sched_m2.c revision 1.6.2.7 1 1.6.2.7 jmcneill /* $NetBSD: sched_m2.c,v 1.6.2.7 2007/12/09 19:38:23 jmcneill Exp $ */
2 1.6.2.2 joerg
3 1.6.2.2 joerg /*
4 1.6.2.6 joerg * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
5 1.6.2.6 joerg * All rights reserved.
6 1.6.2.2 joerg *
7 1.6.2.2 joerg * Redistribution and use in source and binary forms, with or without
8 1.6.2.2 joerg * modification, are permitted provided that the following conditions
9 1.6.2.2 joerg * are met:
10 1.6.2.2 joerg * 1. Redistributions of source code must retain the above copyright
11 1.6.2.2 joerg * notice, this list of conditions and the following disclaimer.
12 1.6.2.2 joerg * 2. Redistributions in binary form must reproduce the above copyright
13 1.6.2.2 joerg * notice, this list of conditions and the following disclaimer in the
14 1.6.2.2 joerg * documentation and/or other materials provided with the distribution.
15 1.6.2.2 joerg *
16 1.6.2.2 joerg * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 1.6.2.2 joerg * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.6.2.2 joerg * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.6.2.2 joerg * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.6.2.2 joerg * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.6.2.2 joerg * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.6.2.2 joerg * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.6.2.2 joerg * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.6.2.2 joerg * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.6.2.2 joerg * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.6.2.2 joerg * POSSIBILITY OF SUCH DAMAGE.
27 1.6.2.2 joerg */
28 1.6.2.2 joerg
29 1.6.2.2 joerg /*
30 1.6.2.2 joerg * TODO:
31 1.6.2.2 joerg * - Implementation of fair share queue;
32 1.6.2.2 joerg * - Support for NUMA;
33 1.6.2.2 joerg */
34 1.6.2.2 joerg
35 1.6.2.2 joerg #include <sys/cdefs.h>
36 1.6.2.7 jmcneill __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.6.2.7 2007/12/09 19:38:23 jmcneill Exp $");
37 1.6.2.2 joerg
38 1.6.2.2 joerg #include <sys/param.h>
39 1.6.2.2 joerg
40 1.6.2.3 jmcneill #include <sys/bitops.h>
41 1.6.2.2 joerg #include <sys/cpu.h>
42 1.6.2.2 joerg #include <sys/callout.h>
43 1.6.2.2 joerg #include <sys/errno.h>
44 1.6.2.2 joerg #include <sys/kernel.h>
45 1.6.2.2 joerg #include <sys/kmem.h>
46 1.6.2.2 joerg #include <sys/lwp.h>
47 1.6.2.2 joerg #include <sys/mutex.h>
48 1.6.2.2 joerg #include <sys/pool.h>
49 1.6.2.2 joerg #include <sys/proc.h>
50 1.6.2.2 joerg #include <sys/resource.h>
51 1.6.2.2 joerg #include <sys/resourcevar.h>
52 1.6.2.2 joerg #include <sys/sched.h>
53 1.6.2.2 joerg #include <sys/syscallargs.h>
54 1.6.2.2 joerg #include <sys/sysctl.h>
55 1.6.2.2 joerg #include <sys/types.h>
56 1.6.2.2 joerg
57 1.6.2.2 joerg /*
58 1.6.2.4 joerg * Priority related defintions.
59 1.6.2.2 joerg */
60 1.6.2.4 joerg #define PRI_TS_COUNT (NPRI_USER)
61 1.6.2.4 joerg #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
62 1.6.2.4 joerg #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
63 1.6.2.4 joerg
64 1.6.2.5 joerg #define PRI_HIGHEST_TS (MAXPRI_USER)
65 1.6.2.4 joerg #define PRI_DEFAULT (NPRI_USER >> 1)
66 1.6.2.4 joerg
67 1.6.2.4 joerg const int schedppq = 1;
68 1.6.2.2 joerg
69 1.6.2.2 joerg /*
70 1.6.2.2 joerg * Bits per map.
71 1.6.2.2 joerg */
72 1.6.2.4 joerg #define BITMAP_BITS (32)
73 1.6.2.4 joerg #define BITMAP_SHIFT (5)
74 1.6.2.5 joerg #define BITMAP_MSB (0x80000000U)
75 1.6.2.4 joerg #define BITMAP_MASK (BITMAP_BITS - 1)
76 1.6.2.2 joerg
77 1.6.2.2 joerg /*
78 1.6.2.2 joerg * Time-slices and priorities.
79 1.6.2.2 joerg */
80 1.6.2.2 joerg static u_int min_ts; /* Minimal time-slice */
81 1.6.2.2 joerg static u_int max_ts; /* Maximal time-slice */
82 1.6.2.2 joerg static u_int rt_ts; /* Real-time time-slice */
83 1.6.2.2 joerg static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
84 1.6.2.2 joerg static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
85 1.6.2.2 joerg
86 1.6.2.2 joerg /*
87 1.6.2.2 joerg * Migration and balancing.
88 1.6.2.2 joerg */
89 1.6.2.2 joerg #ifdef MULTIPROCESSOR
90 1.6.2.2 joerg static u_int cacheht_time; /* Cache hotness time */
91 1.6.2.2 joerg static u_int min_catch; /* Minimal LWP count for catching */
92 1.6.2.2 joerg
93 1.6.2.2 joerg static u_int balance_period; /* Balance period */
94 1.6.2.2 joerg static struct callout balance_ch; /* Callout of balancer */
95 1.6.2.2 joerg
96 1.6.2.2 joerg static struct cpu_info * volatile worker_ci;
97 1.6.2.2 joerg
98 1.6.2.2 joerg #define CACHE_HOT(sil) (sil->sl_lrtime && \
99 1.6.2.2 joerg (hardclock_ticks - sil->sl_lrtime < cacheht_time))
100 1.6.2.2 joerg
101 1.6.2.2 joerg #endif
102 1.6.2.2 joerg
103 1.6.2.2 joerg /*
104 1.6.2.2 joerg * Structures, runqueue.
105 1.6.2.2 joerg */
106 1.6.2.2 joerg
107 1.6.2.2 joerg typedef struct {
108 1.6.2.2 joerg TAILQ_HEAD(, lwp) q_head;
109 1.6.2.2 joerg } queue_t;
110 1.6.2.2 joerg
111 1.6.2.2 joerg typedef struct {
112 1.6.2.2 joerg /* Lock and bitmap */
113 1.6.2.2 joerg kmutex_t r_rq_mutex;
114 1.6.2.4 joerg uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
115 1.6.2.2 joerg /* Counters */
116 1.6.2.2 joerg u_int r_count; /* Count of the threads */
117 1.6.2.2 joerg pri_t r_highest_pri; /* Highest priority */
118 1.6.2.2 joerg u_int r_avgcount; /* Average count of threads */
119 1.6.2.2 joerg u_int r_mcount; /* Count of migratable threads */
120 1.6.2.2 joerg /* Runqueues */
121 1.6.2.2 joerg queue_t r_rt_queue[PRI_RT_COUNT];
122 1.6.2.2 joerg queue_t r_ts_queue[PRI_TS_COUNT];
123 1.6.2.2 joerg } runqueue_t;
124 1.6.2.2 joerg
125 1.6.2.2 joerg typedef struct {
126 1.6.2.2 joerg u_int sl_flags;
127 1.6.2.2 joerg u_int sl_timeslice; /* Time-slice of thread */
128 1.6.2.2 joerg u_int sl_slept; /* Saved sleep time for sleep sum */
129 1.6.2.2 joerg u_int sl_slpsum; /* Sum of sleep time */
130 1.6.2.2 joerg u_int sl_rtime; /* Saved start time of run */
131 1.6.2.2 joerg u_int sl_rtsum; /* Sum of the run time */
132 1.6.2.2 joerg u_int sl_lrtime; /* Last run time */
133 1.6.2.2 joerg } sched_info_lwp_t;
134 1.6.2.2 joerg
135 1.6.2.2 joerg /* Flags */
136 1.6.2.2 joerg #define SL_BATCH 0x01
137 1.6.2.2 joerg
138 1.6.2.2 joerg /* Pool of the scheduler-specific structures for threads */
139 1.6.2.2 joerg static struct pool sil_pool;
140 1.6.2.2 joerg
141 1.6.2.2 joerg /*
142 1.6.2.2 joerg * Prototypes.
143 1.6.2.2 joerg */
144 1.6.2.2 joerg
145 1.6.2.2 joerg static inline void * sched_getrq(runqueue_t *, const pri_t);
146 1.6.2.2 joerg static inline void sched_newts(struct lwp *);
147 1.6.2.2 joerg static void sched_precalcts(void);
148 1.6.2.2 joerg
149 1.6.2.2 joerg #ifdef MULTIPROCESSOR
150 1.6.2.2 joerg static struct lwp * sched_catchlwp(void);
151 1.6.2.2 joerg static void sched_balance(void *);
152 1.6.2.2 joerg #endif
153 1.6.2.2 joerg
154 1.6.2.2 joerg /*
155 1.6.2.2 joerg * Initialization and setup.
156 1.6.2.2 joerg */
157 1.6.2.2 joerg
158 1.6.2.2 joerg void
159 1.6.2.2 joerg sched_rqinit(void)
160 1.6.2.2 joerg {
161 1.6.2.2 joerg struct cpu_info *ci = curcpu();
162 1.6.2.2 joerg
163 1.6.2.2 joerg if (hz < 100) {
164 1.6.2.2 joerg panic("sched_rqinit: value of HZ is too low\n");
165 1.6.2.2 joerg }
166 1.6.2.2 joerg
167 1.6.2.2 joerg /* Default timing ranges */
168 1.6.2.2 joerg min_ts = mstohz(50); /* ~50ms */
169 1.6.2.2 joerg max_ts = mstohz(150); /* ~150ms */
170 1.6.2.2 joerg rt_ts = mstohz(100); /* ~100ms */
171 1.6.2.2 joerg sched_precalcts();
172 1.6.2.2 joerg
173 1.6.2.2 joerg #ifdef MULTIPROCESSOR
174 1.6.2.2 joerg /* Balancing */
175 1.6.2.2 joerg worker_ci = ci;
176 1.6.2.2 joerg cacheht_time = mstohz(5); /* ~5 ms */
177 1.6.2.2 joerg balance_period = mstohz(300); /* ~300ms */
178 1.6.2.2 joerg min_catch = ~0;
179 1.6.2.2 joerg #endif
180 1.6.2.2 joerg
181 1.6.2.2 joerg /* Pool of the scheduler-specific structures */
182 1.6.2.2 joerg pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
183 1.6.2.2 joerg "lwpsd", &pool_allocator_nointr, IPL_NONE);
184 1.6.2.2 joerg
185 1.6.2.2 joerg /* Attach the primary CPU here */
186 1.6.2.2 joerg sched_cpuattach(ci);
187 1.6.2.2 joerg
188 1.6.2.2 joerg /* Initialize the scheduler structure of the primary LWP */
189 1.6.2.2 joerg lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
190 1.6.2.4 joerg sched_lwp_fork(NULL, &lwp0);
191 1.6.2.2 joerg sched_newts(&lwp0);
192 1.6.2.2 joerg }
193 1.6.2.2 joerg
194 1.6.2.2 joerg void
195 1.6.2.2 joerg sched_setup(void)
196 1.6.2.2 joerg {
197 1.6.2.2 joerg
198 1.6.2.2 joerg #ifdef MULTIPROCESSOR
199 1.6.2.2 joerg /* Minimal count of LWPs for catching: log2(count of CPUs) */
200 1.6.2.3 jmcneill min_catch = min(ilog2(ncpu), 4);
201 1.6.2.2 joerg
202 1.6.2.2 joerg /* Initialize balancing callout and run it */
203 1.6.2.2 joerg callout_init(&balance_ch, CALLOUT_MPSAFE);
204 1.6.2.2 joerg callout_setfunc(&balance_ch, sched_balance, NULL);
205 1.6.2.2 joerg callout_schedule(&balance_ch, balance_period);
206 1.6.2.2 joerg #endif
207 1.6.2.2 joerg }
208 1.6.2.2 joerg
209 1.6.2.2 joerg void
210 1.6.2.2 joerg sched_cpuattach(struct cpu_info *ci)
211 1.6.2.2 joerg {
212 1.6.2.2 joerg runqueue_t *ci_rq;
213 1.6.2.2 joerg void *rq_ptr;
214 1.6.2.2 joerg u_int i, size;
215 1.6.2.2 joerg
216 1.6.2.2 joerg /*
217 1.6.2.2 joerg * Allocate the run queue.
218 1.6.2.2 joerg * XXX: Estimate cache behaviour more..
219 1.6.2.2 joerg */
220 1.6.2.2 joerg size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
221 1.6.2.2 joerg rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
222 1.6.2.2 joerg if (rq_ptr == NULL) {
223 1.6.2.2 joerg panic("scheduler: could not allocate the runqueue");
224 1.6.2.2 joerg }
225 1.6.2.2 joerg /* XXX: Save the original pointer for future.. */
226 1.6.2.2 joerg ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
227 1.6.2.2 joerg
228 1.6.2.2 joerg /* Initialize run queues */
229 1.6.2.7 jmcneill mutex_init(&ci_rq->r_rq_mutex, MUTEX_DEFAULT, IPL_SCHED);
230 1.6.2.2 joerg for (i = 0; i < PRI_RT_COUNT; i++)
231 1.6.2.2 joerg TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
232 1.6.2.2 joerg for (i = 0; i < PRI_TS_COUNT; i++)
233 1.6.2.2 joerg TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
234 1.6.2.4 joerg ci_rq->r_highest_pri = 0;
235 1.6.2.2 joerg
236 1.6.2.2 joerg ci->ci_schedstate.spc_sched_info = ci_rq;
237 1.6.2.2 joerg ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
238 1.6.2.2 joerg }
239 1.6.2.2 joerg
240 1.6.2.2 joerg /* Pre-calculate the time-slices for the priorities */
241 1.6.2.2 joerg static void
242 1.6.2.2 joerg sched_precalcts(void)
243 1.6.2.2 joerg {
244 1.6.2.2 joerg pri_t p;
245 1.6.2.2 joerg
246 1.6.2.4 joerg /* Time-sharing range */
247 1.6.2.4 joerg for (p = 0; p <= PRI_HIGHEST_TS; p++) {
248 1.6.2.4 joerg ts_map[p] = max_ts -
249 1.6.2.4 joerg (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
250 1.6.2.4 joerg high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
251 1.6.2.4 joerg ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
252 1.6.2.2 joerg }
253 1.6.2.2 joerg
254 1.6.2.4 joerg /* Real-time range */
255 1.6.2.4 joerg for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
256 1.6.2.4 joerg ts_map[p] = rt_ts;
257 1.6.2.4 joerg high_pri[p] = p;
258 1.6.2.2 joerg }
259 1.6.2.2 joerg }
260 1.6.2.2 joerg
261 1.6.2.2 joerg /*
262 1.6.2.2 joerg * Hooks.
263 1.6.2.2 joerg */
264 1.6.2.2 joerg
265 1.6.2.2 joerg void
266 1.6.2.2 joerg sched_proc_fork(struct proc *parent, struct proc *child)
267 1.6.2.2 joerg {
268 1.6.2.2 joerg struct lwp *l;
269 1.6.2.2 joerg
270 1.6.2.2 joerg LIST_FOREACH(l, &child->p_lwps, l_sibling) {
271 1.6.2.2 joerg lwp_lock(l);
272 1.6.2.2 joerg sched_newts(l);
273 1.6.2.2 joerg lwp_unlock(l);
274 1.6.2.2 joerg }
275 1.6.2.2 joerg }
276 1.6.2.2 joerg
277 1.6.2.2 joerg void
278 1.6.2.2 joerg sched_proc_exit(struct proc *child, struct proc *parent)
279 1.6.2.2 joerg {
280 1.6.2.2 joerg
281 1.6.2.2 joerg /* Dummy */
282 1.6.2.2 joerg }
283 1.6.2.2 joerg
284 1.6.2.2 joerg void
285 1.6.2.4 joerg sched_lwp_fork(struct lwp *l1, struct lwp *l2)
286 1.6.2.2 joerg {
287 1.6.2.2 joerg
288 1.6.2.4 joerg KASSERT(l2->l_sched_info == NULL);
289 1.6.2.4 joerg l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
290 1.6.2.4 joerg memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
291 1.6.2.4 joerg if (l2->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
292 1.6.2.4 joerg l2->l_priority = PRI_DEFAULT;
293 1.6.2.2 joerg }
294 1.6.2.2 joerg
295 1.6.2.2 joerg void
296 1.6.2.2 joerg sched_lwp_exit(struct lwp *l)
297 1.6.2.2 joerg {
298 1.6.2.2 joerg
299 1.6.2.2 joerg KASSERT(l->l_sched_info != NULL);
300 1.6.2.2 joerg pool_put(&sil_pool, l->l_sched_info);
301 1.6.2.2 joerg l->l_sched_info = NULL;
302 1.6.2.2 joerg }
303 1.6.2.2 joerg
304 1.6.2.2 joerg void
305 1.6.2.4 joerg sched_lwp_collect(struct lwp *l)
306 1.6.2.4 joerg {
307 1.6.2.4 joerg
308 1.6.2.4 joerg }
309 1.6.2.4 joerg
310 1.6.2.4 joerg void
311 1.6.2.2 joerg sched_setrunnable(struct lwp *l)
312 1.6.2.2 joerg {
313 1.6.2.2 joerg
314 1.6.2.2 joerg /* Dummy */
315 1.6.2.2 joerg }
316 1.6.2.2 joerg
317 1.6.2.2 joerg void
318 1.6.2.2 joerg sched_schedclock(struct lwp *l)
319 1.6.2.2 joerg {
320 1.6.2.2 joerg
321 1.6.2.2 joerg /* Dummy */
322 1.6.2.2 joerg }
323 1.6.2.2 joerg
324 1.6.2.2 joerg /*
325 1.6.2.2 joerg * Priorities and time-slice.
326 1.6.2.2 joerg */
327 1.6.2.2 joerg
328 1.6.2.2 joerg void
329 1.6.2.2 joerg sched_nice(struct proc *p, int prio)
330 1.6.2.2 joerg {
331 1.6.2.2 joerg int nprio;
332 1.6.2.2 joerg struct lwp *l;
333 1.6.2.2 joerg
334 1.6.2.4 joerg KASSERT(mutex_owned(&p->p_smutex));
335 1.6.2.2 joerg
336 1.6.2.2 joerg p->p_nice = prio;
337 1.6.2.4 joerg nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
338 1.6.2.2 joerg
339 1.6.2.2 joerg LIST_FOREACH(l, &p->p_lwps, l_sibling) {
340 1.6.2.2 joerg lwp_lock(l);
341 1.6.2.2 joerg lwp_changepri(l, nprio);
342 1.6.2.2 joerg lwp_unlock(l);
343 1.6.2.2 joerg }
344 1.6.2.2 joerg }
345 1.6.2.2 joerg
346 1.6.2.2 joerg /* Recalculate the time-slice */
347 1.6.2.2 joerg static inline void
348 1.6.2.2 joerg sched_newts(struct lwp *l)
349 1.6.2.2 joerg {
350 1.6.2.2 joerg sched_info_lwp_t *sil = l->l_sched_info;
351 1.6.2.2 joerg
352 1.6.2.2 joerg sil->sl_timeslice = ts_map[lwp_eprio(l)];
353 1.6.2.2 joerg }
354 1.6.2.2 joerg
355 1.6.2.2 joerg /*
356 1.6.2.2 joerg * Control of the runqueue.
357 1.6.2.2 joerg */
358 1.6.2.2 joerg
359 1.6.2.2 joerg static inline void *
360 1.6.2.2 joerg sched_getrq(runqueue_t *ci_rq, const pri_t prio)
361 1.6.2.2 joerg {
362 1.6.2.2 joerg
363 1.6.2.2 joerg KASSERT(prio < PRI_COUNT);
364 1.6.2.4 joerg return (prio <= PRI_HIGHEST_TS) ?
365 1.6.2.4 joerg &ci_rq->r_ts_queue[prio].q_head :
366 1.6.2.4 joerg &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
367 1.6.2.2 joerg }
368 1.6.2.2 joerg
369 1.6.2.2 joerg void
370 1.6.2.2 joerg sched_enqueue(struct lwp *l, bool swtch)
371 1.6.2.2 joerg {
372 1.6.2.2 joerg runqueue_t *ci_rq;
373 1.6.2.2 joerg sched_info_lwp_t *sil = l->l_sched_info;
374 1.6.2.2 joerg TAILQ_HEAD(, lwp) *q_head;
375 1.6.2.2 joerg const pri_t eprio = lwp_eprio(l);
376 1.6.2.2 joerg
377 1.6.2.2 joerg ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
378 1.6.2.2 joerg KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
379 1.6.2.2 joerg
380 1.6.2.2 joerg /* Update the last run time on switch */
381 1.6.2.5 joerg if (__predict_true(swtch == true)) {
382 1.6.2.2 joerg sil->sl_lrtime = hardclock_ticks;
383 1.6.2.2 joerg sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
384 1.6.2.3 jmcneill } else if (sil->sl_lrtime == 0)
385 1.6.2.3 jmcneill sil->sl_lrtime = hardclock_ticks;
386 1.6.2.2 joerg
387 1.6.2.2 joerg /* Enqueue the thread */
388 1.6.2.2 joerg q_head = sched_getrq(ci_rq, eprio);
389 1.6.2.2 joerg if (TAILQ_EMPTY(q_head)) {
390 1.6.2.2 joerg u_int i;
391 1.6.2.2 joerg uint32_t q;
392 1.6.2.2 joerg
393 1.6.2.2 joerg /* Mark bit */
394 1.6.2.2 joerg i = eprio >> BITMAP_SHIFT;
395 1.6.2.4 joerg q = BITMAP_MSB >> (eprio & BITMAP_MASK);
396 1.6.2.4 joerg KASSERT((ci_rq->r_bitmap[i] & q) == 0);
397 1.6.2.4 joerg ci_rq->r_bitmap[i] |= q;
398 1.6.2.2 joerg }
399 1.6.2.2 joerg TAILQ_INSERT_TAIL(q_head, l, l_runq);
400 1.6.2.2 joerg ci_rq->r_count++;
401 1.6.2.2 joerg if ((l->l_flag & LW_BOUND) == 0)
402 1.6.2.2 joerg ci_rq->r_mcount++;
403 1.6.2.2 joerg
404 1.6.2.2 joerg /*
405 1.6.2.2 joerg * Update the value of highest priority in the runqueue,
406 1.6.2.2 joerg * if priority of this thread is higher.
407 1.6.2.2 joerg */
408 1.6.2.4 joerg if (eprio > ci_rq->r_highest_pri)
409 1.6.2.2 joerg ci_rq->r_highest_pri = eprio;
410 1.6.2.2 joerg
411 1.6.2.2 joerg sched_newts(l);
412 1.6.2.2 joerg }
413 1.6.2.2 joerg
414 1.6.2.2 joerg void
415 1.6.2.2 joerg sched_dequeue(struct lwp *l)
416 1.6.2.2 joerg {
417 1.6.2.2 joerg runqueue_t *ci_rq;
418 1.6.2.2 joerg TAILQ_HEAD(, lwp) *q_head;
419 1.6.2.2 joerg const pri_t eprio = lwp_eprio(l);
420 1.6.2.2 joerg
421 1.6.2.2 joerg ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
422 1.6.2.2 joerg KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
423 1.6.2.4 joerg KASSERT(eprio <= ci_rq->r_highest_pri);
424 1.6.2.2 joerg KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
425 1.6.2.2 joerg KASSERT(ci_rq->r_count > 0);
426 1.6.2.2 joerg
427 1.6.2.2 joerg ci_rq->r_count--;
428 1.6.2.2 joerg if ((l->l_flag & LW_BOUND) == 0)
429 1.6.2.2 joerg ci_rq->r_mcount--;
430 1.6.2.2 joerg
431 1.6.2.2 joerg q_head = sched_getrq(ci_rq, eprio);
432 1.6.2.2 joerg TAILQ_REMOVE(q_head, l, l_runq);
433 1.6.2.2 joerg if (TAILQ_EMPTY(q_head)) {
434 1.6.2.2 joerg u_int i;
435 1.6.2.2 joerg uint32_t q;
436 1.6.2.2 joerg
437 1.6.2.2 joerg /* Unmark bit */
438 1.6.2.2 joerg i = eprio >> BITMAP_SHIFT;
439 1.6.2.4 joerg q = BITMAP_MSB >> (eprio & BITMAP_MASK);
440 1.6.2.4 joerg KASSERT((ci_rq->r_bitmap[i] & q) != 0);
441 1.6.2.4 joerg ci_rq->r_bitmap[i] &= ~q;
442 1.6.2.2 joerg
443 1.6.2.2 joerg /*
444 1.6.2.2 joerg * Update the value of highest priority in the runqueue, in a
445 1.6.2.2 joerg * case it was a last thread in the queue of highest priority.
446 1.6.2.2 joerg */
447 1.6.2.2 joerg if (eprio != ci_rq->r_highest_pri)
448 1.6.2.2 joerg return;
449 1.6.2.2 joerg
450 1.6.2.2 joerg do {
451 1.6.2.2 joerg q = ffs(ci_rq->r_bitmap[i]);
452 1.6.2.2 joerg if (q) {
453 1.6.2.2 joerg ci_rq->r_highest_pri =
454 1.6.2.4 joerg (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
455 1.6.2.2 joerg return;
456 1.6.2.2 joerg }
457 1.6.2.4 joerg } while (i--);
458 1.6.2.2 joerg
459 1.6.2.4 joerg /* If not found - set the lowest value */
460 1.6.2.4 joerg ci_rq->r_highest_pri = 0;
461 1.6.2.2 joerg }
462 1.6.2.2 joerg }
463 1.6.2.2 joerg
464 1.6.2.2 joerg void
465 1.6.2.2 joerg sched_slept(struct lwp *l)
466 1.6.2.2 joerg {
467 1.6.2.2 joerg sched_info_lwp_t *sil = l->l_sched_info;
468 1.6.2.2 joerg
469 1.6.2.2 joerg /* Save the time when thread has slept */
470 1.6.2.2 joerg sil->sl_slept = hardclock_ticks;
471 1.6.2.2 joerg
472 1.6.2.2 joerg /*
473 1.6.2.4 joerg * If thread is in time-sharing queue and batch flag is not marked,
474 1.6.2.4 joerg * increase the the priority, and run with the lower time-quantum.
475 1.6.2.2 joerg */
476 1.6.2.4 joerg if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
477 1.6.2.4 joerg KASSERT(l->l_class == SCHED_OTHER);
478 1.6.2.4 joerg l->l_priority++;
479 1.6.2.4 joerg }
480 1.6.2.2 joerg }
481 1.6.2.2 joerg
482 1.6.2.2 joerg void
483 1.6.2.2 joerg sched_wakeup(struct lwp *l)
484 1.6.2.2 joerg {
485 1.6.2.2 joerg sched_info_lwp_t *sil = l->l_sched_info;
486 1.6.2.2 joerg
487 1.6.2.2 joerg /* Update sleep time delta */
488 1.6.2.2 joerg sil->sl_slpsum += (l->l_slptime == 0) ?
489 1.6.2.2 joerg (hardclock_ticks - sil->sl_slept) : hz;
490 1.6.2.2 joerg
491 1.6.2.2 joerg /* If thread was sleeping a second or more - set a high priority */
492 1.6.2.2 joerg if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
493 1.6.2.4 joerg l->l_priority = high_pri[l->l_priority];
494 1.6.2.2 joerg
495 1.6.2.2 joerg /* Also, consider looking for a better CPU to wake up */
496 1.6.2.2 joerg if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
497 1.6.2.2 joerg l->l_cpu = sched_takecpu(l);
498 1.6.2.2 joerg }
499 1.6.2.2 joerg
500 1.6.2.2 joerg void
501 1.6.2.2 joerg sched_pstats_hook(struct lwp *l)
502 1.6.2.2 joerg {
503 1.6.2.2 joerg sched_info_lwp_t *sil = l->l_sched_info;
504 1.6.2.5 joerg pri_t prio;
505 1.6.2.4 joerg bool batch;
506 1.6.2.4 joerg
507 1.6.2.4 joerg if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
508 1.6.2.4 joerg l->l_stat == LSSUSPENDED)
509 1.6.2.4 joerg l->l_slptime++;
510 1.6.2.2 joerg
511 1.6.2.2 joerg /*
512 1.6.2.2 joerg * Set that thread is more CPU-bound, if sum of run time exceeds the
513 1.6.2.4 joerg * sum of sleep time. Check if thread is CPU-bound a first time.
514 1.6.2.2 joerg */
515 1.6.2.4 joerg batch = (sil->sl_rtsum > sil->sl_slpsum);
516 1.6.2.4 joerg if (batch) {
517 1.6.2.4 joerg if ((sil->sl_flags & SL_BATCH) == 0)
518 1.6.2.4 joerg batch = false;
519 1.6.2.2 joerg sil->sl_flags |= SL_BATCH;
520 1.6.2.4 joerg } else
521 1.6.2.2 joerg sil->sl_flags &= ~SL_BATCH;
522 1.6.2.4 joerg
523 1.6.2.4 joerg /* Reset the time sums */
524 1.6.2.2 joerg sil->sl_slpsum = 0;
525 1.6.2.2 joerg sil->sl_rtsum = 0;
526 1.6.2.2 joerg
527 1.6.2.4 joerg /* Estimate threads on time-sharing queue only */
528 1.6.2.4 joerg if (l->l_priority >= PRI_HIGHEST_TS)
529 1.6.2.2 joerg return;
530 1.6.2.2 joerg
531 1.6.2.4 joerg /* If it is CPU-bound not a first time - decrease the priority */
532 1.6.2.5 joerg prio = l->l_priority;
533 1.6.2.5 joerg if (batch && prio != 0)
534 1.6.2.5 joerg prio--;
535 1.6.2.4 joerg
536 1.6.2.2 joerg /* If thread was not ran a second or more - set a high priority */
537 1.6.2.5 joerg if (l->l_stat == LSRUN) {
538 1.6.2.5 joerg if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
539 1.6.2.5 joerg prio = high_pri[prio];
540 1.6.2.5 joerg /* Re-enqueue the thread if priority has changed */
541 1.6.2.5 joerg if (prio != l->l_priority)
542 1.6.2.5 joerg lwp_changepri(l, prio);
543 1.6.2.5 joerg } else {
544 1.6.2.5 joerg /* In other states, change the priority directly */
545 1.6.2.5 joerg l->l_priority = prio;
546 1.6.2.5 joerg }
547 1.6.2.2 joerg }
548 1.6.2.2 joerg
549 1.6.2.2 joerg /*
550 1.6.2.2 joerg * Migration and balancing.
551 1.6.2.2 joerg */
552 1.6.2.2 joerg
553 1.6.2.2 joerg #ifdef MULTIPROCESSOR
554 1.6.2.2 joerg
555 1.6.2.2 joerg /* Check if LWP can migrate to the chosen CPU */
556 1.6.2.2 joerg static inline bool
557 1.6.2.2 joerg sched_migratable(const struct lwp *l, const struct cpu_info *ci)
558 1.6.2.2 joerg {
559 1.6.2.2 joerg
560 1.6.2.2 joerg if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
561 1.6.2.2 joerg return false;
562 1.6.2.2 joerg
563 1.6.2.2 joerg if ((l->l_flag & LW_BOUND) == 0)
564 1.6.2.2 joerg return true;
565 1.6.2.2 joerg #if 0
566 1.6.2.2 joerg return cpu_in_pset(ci, l->l_psid);
567 1.6.2.2 joerg #else
568 1.6.2.2 joerg return false;
569 1.6.2.2 joerg #endif
570 1.6.2.2 joerg }
571 1.6.2.2 joerg
572 1.6.2.2 joerg /*
573 1.6.2.2 joerg * Estimate the migration of LWP to the other CPU.
574 1.6.2.2 joerg * Take and return the CPU, if migration is needed.
575 1.6.2.2 joerg */
576 1.6.2.2 joerg struct cpu_info *
577 1.6.2.2 joerg sched_takecpu(struct lwp *l)
578 1.6.2.2 joerg {
579 1.6.2.2 joerg struct cpu_info *ci, *tci = NULL;
580 1.6.2.2 joerg struct schedstate_percpu *spc;
581 1.6.2.2 joerg runqueue_t *ci_rq;
582 1.6.2.2 joerg sched_info_lwp_t *sil;
583 1.6.2.2 joerg CPU_INFO_ITERATOR cii;
584 1.6.2.2 joerg pri_t eprio, lpri;
585 1.6.2.2 joerg
586 1.6.2.2 joerg ci = l->l_cpu;
587 1.6.2.2 joerg spc = &ci->ci_schedstate;
588 1.6.2.2 joerg ci_rq = spc->spc_sched_info;
589 1.6.2.2 joerg
590 1.6.2.2 joerg /* CPU of this thread is idling - run there */
591 1.6.2.2 joerg if (ci_rq->r_count == 0)
592 1.6.2.2 joerg return ci;
593 1.6.2.2 joerg
594 1.6.2.2 joerg eprio = lwp_eprio(l);
595 1.6.2.2 joerg sil = l->l_sched_info;
596 1.6.2.2 joerg
597 1.6.2.2 joerg /* Stay if thread is cache-hot */
598 1.6.2.2 joerg if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
599 1.6.2.4 joerg CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
600 1.6.2.2 joerg return ci;
601 1.6.2.2 joerg
602 1.6.2.2 joerg /* Run on current CPU if priority of thread is higher */
603 1.6.2.2 joerg ci = curcpu();
604 1.6.2.2 joerg spc = &ci->ci_schedstate;
605 1.6.2.4 joerg if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
606 1.6.2.2 joerg return ci;
607 1.6.2.2 joerg
608 1.6.2.2 joerg /*
609 1.6.2.2 joerg * Look for the CPU with the lowest priority thread. In case of
610 1.6.2.2 joerg * equal the priority - check the lower count of the threads.
611 1.6.2.2 joerg */
612 1.6.2.4 joerg lpri = PRI_COUNT;
613 1.6.2.2 joerg for (CPU_INFO_FOREACH(cii, ci)) {
614 1.6.2.2 joerg runqueue_t *ici_rq;
615 1.6.2.2 joerg pri_t pri;
616 1.6.2.2 joerg
617 1.6.2.2 joerg spc = &ci->ci_schedstate;
618 1.6.2.2 joerg ici_rq = spc->spc_sched_info;
619 1.6.2.4 joerg pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
620 1.6.2.4 joerg if (pri > lpri)
621 1.6.2.2 joerg continue;
622 1.6.2.2 joerg
623 1.6.2.4 joerg if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
624 1.6.2.2 joerg continue;
625 1.6.2.2 joerg
626 1.6.2.2 joerg if (sched_migratable(l, ci) == false)
627 1.6.2.2 joerg continue;
628 1.6.2.2 joerg
629 1.6.2.2 joerg lpri = pri;
630 1.6.2.2 joerg tci = ci;
631 1.6.2.2 joerg ci_rq = ici_rq;
632 1.6.2.2 joerg }
633 1.6.2.2 joerg
634 1.6.2.4 joerg KASSERT(tci != NULL);
635 1.6.2.2 joerg return tci;
636 1.6.2.2 joerg }
637 1.6.2.2 joerg
638 1.6.2.2 joerg /*
639 1.6.2.2 joerg * Tries to catch an LWP from the runqueue of other CPU.
640 1.6.2.2 joerg */
641 1.6.2.2 joerg static struct lwp *
642 1.6.2.2 joerg sched_catchlwp(void)
643 1.6.2.2 joerg {
644 1.6.2.2 joerg struct cpu_info *curci = curcpu(), *ci = worker_ci;
645 1.6.2.2 joerg TAILQ_HEAD(, lwp) *q_head;
646 1.6.2.2 joerg runqueue_t *ci_rq;
647 1.6.2.2 joerg struct lwp *l;
648 1.6.2.2 joerg
649 1.6.2.2 joerg if (curci == ci)
650 1.6.2.2 joerg return NULL;
651 1.6.2.2 joerg
652 1.6.2.2 joerg /* Lockless check */
653 1.6.2.2 joerg ci_rq = ci->ci_schedstate.spc_sched_info;
654 1.6.2.2 joerg if (ci_rq->r_count < min_catch)
655 1.6.2.2 joerg return NULL;
656 1.6.2.2 joerg
657 1.6.2.2 joerg /*
658 1.6.2.2 joerg * Double-lock the runqueues.
659 1.6.2.2 joerg */
660 1.6.2.2 joerg if (curci < ci) {
661 1.6.2.2 joerg spc_lock(ci);
662 1.6.2.2 joerg } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
663 1.6.2.2 joerg const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
664 1.6.2.2 joerg
665 1.6.2.2 joerg spc_unlock(curci);
666 1.6.2.2 joerg spc_lock(ci);
667 1.6.2.2 joerg spc_lock(curci);
668 1.6.2.2 joerg
669 1.6.2.2 joerg if (cur_rq->r_count) {
670 1.6.2.2 joerg spc_unlock(ci);
671 1.6.2.2 joerg return NULL;
672 1.6.2.2 joerg }
673 1.6.2.2 joerg }
674 1.6.2.2 joerg
675 1.6.2.2 joerg if (ci_rq->r_count < min_catch) {
676 1.6.2.2 joerg spc_unlock(ci);
677 1.6.2.2 joerg return NULL;
678 1.6.2.2 joerg }
679 1.6.2.2 joerg
680 1.6.2.2 joerg /* Take the highest priority thread */
681 1.6.2.2 joerg q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
682 1.6.2.2 joerg l = TAILQ_FIRST(q_head);
683 1.6.2.2 joerg
684 1.6.2.2 joerg for (;;) {
685 1.6.2.2 joerg sched_info_lwp_t *sil;
686 1.6.2.2 joerg
687 1.6.2.2 joerg /* Check the first and next result from the queue */
688 1.6.2.2 joerg if (l == NULL)
689 1.6.2.2 joerg break;
690 1.6.2.2 joerg
691 1.6.2.2 joerg /* Look for threads, whose are allowed to migrate */
692 1.6.2.2 joerg sil = l->l_sched_info;
693 1.6.2.2 joerg if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
694 1.6.2.2 joerg sched_migratable(l, curci) == false) {
695 1.6.2.2 joerg l = TAILQ_NEXT(l, l_runq);
696 1.6.2.2 joerg continue;
697 1.6.2.2 joerg }
698 1.6.2.2 joerg /* Recheck if chosen thread is still on the runqueue */
699 1.6.2.2 joerg if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
700 1.6.2.2 joerg sched_dequeue(l);
701 1.6.2.2 joerg l->l_cpu = curci;
702 1.6.2.2 joerg lwp_setlock(l, curci->ci_schedstate.spc_mutex);
703 1.6.2.2 joerg sched_enqueue(l, false);
704 1.6.2.2 joerg break;
705 1.6.2.2 joerg }
706 1.6.2.2 joerg l = TAILQ_NEXT(l, l_runq);
707 1.6.2.2 joerg }
708 1.6.2.2 joerg spc_unlock(ci);
709 1.6.2.2 joerg
710 1.6.2.2 joerg return l;
711 1.6.2.2 joerg }
712 1.6.2.2 joerg
713 1.6.2.2 joerg /*
714 1.6.2.2 joerg * Periodical calculations for balancing.
715 1.6.2.2 joerg */
716 1.6.2.2 joerg static void
717 1.6.2.2 joerg sched_balance(void *nocallout)
718 1.6.2.2 joerg {
719 1.6.2.2 joerg struct cpu_info *ci, *hci;
720 1.6.2.2 joerg runqueue_t *ci_rq;
721 1.6.2.2 joerg CPU_INFO_ITERATOR cii;
722 1.6.2.2 joerg u_int highest;
723 1.6.2.2 joerg
724 1.6.2.2 joerg hci = curcpu();
725 1.6.2.2 joerg highest = 0;
726 1.6.2.2 joerg
727 1.6.2.2 joerg /* Make lockless countings */
728 1.6.2.2 joerg for (CPU_INFO_FOREACH(cii, ci)) {
729 1.6.2.2 joerg ci_rq = ci->ci_schedstate.spc_sched_info;
730 1.6.2.2 joerg
731 1.6.2.2 joerg /* Average count of the threads */
732 1.6.2.2 joerg ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
733 1.6.2.2 joerg
734 1.6.2.2 joerg /* Look for CPU with the highest average */
735 1.6.2.2 joerg if (ci_rq->r_avgcount > highest) {
736 1.6.2.2 joerg hci = ci;
737 1.6.2.2 joerg highest = ci_rq->r_avgcount;
738 1.6.2.2 joerg }
739 1.6.2.2 joerg }
740 1.6.2.2 joerg
741 1.6.2.2 joerg /* Update the worker */
742 1.6.2.2 joerg worker_ci = hci;
743 1.6.2.2 joerg
744 1.6.2.2 joerg if (nocallout == NULL)
745 1.6.2.2 joerg callout_schedule(&balance_ch, balance_period);
746 1.6.2.2 joerg }
747 1.6.2.2 joerg
748 1.6.2.2 joerg #else
749 1.6.2.2 joerg
750 1.6.2.2 joerg struct cpu_info *
751 1.6.2.2 joerg sched_takecpu(struct lwp *l)
752 1.6.2.2 joerg {
753 1.6.2.2 joerg
754 1.6.2.2 joerg return l->l_cpu;
755 1.6.2.2 joerg }
756 1.6.2.2 joerg
757 1.6.2.2 joerg #endif /* MULTIPROCESSOR */
758 1.6.2.2 joerg
759 1.6.2.2 joerg /*
760 1.6.2.2 joerg * Scheduler mill.
761 1.6.2.2 joerg */
762 1.6.2.2 joerg struct lwp *
763 1.6.2.2 joerg sched_nextlwp(void)
764 1.6.2.2 joerg {
765 1.6.2.2 joerg struct cpu_info *ci = curcpu();
766 1.6.2.2 joerg struct schedstate_percpu *spc;
767 1.6.2.2 joerg TAILQ_HEAD(, lwp) *q_head;
768 1.6.2.2 joerg sched_info_lwp_t *sil;
769 1.6.2.2 joerg runqueue_t *ci_rq;
770 1.6.2.2 joerg struct lwp *l;
771 1.6.2.2 joerg
772 1.6.2.2 joerg spc = &ci->ci_schedstate;
773 1.6.2.2 joerg ci_rq = ci->ci_schedstate.spc_sched_info;
774 1.6.2.2 joerg
775 1.6.2.2 joerg #ifdef MULTIPROCESSOR
776 1.6.2.2 joerg /* If runqueue is empty, try to catch some thread from other CPU */
777 1.6.2.5 joerg if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
778 1.6.2.3 jmcneill if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
779 1.6.2.2 joerg return NULL;
780 1.6.2.2 joerg } else if (ci_rq->r_count == 0) {
781 1.6.2.2 joerg /* Reset the counter, and call the balancer */
782 1.6.2.2 joerg ci_rq->r_avgcount = 0;
783 1.6.2.2 joerg sched_balance(ci);
784 1.6.2.2 joerg
785 1.6.2.2 joerg /* The re-locking will be done inside */
786 1.6.2.2 joerg return sched_catchlwp();
787 1.6.2.2 joerg }
788 1.6.2.2 joerg #else
789 1.6.2.2 joerg if (ci_rq->r_count == 0)
790 1.6.2.2 joerg return NULL;
791 1.6.2.2 joerg #endif
792 1.6.2.2 joerg
793 1.6.2.2 joerg /* Take the highest priority thread */
794 1.6.2.2 joerg KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
795 1.6.2.2 joerg q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
796 1.6.2.2 joerg l = TAILQ_FIRST(q_head);
797 1.6.2.2 joerg KASSERT(l != NULL);
798 1.6.2.2 joerg
799 1.6.2.2 joerg /* Update the counters */
800 1.6.2.2 joerg sil = l->l_sched_info;
801 1.6.2.2 joerg KASSERT(sil->sl_timeslice >= min_ts);
802 1.6.2.2 joerg KASSERT(sil->sl_timeslice <= max_ts);
803 1.6.2.2 joerg spc->spc_ticks = sil->sl_timeslice;
804 1.6.2.2 joerg sil->sl_rtime = hardclock_ticks;
805 1.6.2.2 joerg
806 1.6.2.2 joerg return l;
807 1.6.2.2 joerg }
808 1.6.2.2 joerg
809 1.6.2.2 joerg bool
810 1.6.2.2 joerg sched_curcpu_runnable_p(void)
811 1.6.2.2 joerg {
812 1.6.2.2 joerg const struct cpu_info *ci = curcpu();
813 1.6.2.2 joerg const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
814 1.6.2.2 joerg
815 1.6.2.5 joerg #ifndef __HAVE_FAST_SOFTINTS
816 1.6.2.5 joerg if (ci->ci_data.cpu_softints)
817 1.6.2.5 joerg return true;
818 1.6.2.5 joerg #endif
819 1.6.2.5 joerg
820 1.6.2.2 joerg if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
821 1.6.2.3 jmcneill return (ci_rq->r_count - ci_rq->r_mcount);
822 1.6.2.2 joerg
823 1.6.2.2 joerg return ci_rq->r_count;
824 1.6.2.2 joerg }
825 1.6.2.2 joerg
826 1.6.2.2 joerg /*
827 1.6.2.2 joerg * Time-driven events.
828 1.6.2.2 joerg */
829 1.6.2.2 joerg
830 1.6.2.2 joerg /*
831 1.6.2.2 joerg * Called once per time-quantum. This routine is CPU-local and runs at
832 1.6.2.2 joerg * IPL_SCHED, thus the locking is not needed.
833 1.6.2.2 joerg */
834 1.6.2.2 joerg void
835 1.6.2.2 joerg sched_tick(struct cpu_info *ci)
836 1.6.2.2 joerg {
837 1.6.2.2 joerg const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
838 1.6.2.2 joerg struct schedstate_percpu *spc = &ci->ci_schedstate;
839 1.6.2.2 joerg struct lwp *l = curlwp;
840 1.6.2.2 joerg sched_info_lwp_t *sil = l->l_sched_info;
841 1.6.2.2 joerg
842 1.6.2.2 joerg if (CURCPU_IDLE_P())
843 1.6.2.2 joerg return;
844 1.6.2.2 joerg
845 1.6.2.4 joerg switch (l->l_class) {
846 1.6.2.2 joerg case SCHED_FIFO:
847 1.6.2.2 joerg /*
848 1.6.2.2 joerg * Update the time-quantum, and continue running,
849 1.6.2.2 joerg * if thread runs on FIFO real-time policy.
850 1.6.2.2 joerg */
851 1.6.2.2 joerg spc->spc_ticks = sil->sl_timeslice;
852 1.6.2.2 joerg return;
853 1.6.2.2 joerg case SCHED_OTHER:
854 1.6.2.4 joerg /*
855 1.6.2.4 joerg * If thread is in time-sharing queue, decrease the priority,
856 1.6.2.4 joerg * and run with a higher time-quantum.
857 1.6.2.4 joerg */
858 1.6.2.4 joerg if (l->l_priority > PRI_HIGHEST_TS)
859 1.6.2.2 joerg break;
860 1.6.2.4 joerg if (l->l_priority != 0)
861 1.6.2.4 joerg l->l_priority--;
862 1.6.2.2 joerg break;
863 1.6.2.2 joerg }
864 1.6.2.2 joerg
865 1.6.2.2 joerg /*
866 1.6.2.2 joerg * If there are higher priority threads or threads in the same queue,
867 1.6.2.2 joerg * mark that thread should yield, otherwise, continue running.
868 1.6.2.2 joerg */
869 1.6.2.4 joerg if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
870 1.6.2.2 joerg spc->spc_flags |= SPCF_SHOULDYIELD;
871 1.6.2.2 joerg cpu_need_resched(ci, 0);
872 1.6.2.2 joerg } else
873 1.6.2.2 joerg spc->spc_ticks = sil->sl_timeslice;
874 1.6.2.2 joerg }
875 1.6.2.2 joerg
876 1.6.2.2 joerg /*
877 1.6.2.2 joerg * Sysctl nodes and initialization.
878 1.6.2.2 joerg */
879 1.6.2.2 joerg
880 1.6.2.2 joerg static int
881 1.6.2.2 joerg sysctl_sched_mints(SYSCTLFN_ARGS)
882 1.6.2.2 joerg {
883 1.6.2.2 joerg struct sysctlnode node;
884 1.6.2.2 joerg struct cpu_info *ci;
885 1.6.2.2 joerg int error, newsize;
886 1.6.2.2 joerg CPU_INFO_ITERATOR cii;
887 1.6.2.2 joerg
888 1.6.2.2 joerg node = *rnode;
889 1.6.2.2 joerg node.sysctl_data = &newsize;
890 1.6.2.2 joerg
891 1.6.2.2 joerg newsize = hztoms(min_ts);
892 1.6.2.2 joerg error = sysctl_lookup(SYSCTLFN_CALL(&node));
893 1.6.2.2 joerg if (error || newp == NULL)
894 1.6.2.2 joerg return error;
895 1.6.2.2 joerg
896 1.6.2.3 jmcneill newsize = mstohz(newsize);
897 1.6.2.2 joerg if (newsize < 1 || newsize > hz || newsize >= max_ts)
898 1.6.2.2 joerg return EINVAL;
899 1.6.2.2 joerg
900 1.6.2.2 joerg /* It is safe to do this in such order */
901 1.6.2.2 joerg for (CPU_INFO_FOREACH(cii, ci))
902 1.6.2.2 joerg spc_lock(ci);
903 1.6.2.2 joerg
904 1.6.2.3 jmcneill min_ts = newsize;
905 1.6.2.2 joerg sched_precalcts();
906 1.6.2.2 joerg
907 1.6.2.2 joerg for (CPU_INFO_FOREACH(cii, ci))
908 1.6.2.2 joerg spc_unlock(ci);
909 1.6.2.2 joerg
910 1.6.2.2 joerg return 0;
911 1.6.2.2 joerg }
912 1.6.2.2 joerg
913 1.6.2.2 joerg static int
914 1.6.2.2 joerg sysctl_sched_maxts(SYSCTLFN_ARGS)
915 1.6.2.2 joerg {
916 1.6.2.2 joerg struct sysctlnode node;
917 1.6.2.2 joerg struct cpu_info *ci;
918 1.6.2.2 joerg int error, newsize;
919 1.6.2.2 joerg CPU_INFO_ITERATOR cii;
920 1.6.2.2 joerg
921 1.6.2.2 joerg node = *rnode;
922 1.6.2.2 joerg node.sysctl_data = &newsize;
923 1.6.2.2 joerg
924 1.6.2.2 joerg newsize = hztoms(max_ts);
925 1.6.2.2 joerg error = sysctl_lookup(SYSCTLFN_CALL(&node));
926 1.6.2.2 joerg if (error || newp == NULL)
927 1.6.2.2 joerg return error;
928 1.6.2.2 joerg
929 1.6.2.3 jmcneill newsize = mstohz(newsize);
930 1.6.2.2 joerg if (newsize < 10 || newsize > hz || newsize <= min_ts)
931 1.6.2.2 joerg return EINVAL;
932 1.6.2.2 joerg
933 1.6.2.2 joerg /* It is safe to do this in such order */
934 1.6.2.2 joerg for (CPU_INFO_FOREACH(cii, ci))
935 1.6.2.2 joerg spc_lock(ci);
936 1.6.2.2 joerg
937 1.6.2.3 jmcneill max_ts = newsize;
938 1.6.2.2 joerg sched_precalcts();
939 1.6.2.2 joerg
940 1.6.2.2 joerg for (CPU_INFO_FOREACH(cii, ci))
941 1.6.2.2 joerg spc_unlock(ci);
942 1.6.2.2 joerg
943 1.6.2.2 joerg return 0;
944 1.6.2.2 joerg }
945 1.6.2.2 joerg
946 1.6.2.2 joerg SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
947 1.6.2.2 joerg {
948 1.6.2.2 joerg const struct sysctlnode *node = NULL;
949 1.6.2.2 joerg
950 1.6.2.2 joerg sysctl_createv(clog, 0, NULL, NULL,
951 1.6.2.2 joerg CTLFLAG_PERMANENT,
952 1.6.2.2 joerg CTLTYPE_NODE, "kern", NULL,
953 1.6.2.2 joerg NULL, 0, NULL, 0,
954 1.6.2.2 joerg CTL_KERN, CTL_EOL);
955 1.6.2.2 joerg sysctl_createv(clog, 0, NULL, &node,
956 1.6.2.2 joerg CTLFLAG_PERMANENT,
957 1.6.2.2 joerg CTLTYPE_NODE, "sched",
958 1.6.2.2 joerg SYSCTL_DESCR("Scheduler options"),
959 1.6.2.2 joerg NULL, 0, NULL, 0,
960 1.6.2.2 joerg CTL_KERN, CTL_CREATE, CTL_EOL);
961 1.6.2.2 joerg
962 1.6.2.2 joerg if (node == NULL)
963 1.6.2.2 joerg return;
964 1.6.2.2 joerg
965 1.6.2.2 joerg sysctl_createv(clog, 0, &node, NULL,
966 1.6.2.2 joerg CTLFLAG_PERMANENT,
967 1.6.2.2 joerg CTLTYPE_STRING, "name", NULL,
968 1.6.2.2 joerg NULL, 0, __UNCONST("M2"), 0,
969 1.6.2.2 joerg CTL_CREATE, CTL_EOL);
970 1.6.2.2 joerg sysctl_createv(clog, 0, &node, NULL,
971 1.6.2.2 joerg CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
972 1.6.2.2 joerg CTLTYPE_INT, "maxts",
973 1.6.2.3 jmcneill SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
974 1.6.2.2 joerg sysctl_sched_maxts, 0, &max_ts, 0,
975 1.6.2.2 joerg CTL_CREATE, CTL_EOL);
976 1.6.2.2 joerg sysctl_createv(clog, 0, &node, NULL,
977 1.6.2.2 joerg CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
978 1.6.2.2 joerg CTLTYPE_INT, "mints",
979 1.6.2.3 jmcneill SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
980 1.6.2.2 joerg sysctl_sched_mints, 0, &min_ts, 0,
981 1.6.2.2 joerg CTL_CREATE, CTL_EOL);
982 1.6.2.2 joerg
983 1.6.2.2 joerg #ifdef MULTIPROCESSOR
984 1.6.2.2 joerg sysctl_createv(clog, 0, &node, NULL,
985 1.6.2.2 joerg CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
986 1.6.2.2 joerg CTLTYPE_INT, "cacheht_time",
987 1.6.2.3 jmcneill SYSCTL_DESCR("Cache hotness time (in ticks)"),
988 1.6.2.2 joerg NULL, 0, &cacheht_time, 0,
989 1.6.2.2 joerg CTL_CREATE, CTL_EOL);
990 1.6.2.2 joerg sysctl_createv(clog, 0, &node, NULL,
991 1.6.2.2 joerg CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
992 1.6.2.2 joerg CTLTYPE_INT, "balance_period",
993 1.6.2.3 jmcneill SYSCTL_DESCR("Balance period (in ticks)"),
994 1.6.2.2 joerg NULL, 0, &balance_period, 0,
995 1.6.2.2 joerg CTL_CREATE, CTL_EOL);
996 1.6.2.2 joerg sysctl_createv(clog, 0, &node, NULL,
997 1.6.2.2 joerg CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
998 1.6.2.2 joerg CTLTYPE_INT, "min_catch",
999 1.6.2.3 jmcneill SYSCTL_DESCR("Minimal count of the threads for catching"),
1000 1.6.2.2 joerg NULL, 0, &min_catch, 0,
1001 1.6.2.2 joerg CTL_CREATE, CTL_EOL);
1002 1.6.2.2 joerg #endif
1003 1.6.2.2 joerg }
1004 1.6.2.2 joerg
1005 1.6.2.2 joerg /*
1006 1.6.2.2 joerg * Debugging.
1007 1.6.2.2 joerg */
1008 1.6.2.2 joerg
1009 1.6.2.2 joerg #ifdef DDB
1010 1.6.2.2 joerg
1011 1.6.2.2 joerg void
1012 1.6.2.2 joerg sched_print_runqueue(void (*pr)(const char *, ...))
1013 1.6.2.2 joerg {
1014 1.6.2.2 joerg runqueue_t *ci_rq;
1015 1.6.2.2 joerg sched_info_lwp_t *sil;
1016 1.6.2.2 joerg struct lwp *l;
1017 1.6.2.2 joerg struct proc *p;
1018 1.6.2.2 joerg int i;
1019 1.6.2.2 joerg
1020 1.6.2.2 joerg struct cpu_info *ci;
1021 1.6.2.2 joerg CPU_INFO_ITERATOR cii;
1022 1.6.2.2 joerg
1023 1.6.2.2 joerg for (CPU_INFO_FOREACH(cii, ci)) {
1024 1.6.2.2 joerg ci_rq = ci->ci_schedstate.spc_sched_info;
1025 1.6.2.2 joerg
1026 1.6.2.2 joerg (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1027 1.6.2.2 joerg (*pr)(" pid.lid = %d.%d, threads count = %u, "
1028 1.6.2.2 joerg "avgcount = %u, highest pri = %d\n",
1029 1.6.2.2 joerg ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1030 1.6.2.2 joerg ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1031 1.6.2.4 joerg i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1032 1.6.2.2 joerg do {
1033 1.6.2.4 joerg uint32_t q;
1034 1.6.2.4 joerg q = ci_rq->r_bitmap[i];
1035 1.6.2.4 joerg (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1036 1.6.2.4 joerg } while (i--);
1037 1.6.2.2 joerg }
1038 1.6.2.2 joerg
1039 1.6.2.2 joerg (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1040 1.6.2.4 joerg "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1041 1.6.2.2 joerg
1042 1.6.2.2 joerg PROCLIST_FOREACH(p, &allproc) {
1043 1.6.2.2 joerg (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1044 1.6.2.2 joerg LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1045 1.6.2.2 joerg sil = l->l_sched_info;
1046 1.6.2.2 joerg ci = l->l_cpu;
1047 1.6.2.2 joerg (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1048 1.6.2.2 joerg "%u ST=%d RT=%d %d\n",
1049 1.6.2.4 joerg (int)l->l_lid, l->l_priority, lwp_eprio(l),
1050 1.6.2.2 joerg l->l_flag, l->l_stat == LSRUN ? "RQ" :
1051 1.6.2.2 joerg (l->l_stat == LSSLEEP ? "SQ" : "-"),
1052 1.6.2.2 joerg sil->sl_timeslice, l, ci->ci_cpuid,
1053 1.6.2.2 joerg (u_int)(hardclock_ticks - sil->sl_lrtime),
1054 1.6.2.2 joerg sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1055 1.6.2.2 joerg }
1056 1.6.2.2 joerg }
1057 1.6.2.2 joerg }
1058 1.6.2.2 joerg
1059 1.6.2.2 joerg #endif /* defined(DDB) */
1060