.3.2.2 rmind
740 1.3.2.2 rmind #endif /* MULTIPROCESSOR */
741 1.3.2.2 rmind
742 1.3.2.2 rmind /*
743 1.3.2.2 rmind * Scheduler mill.
744 1.3.2.2 rmind */
745 1.3.2.2 rmind struct lwp *
746 1.3.2.2 rmind sched_nextlwp(void)
747 1.3.2.2 rmind {
748 1.3.2.2 rmind struct cpu_info *ci = curcpu();
749 1.3.2.2 rmind struct schedstate_percpu *spc;
750 1.3.2.2 rmind TAILQ_HEAD(, lwp) *q_head;
751 1.3.2.2 rmind sched_info_lwp_t *sil;
752 1.3.2.2 rmind runqueue_t *ci_rq;
753 1.3.2.2 rmind struct lwp *l;
754 1.3.2.2 rmind
755 1.3.2.2 rmind spc = &ci->ci_schedstate;
756 1.3.2.2 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
757 1.3.2.2 rmind
758 1.3.2.2 rmind #ifdef MULTIPROCESSOR
759 1.3.2.2 rmind /* If runqueue is empty, try to catch some thread from other CPU */
760 1.3.2.2 rmind if (spc->spc_flags & SPCF_OFFLINE) {
761 1.3.2.2 rmind if (ci_rq->r_mcount == 0)
762 1.3.2.2 rmind return NULL;
763 1.3.2.2 rmind } else if (ci_rq->r_count == 0) {
764 1.3.2.2 rmind /* Reset the counter, and call the balancer */
765 1.3.2.2 rmind ci_rq->r_avgcount = 0;
766 1.3.2.2 rmind sched_balance(ci);
767 1.3.2.2 rmind
768 1.3.2.2 rmind /* The re-locking will be done inside */
769 1.3.2.2 rmind return sched_catchlwp();
770 1.3.2.2 rmind }
771 1.3.2.2 rmind #else
772 1.3.2.2 rmind if (ci_rq->r_count == 0)
773 1.3.2.2 rmind return NULL;
774 1.3.2.2 rmind #endif
775 1.3.2.2 rmind
776 1.3.2.2 rmind /* Take the highest priority thread */
777 1.3.2.2 rmind KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
778 1.3.2.2 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
779 1.3.2.2 rmind l = TAILQ_FIRST(q_head);
780 1.3.2.2 rmind KASSERT(l != NULL);
781 1.3.2.2 rmind
782 1.3.2.2 rmind /* Update the counters */
783 1.3.2.2 rmind sil = l->l_sched_info;
784 1.3.2.2 rmind KASSERT(sil->sl_timeslice >= min_ts);
785 1.3.2.2 rmind KASSERT(sil->sl_timeslice <= max_ts);
786 1.3.2.2 rmind spc->spc_ticks = sil->sl_timeslice;
787 1.3.2.2 rmind sil->sl_rtime = hardclock_ticks;
788 1.3.2.2 rmind
789 1.3.2.2 rmind return l;
790 1.3.2.2 rmind }
791 1.3.2.2 rmind
792 1.3.2.2 rmind bool
793 1.3.2.2 rmind sched_curcpu_runnable_p(void)
794 1.3.2.2 rmind {
795 1.3.2.2 rmind const struct cpu_info *ci = curcpu();
796 1.3.2.2 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
797 1.3.2.2 rmind
798 1.3.2.2 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
799 1.3.2.2 rmind return ci_rq->r_mcount;
800 1.3.2.2 rmind
801 1.3.2.2 rmind return ci_rq->r_count;
802 1.3.2.2 rmind }
803 1.3.2.2 rmind
804 1.3.2.2 rmind /*
805 1.3.2.2 rmind * Time-driven events.
806 1.3.2.2 rmind */
807 1.3.2.2 rmind
808 1.3.2.2 rmind /*
809 1.3.2.2 rmind * Called once per time-quantum. This routine is CPU-local and runs at
810 1.3.2.2 rmind * IPL_SCHED, thus the locking is not needed.
811 1.3.2.2 rmind */
812 1.3.2.2 rmind void
813 1.3.2.2 rmind sched_tick(struct cpu_info *ci)
814 1.3.2.2 rmind {
815 1.3.2.2 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
816 1.3.2.2 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
817 1.3.2.2 rmind struct lwp *l = curlwp;
818 1.3.2.2 rmind sched_info_lwp_t *sil = l->l_sched_info;
819 1.3.2.2 rmind
820 1.3.2.2 rmind if (CURCPU_IDLE_P())
821 1.3.2.2 rmind return;
822 1.3.2.2 rmind
823 1.3.2.2 rmind switch (l->l_policy) {
824 1.3.2.2 rmind case SCHED_FIFO:
825 1.3.2.2 rmind /*
826 1.3.2.2 rmind * Update the time-quantum, and continue running,
827 1.3.2.2 rmind * if thread runs on FIFO real-time policy.
828 1.3.2.2 rmind */
829 1.3.2.2 rmind spc->spc_ticks = sil->sl_timeslice;
830 1.3.2.2 rmind return;
831 1.3.2.2 rmind case SCHED_OTHER:
832 1.3.2.3 rmind /*
833 1.3.2.3 rmind * If thread is in time-sharing queue, decrease the priority,
834 1.3.2.3 rmind * and run with a higher time-quantum.
835 1.3.2.3 rmind */
836 1.3.2.6 ad if (l->l_priority > PRI_HIGHEST_TS)
837 1.3.2.2 rmind break;
838 1.3.2.6 ad if (l->l_priority != 0)
839 1.3.2.6 ad l->l_priority--;
840 1.3.2.2 rmind break;
841 1.3.2.2 rmind }
842 1.3.2.2 rmind
843 1.3.2.2 rmind /*
844 1.3.2.2 rmind * If there are higher priority threads or threads in the same queue,
845 1.3.2.2 rmind * mark that thread should yield, otherwise, continue running.
846 1.3.2.2 rmind */
847 1.3.2.3 rmind if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
848 1.3.2.2 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
849 1.3.2.2 rmind cpu_need_resched(ci, 0);
850 1.3.2.2 rmind } else
851 1.3.2.2 rmind spc->spc_ticks = sil->sl_timeslice;
852 1.3.2.2 rmind }
853 1.3.2.2 rmind
854 1.3.2.2 rmind /*
855 1.3.2.2 rmind * Sysctl nodes and initialization.
856 1.3.2.2 rmind */
857 1.3.2.2 rmind
858 1.3.2.2 rmind static int
859 1.3.2.2 rmind sysctl_sched_mints(SYSCTLFN_ARGS)
860 1.3.2.2 rmind {
861 1.3.2.2 rmind struct sysctlnode node;
862 1.3.2.2 rmind struct cpu_info *ci;
863 1.3.2.2 rmind int error, newsize;
864 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
865 1.3.2.2 rmind
866 1.3.2.2 rmind node = *rnode;
867 1.3.2.2 rmind node.sysctl_data = &newsize;
868 1.3.2.2 rmind
869 1.3.2.2 rmind newsize = hztoms(min_ts);
870 1.3.2.2 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
871 1.3.2.2 rmind if (error || newp == NULL)
872 1.3.2.2 rmind return error;
873 1.3.2.2 rmind
874 1.3.2.2 rmind if (newsize < 1 || newsize > hz || newsize >= max_ts)
875 1.3.2.2 rmind return EINVAL;
876 1.3.2.2 rmind
877 1.3.2.2 rmind /* It is safe to do this in such order */
878 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci))
879 1.3.2.2 rmind spc_lock(ci);
880 1.3.2.2 rmind
881 1.3.2.2 rmind min_ts = mstohz(newsize);
882 1.3.2.2 rmind sched_precalcts();
883 1.3.2.2 rmind
884 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci))
885 1.3.2.2 rmind spc_unlock(ci);
886 1.3.2.2 rmind
887 1.3.2.2 rmind return 0;
888 1.3.2.2 rmind }
889 1.3.2.2 rmind
890 1.3.2.2 rmind static int
891 1.3.2.2 rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
892 1.3.2.2 rmind {
893 1.3.2.2 rmind struct sysctlnode node;
894 1.3.2.2 rmind struct cpu_info *ci;
895 1.3.2.2 rmind int error, newsize;
896 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
897 1.3.2.2 rmind
898 1.3.2.2 rmind node = *rnode;
899 1.3.2.2 rmind node.sysctl_data = &newsize;
900 1.3.2.2 rmind
901 1.3.2.2 rmind newsize = hztoms(max_ts);
902 1.3.2.2 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
903 1.3.2.2 rmind if (error || newp == NULL)
904 1.3.2.2 rmind return error;
905 1.3.2.2 rmind
906 1.3.2.2 rmind if (newsize < 10 || newsize > hz || newsize <= min_ts)
907 1.3.2.2 rmind return EINVAL;
908 1.3.2.2 rmind
909 1.3.2.2 rmind /* It is safe to do this in such order */
910 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci))
911 1.3.2.2 rmind spc_lock(ci);
912 1.3.2.2 rmind
913 1.3.2.2 rmind max_ts = mstohz(newsize);
914 1.3.2.2 rmind sched_precalcts();
915 1.3.2.2 rmind
916 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci))
917 1.3.2.2 rmind spc_unlock(ci);
918 1.3.2.2 rmind
919 1.3.2.2 rmind return 0;
920 1.3.2.2 rmind }
921 1.3.2.2 rmind
922 1.3.2.2 rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
923 1.3.2.2 rmind {
924 1.3.2.2 rmind const struct sysctlnode *node = NULL;
925 1.3.2.2 rmind
926 1.3.2.2 rmind sysctl_createv(clog, 0, NULL, NULL,
927 1.3.2.2 rmind CTLFLAG_PERMANENT,
928 1.3.2.2 rmind CTLTYPE_NODE, "kern", NULL,
929 1.3.2.2 rmind NULL, 0, NULL, 0,
930 1.3.2.2 rmind CTL_KERN, CTL_EOL);
931 1.3.2.2 rmind sysctl_createv(clog, 0, NULL, &node,
932 1.3.2.2 rmind CTLFLAG_PERMANENT,
933 1.3.2.2 rmind CTLTYPE_NODE, "sched",
934 1.3.2.2 rmind SYSCTL_DESCR("Scheduler options"),
935 1.3.2.2 rmind NULL, 0, NULL, 0,
936 1.3.2.2 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
937 1.3.2.2 rmind
938 1.3.2.2 rmind if (node == NULL)
939 1.3.2.2 rmind return;
940 1.3.2.2 rmind
941 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
942 1.3.2.2 rmind CTLFLAG_PERMANENT,
943 1.3.2.2 rmind CTLTYPE_STRING, "name", NULL,
944 1.3.2.2 rmind NULL, 0, __UNCONST("M2"), 0,
945 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
946 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
947 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
948 1.3.2.2 rmind CTLTYPE_INT, "maxts",
949 1.3.2.2 rmind SYSCTL_DESCR("Maximal time quantum (in microseconds)"),
950 1.3.2.2 rmind sysctl_sched_maxts, 0, &max_ts, 0,
951 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
952 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
953 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
954 1.3.2.2 rmind CTLTYPE_INT, "mints",
955 1.3.2.2 rmind SYSCTL_DESCR("Minimal time quantum (in microseconds)"),
956 1.3.2.2 rmind sysctl_sched_mints, 0, &min_ts, 0,
957 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
958 1.3.2.2 rmind
959 1.3.2.2 rmind #ifdef MULTIPROCESSOR
960 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
961 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
962 1.3.2.2 rmind CTLTYPE_INT, "cacheht_time",
963 1.3.2.2 rmind SYSCTL_DESCR("Cache hotness time"),
964 1.3.2.2 rmind NULL, 0, &cacheht_time, 0,
965 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
966 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
967 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
968 1.3.2.2 rmind CTLTYPE_INT, "balance_period",
969 1.3.2.2 rmind SYSCTL_DESCR("Balance period"),
970 1.3.2.2 rmind NULL, 0, &balance_period, 0,
971 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
972 1.3.2.2 rmind sysctl_createv(clog, 0, &node, NULL,
973 1.3.2.2 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
974 1.3.2.2 rmind CTLTYPE_INT, "min_catch",
975 1.3.2.2 rmind SYSCTL_DESCR("Minimal count of threads for catching"),
976 1.3.2.2 rmind NULL, 0, &min_catch, 0,
977 1.3.2.2 rmind CTL_CREATE, CTL_EOL);
978 1.3.2.2 rmind #endif
979 1.3.2.2 rmind }
980 1.3.2.2 rmind
981 1.3.2.2 rmind /*
982 1.3.2.2 rmind * Debugging.
983 1.3.2.2 rmind */
984 1.3.2.2 rmind
985 1.3.2.2 rmind #ifdef DDB
986 1.3.2.2 rmind
987 1.3.2.2 rmind void
988 1.3.2.2 rmind sched_print_runqueue(void (*pr)(const char *, ...))
989 1.3.2.2 rmind {
990 1.3.2.2 rmind runqueue_t *ci_rq;
991 1.3.2.2 rmind sched_info_lwp_t *sil;
992 1.3.2.2 rmind struct lwp *l;
993 1.3.2.2 rmind struct proc *p;
994 1.3.2.2 rmind int i;
995 1.3.2.2 rmind
996 1.3.2.2 rmind struct cpu_info *ci;
997 1.3.2.2 rmind CPU_INFO_ITERATOR cii;
998 1.3.2.2 rmind
999 1.3.2.2 rmind for (CPU_INFO_FOREACH(cii, ci)) {
1000 1.3.2.2 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
1001 1.3.2.2 rmind
1002 1.3.2.2 rmind (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1003 1.3.2.2 rmind (*pr)(" pid.lid = %d.%d, threads count = %u, "
1004 1.3.2.2 rmind "avgcount = %u, highest pri = %d\n",
1005 1.3.2.2 rmind ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1006 1.3.2.2 rmind ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1007 1.3.2.3 rmind i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1008 1.3.2.2 rmind do {
1009 1.3.2.3 rmind uint32_t q;
1010 1.3.2.3 rmind q = ci_rq->r_bitmap[i];
1011 1.3.2.3 rmind (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1012 1.3.2.3 rmind } while (i--);
1013 1.3.2.2 rmind }
1014 1.3.2.2 rmind
1015 1.3.2.2 rmind (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1016 1.3.2.6 ad "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1017 1.3.2.2 rmind
1018 1.3.2.2 rmind PROCLIST_FOREACH(p, &allproc) {
1019 1.3.2.2 rmind (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1020 1.3.2.2 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1021 1.3.2.2 rmind sil = l->l_sched_info;
1022 1.3.2.2 rmind ci = l->l_cpu;
1023 1.3.2.2 rmind (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1024 1.3.2.2 rmind "%u ST=%d RT=%d %d\n",
1025 1.3.2.6 ad (int)l->l_lid, l->l_priority, lwp_eprio(l),
1026 1.3.2.2 rmind l->l_flag, l->l_stat == LSRUN ? "RQ" :
1027 1.3.2.2 rmind (l->l_stat == LSSLEEP ? "SQ" : "-"),
1028 1.3.2.2 rmind sil->sl_timeslice, l, ci->ci_cpuid,
1029 1.3.2.2 rmind (u_int)(hardclock_ticks - sil->sl_lrtime),
1030 1.3.2.2 rmind sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1031 1.3.2.2 rmind }
1032 1.3.2.2 rmind }
1033 1.3.2.2 rmind }
1034 1.3.2.2 rmind
1035 1.3.2.2 rmind #endif /* defined(DDB) */
1036