sched_m2.c revision 1.8 1 1.8 rmind /* $NetBSD: sched_m2.c,v 1.8 2007/11/04 12:36:01 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*
4 1.1 rmind * Copyright (c) 2007, Mindaugas Rasiukevicius
5 1.1 rmind *
6 1.1 rmind * Redistribution and use in source and binary forms, with or without
7 1.1 rmind * modification, are permitted provided that the following conditions
8 1.1 rmind * are met:
9 1.1 rmind * 1. Redistributions of source code must retain the above copyright
10 1.1 rmind * notice, this list of conditions and the following disclaimer.
11 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 rmind * notice, this list of conditions and the following disclaimer in the
13 1.1 rmind * documentation and/or other materials provided with the distribution.
14 1.1 rmind *
15 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
19 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
26 1.1 rmind */
27 1.1 rmind
28 1.1 rmind /*
29 1.1 rmind * TODO:
30 1.1 rmind * - Implementation of fair share queue;
31 1.1 rmind * - Support for NUMA;
32 1.1 rmind */
33 1.1 rmind
34 1.1 rmind #include <sys/cdefs.h>
35 1.8 rmind __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.8 2007/11/04 12:36:01 rmind Exp $");
36 1.1 rmind
37 1.1 rmind #include <sys/param.h>
38 1.1 rmind
39 1.8 rmind #include <sys/bitops.h>
40 1.1 rmind #include <sys/cpu.h>
41 1.1 rmind #include <sys/callout.h>
42 1.1 rmind #include <sys/errno.h>
43 1.1 rmind #include <sys/kernel.h>
44 1.1 rmind #include <sys/kmem.h>
45 1.1 rmind #include <sys/lwp.h>
46 1.1 rmind #include <sys/mutex.h>
47 1.1 rmind #include <sys/pool.h>
48 1.1 rmind #include <sys/proc.h>
49 1.1 rmind #include <sys/resource.h>
50 1.1 rmind #include <sys/resourcevar.h>
51 1.1 rmind #include <sys/sched.h>
52 1.1 rmind #include <sys/syscallargs.h>
53 1.1 rmind #include <sys/sysctl.h>
54 1.1 rmind #include <sys/types.h>
55 1.1 rmind
56 1.1 rmind /*
57 1.5 yamt * XXX: Some definitions below will disappear
58 1.1 rmind * XXX: with the merge of vmlocking branch.
59 1.1 rmind */
60 1.1 rmind #define PRI_MAX MAXPRI
61 1.1 rmind #define PRI_COUNT (PRI_MAX + 1) /* 0 .. 127 -> 128 */
62 1.1 rmind #define PRI_RT_COUNT (50) /* 0 .. 49 -> 50 */
63 1.1 rmind #define PRI_TS_COUNT (PRI_COUNT - PRI_RT_COUNT) /* 50 .. 127 -> 78 */
64 1.1 rmind
65 1.1 rmind #define PRI_DEFAULT 70 /* 70 */
66 1.1 rmind #define PRI_REALTIME 50 /* 50 */
67 1.1 rmind #define PRI_HTS_RANGE 10 /* 50 .. 60 -> 10 */
68 1.1 rmind
69 1.1 rmind /*
70 1.1 rmind * Bits per map.
71 1.1 rmind */
72 1.1 rmind #define BITMAP_SHIFT 5 /* 32 bits */
73 1.1 rmind #define BITMAP_SIZE PRI_COUNT >> BITMAP_SHIFT
74 1.1 rmind
75 1.1 rmind /*
76 1.1 rmind * Time-slices and priorities.
77 1.1 rmind */
78 1.1 rmind static u_int min_ts; /* Minimal time-slice */
79 1.1 rmind static u_int max_ts; /* Maximal time-slice */
80 1.1 rmind static u_int rt_ts; /* Real-time time-slice */
81 1.1 rmind static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
82 1.1 rmind static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
83 1.1 rmind
84 1.1 rmind /*
85 1.1 rmind * Migration and balancing.
86 1.1 rmind */
87 1.1 rmind #ifdef MULTIPROCESSOR
88 1.1 rmind static u_int cacheht_time; /* Cache hotness time */
89 1.1 rmind static u_int min_catch; /* Minimal LWP count for catching */
90 1.1 rmind
91 1.1 rmind static u_int balance_period; /* Balance period */
92 1.1 rmind static struct callout balance_ch; /* Callout of balancer */
93 1.1 rmind
94 1.1 rmind static struct cpu_info * volatile worker_ci;
95 1.1 rmind
96 1.1 rmind #define CACHE_HOT(sil) (sil->sl_lrtime && \
97 1.1 rmind (hardclock_ticks - sil->sl_lrtime < cacheht_time))
98 1.1 rmind
99 1.1 rmind #endif
100 1.1 rmind
101 1.1 rmind /*
102 1.1 rmind * Structures, runqueue.
103 1.1 rmind */
104 1.1 rmind
105 1.1 rmind typedef struct {
106 1.1 rmind TAILQ_HEAD(, lwp) q_head;
107 1.1 rmind } queue_t;
108 1.1 rmind
109 1.1 rmind typedef struct {
110 1.1 rmind /* Lock and bitmap */
111 1.1 rmind kmutex_t r_rq_mutex;
112 1.1 rmind uint32_t r_bitmap[BITMAP_SIZE];
113 1.1 rmind /* Counters */
114 1.1 rmind u_int r_count; /* Count of the threads */
115 1.1 rmind pri_t r_highest_pri; /* Highest priority */
116 1.1 rmind u_int r_avgcount; /* Average count of threads */
117 1.1 rmind u_int r_mcount; /* Count of migratable threads */
118 1.1 rmind /* Runqueues */
119 1.1 rmind queue_t r_rt_queue[PRI_RT_COUNT];
120 1.1 rmind queue_t r_ts_queue[PRI_TS_COUNT];
121 1.1 rmind } runqueue_t;
122 1.1 rmind
123 1.1 rmind typedef struct {
124 1.1 rmind u_int sl_flags;
125 1.1 rmind u_int sl_timeslice; /* Time-slice of thread */
126 1.1 rmind u_int sl_slept; /* Saved sleep time for sleep sum */
127 1.1 rmind u_int sl_slpsum; /* Sum of sleep time */
128 1.1 rmind u_int sl_rtime; /* Saved start time of run */
129 1.1 rmind u_int sl_rtsum; /* Sum of the run time */
130 1.1 rmind u_int sl_lrtime; /* Last run time */
131 1.1 rmind } sched_info_lwp_t;
132 1.1 rmind
133 1.1 rmind /* Flags */
134 1.1 rmind #define SL_BATCH 0x01
135 1.1 rmind
136 1.1 rmind /* Pool of the scheduler-specific structures for threads */
137 1.1 rmind static struct pool sil_pool;
138 1.1 rmind
139 1.1 rmind /*
140 1.1 rmind * Prototypes.
141 1.1 rmind */
142 1.1 rmind
143 1.1 rmind static inline void * sched_getrq(runqueue_t *, const pri_t);
144 1.1 rmind static inline void sched_newts(struct lwp *);
145 1.1 rmind static void sched_precalcts(void);
146 1.1 rmind
147 1.1 rmind #ifdef MULTIPROCESSOR
148 1.1 rmind static struct lwp * sched_catchlwp(void);
149 1.1 rmind static void sched_balance(void *);
150 1.1 rmind #endif
151 1.1 rmind
152 1.1 rmind /*
153 1.1 rmind * Initialization and setup.
154 1.1 rmind */
155 1.1 rmind
156 1.1 rmind void
157 1.1 rmind sched_rqinit(void)
158 1.1 rmind {
159 1.1 rmind struct cpu_info *ci = curcpu();
160 1.1 rmind
161 1.1 rmind if (hz < 100) {
162 1.1 rmind panic("sched_rqinit: value of HZ is too low\n");
163 1.1 rmind }
164 1.1 rmind
165 1.1 rmind /* Default timing ranges */
166 1.1 rmind min_ts = mstohz(50); /* ~50ms */
167 1.1 rmind max_ts = mstohz(150); /* ~150ms */
168 1.1 rmind rt_ts = mstohz(100); /* ~100ms */
169 1.1 rmind sched_precalcts();
170 1.1 rmind
171 1.1 rmind #ifdef MULTIPROCESSOR
172 1.1 rmind /* Balancing */
173 1.1 rmind worker_ci = ci;
174 1.1 rmind cacheht_time = mstohz(5); /* ~5 ms */
175 1.1 rmind balance_period = mstohz(300); /* ~300ms */
176 1.1 rmind min_catch = ~0;
177 1.1 rmind #endif
178 1.1 rmind
179 1.1 rmind /* Pool of the scheduler-specific structures */
180 1.1 rmind pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
181 1.1 rmind "lwpsd", &pool_allocator_nointr, IPL_NONE);
182 1.1 rmind
183 1.1 rmind /* Attach the primary CPU here */
184 1.1 rmind sched_cpuattach(ci);
185 1.1 rmind
186 1.1 rmind /* Initialize the scheduler structure of the primary LWP */
187 1.1 rmind lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
188 1.1 rmind sched_lwp_fork(&lwp0);
189 1.1 rmind sched_newts(&lwp0);
190 1.1 rmind }
191 1.1 rmind
192 1.1 rmind void
193 1.1 rmind sched_setup(void)
194 1.1 rmind {
195 1.1 rmind
196 1.1 rmind #ifdef MULTIPROCESSOR
197 1.1 rmind /* Minimal count of LWPs for catching: log2(count of CPUs) */
198 1.8 rmind min_catch = min(ilog2(ncpu), 4);
199 1.1 rmind
200 1.1 rmind /* Initialize balancing callout and run it */
201 1.1 rmind callout_init(&balance_ch, CALLOUT_MPSAFE);
202 1.1 rmind callout_setfunc(&balance_ch, sched_balance, NULL);
203 1.1 rmind callout_schedule(&balance_ch, balance_period);
204 1.1 rmind #endif
205 1.1 rmind }
206 1.1 rmind
207 1.1 rmind void
208 1.1 rmind sched_cpuattach(struct cpu_info *ci)
209 1.1 rmind {
210 1.1 rmind runqueue_t *ci_rq;
211 1.1 rmind void *rq_ptr;
212 1.1 rmind u_int i, size;
213 1.1 rmind
214 1.1 rmind /*
215 1.1 rmind * Allocate the run queue.
216 1.1 rmind * XXX: Estimate cache behaviour more..
217 1.1 rmind */
218 1.1 rmind size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
219 1.1 rmind rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
220 1.1 rmind if (rq_ptr == NULL) {
221 1.1 rmind panic("scheduler: could not allocate the runqueue");
222 1.1 rmind }
223 1.1 rmind /* XXX: Save the original pointer for future.. */
224 1.1 rmind ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
225 1.1 rmind
226 1.1 rmind /* Initialize run queues */
227 1.1 rmind mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
228 1.1 rmind for (i = 0; i < PRI_RT_COUNT; i++)
229 1.1 rmind TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
230 1.1 rmind for (i = 0; i < PRI_TS_COUNT; i++)
231 1.1 rmind TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
232 1.1 rmind ci_rq->r_highest_pri = PRI_MAX;
233 1.1 rmind
234 1.1 rmind ci->ci_schedstate.spc_sched_info = ci_rq;
235 1.1 rmind ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
236 1.1 rmind }
237 1.1 rmind
238 1.1 rmind /* Pre-calculate the time-slices for the priorities */
239 1.1 rmind static void
240 1.1 rmind sched_precalcts(void)
241 1.1 rmind {
242 1.1 rmind pri_t p;
243 1.1 rmind u_int i;
244 1.1 rmind
245 1.1 rmind for (p = 0; p < PRI_REALTIME; p++) {
246 1.1 rmind ts_map[p] = rt_ts;
247 1.1 rmind high_pri[p] = p;
248 1.1 rmind }
249 1.1 rmind
250 1.1 rmind for (p = PRI_REALTIME, i = 0; p < PRI_COUNT; p++, i++) {
251 1.1 rmind ts_map[p] = min_ts +
252 1.1 rmind (i * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
253 1.1 rmind high_pri[p] = PRI_REALTIME + (i * PRI_HTS_RANGE /
254 1.1 rmind (PRI_MAX - PRI_REALTIME));
255 1.1 rmind }
256 1.1 rmind }
257 1.1 rmind
258 1.1 rmind /*
259 1.1 rmind * Hooks.
260 1.1 rmind */
261 1.1 rmind
262 1.1 rmind void
263 1.1 rmind sched_proc_fork(struct proc *parent, struct proc *child)
264 1.1 rmind {
265 1.1 rmind struct lwp *l;
266 1.1 rmind
267 1.1 rmind LIST_FOREACH(l, &child->p_lwps, l_sibling) {
268 1.1 rmind lwp_lock(l);
269 1.1 rmind sched_newts(l);
270 1.1 rmind lwp_unlock(l);
271 1.1 rmind }
272 1.1 rmind }
273 1.1 rmind
274 1.1 rmind void
275 1.1 rmind sched_proc_exit(struct proc *child, struct proc *parent)
276 1.1 rmind {
277 1.1 rmind
278 1.1 rmind /* Dummy */
279 1.1 rmind }
280 1.1 rmind
281 1.1 rmind void
282 1.1 rmind sched_lwp_fork(struct lwp *l)
283 1.1 rmind {
284 1.1 rmind
285 1.1 rmind KASSERT(l->l_sched_info == NULL);
286 1.1 rmind l->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
287 1.1 rmind memset(l->l_sched_info, 0, sizeof(sched_info_lwp_t));
288 1.1 rmind if (l->l_usrpri >= PRI_REALTIME) /* XXX: For now only.. */
289 1.1 rmind l->l_usrpri = l->l_priority = PRI_DEFAULT;
290 1.1 rmind }
291 1.1 rmind
292 1.1 rmind void
293 1.1 rmind sched_lwp_exit(struct lwp *l)
294 1.1 rmind {
295 1.1 rmind
296 1.1 rmind KASSERT(l->l_sched_info != NULL);
297 1.1 rmind pool_put(&sil_pool, l->l_sched_info);
298 1.1 rmind l->l_sched_info = NULL;
299 1.1 rmind }
300 1.1 rmind
301 1.1 rmind void
302 1.1 rmind sched_setrunnable(struct lwp *l)
303 1.1 rmind {
304 1.1 rmind
305 1.1 rmind /* Dummy */
306 1.1 rmind }
307 1.1 rmind
308 1.1 rmind void
309 1.1 rmind sched_schedclock(struct lwp *l)
310 1.1 rmind {
311 1.1 rmind
312 1.1 rmind /* Dummy */
313 1.1 rmind }
314 1.1 rmind
315 1.1 rmind /*
316 1.1 rmind * Priorities and time-slice.
317 1.1 rmind */
318 1.1 rmind
319 1.1 rmind void
320 1.1 rmind sched_nice(struct proc *p, int prio)
321 1.1 rmind {
322 1.1 rmind int nprio;
323 1.1 rmind struct lwp *l;
324 1.1 rmind
325 1.1 rmind KASSERT(mutex_owned(&p->p_stmutex));
326 1.1 rmind
327 1.1 rmind p->p_nice = prio;
328 1.1 rmind nprio = max(PRI_DEFAULT + p->p_nice, PRI_REALTIME);
329 1.1 rmind
330 1.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
331 1.1 rmind lwp_lock(l);
332 1.1 rmind lwp_changepri(l, nprio);
333 1.1 rmind lwp_unlock(l);
334 1.1 rmind }
335 1.1 rmind }
336 1.1 rmind
337 1.1 rmind /* Recalculate the time-slice */
338 1.1 rmind static inline void
339 1.1 rmind sched_newts(struct lwp *l)
340 1.1 rmind {
341 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
342 1.1 rmind
343 1.1 rmind sil->sl_timeslice = ts_map[lwp_eprio(l)];
344 1.1 rmind }
345 1.1 rmind
346 1.1 rmind /*
347 1.1 rmind * Control of the runqueue.
348 1.1 rmind */
349 1.1 rmind
350 1.1 rmind static inline void *
351 1.1 rmind sched_getrq(runqueue_t *ci_rq, const pri_t prio)
352 1.1 rmind {
353 1.1 rmind
354 1.1 rmind KASSERT(prio < PRI_COUNT);
355 1.1 rmind return (prio < PRI_REALTIME) ?
356 1.1 rmind &ci_rq->r_rt_queue[prio].q_head :
357 1.1 rmind &ci_rq->r_ts_queue[prio - PRI_REALTIME].q_head;
358 1.1 rmind }
359 1.1 rmind
360 1.1 rmind void
361 1.1 rmind sched_enqueue(struct lwp *l, bool swtch)
362 1.1 rmind {
363 1.1 rmind runqueue_t *ci_rq;
364 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
365 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
366 1.1 rmind const pri_t eprio = lwp_eprio(l);
367 1.1 rmind
368 1.1 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
369 1.1 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
370 1.1 rmind
371 1.1 rmind /* Update the last run time on switch */
372 1.1 rmind if (swtch == true) {
373 1.1 rmind sil->sl_lrtime = hardclock_ticks;
374 1.1 rmind sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
375 1.8 rmind } else if (sil->sl_lrtime == 0)
376 1.8 rmind sil->sl_lrtime = hardclock_ticks;
377 1.1 rmind
378 1.1 rmind /* Enqueue the thread */
379 1.1 rmind q_head = sched_getrq(ci_rq, eprio);
380 1.1 rmind if (TAILQ_EMPTY(q_head)) {
381 1.1 rmind u_int i;
382 1.1 rmind uint32_t q;
383 1.1 rmind
384 1.1 rmind /* Mark bit */
385 1.1 rmind i = eprio >> BITMAP_SHIFT;
386 1.1 rmind q = eprio - (i << BITMAP_SHIFT);
387 1.1 rmind KASSERT((ci_rq->r_bitmap[i] & (1 << q)) == 0);
388 1.1 rmind ci_rq->r_bitmap[i] |= 1 << q;
389 1.1 rmind }
390 1.1 rmind TAILQ_INSERT_TAIL(q_head, l, l_runq);
391 1.1 rmind ci_rq->r_count++;
392 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
393 1.1 rmind ci_rq->r_mcount++;
394 1.1 rmind
395 1.1 rmind /*
396 1.1 rmind * Update the value of highest priority in the runqueue,
397 1.1 rmind * if priority of this thread is higher.
398 1.1 rmind */
399 1.1 rmind if (eprio < ci_rq->r_highest_pri)
400 1.1 rmind ci_rq->r_highest_pri = eprio;
401 1.1 rmind
402 1.1 rmind sched_newts(l);
403 1.1 rmind }
404 1.1 rmind
405 1.1 rmind void
406 1.1 rmind sched_dequeue(struct lwp *l)
407 1.1 rmind {
408 1.1 rmind runqueue_t *ci_rq;
409 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
410 1.1 rmind const pri_t eprio = lwp_eprio(l);
411 1.1 rmind
412 1.1 rmind ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
413 1.1 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
414 1.1 rmind KASSERT(ci_rq->r_highest_pri <= eprio);
415 1.1 rmind KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
416 1.1 rmind KASSERT(ci_rq->r_count > 0);
417 1.1 rmind
418 1.1 rmind ci_rq->r_count--;
419 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
420 1.1 rmind ci_rq->r_mcount--;
421 1.1 rmind
422 1.1 rmind q_head = sched_getrq(ci_rq, eprio);
423 1.1 rmind TAILQ_REMOVE(q_head, l, l_runq);
424 1.1 rmind if (TAILQ_EMPTY(q_head)) {
425 1.1 rmind u_int i;
426 1.1 rmind uint32_t q;
427 1.1 rmind
428 1.1 rmind /* Unmark bit */
429 1.1 rmind i = eprio >> BITMAP_SHIFT;
430 1.1 rmind q = eprio - (i << BITMAP_SHIFT);
431 1.1 rmind KASSERT((ci_rq->r_bitmap[i] & (1 << q)) != 0);
432 1.1 rmind ci_rq->r_bitmap[i] &= ~(1 << q);
433 1.1 rmind
434 1.1 rmind /*
435 1.1 rmind * Update the value of highest priority in the runqueue, in a
436 1.1 rmind * case it was a last thread in the queue of highest priority.
437 1.1 rmind */
438 1.1 rmind if (eprio != ci_rq->r_highest_pri)
439 1.1 rmind return;
440 1.1 rmind
441 1.1 rmind do {
442 1.1 rmind q = ffs(ci_rq->r_bitmap[i]);
443 1.1 rmind if (q) {
444 1.1 rmind ci_rq->r_highest_pri =
445 1.1 rmind (i << BITMAP_SHIFT) + q - 1;
446 1.1 rmind return;
447 1.1 rmind }
448 1.1 rmind } while (++i < BITMAP_SIZE);
449 1.1 rmind
450 1.1 rmind /* If not found - set the maximal value */
451 1.1 rmind ci_rq->r_highest_pri = PRI_MAX;
452 1.1 rmind }
453 1.1 rmind }
454 1.1 rmind
455 1.1 rmind void
456 1.1 rmind sched_slept(struct lwp *l)
457 1.1 rmind {
458 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
459 1.1 rmind
460 1.1 rmind /* Save the time when thread has slept */
461 1.1 rmind sil->sl_slept = hardclock_ticks;
462 1.1 rmind
463 1.1 rmind /*
464 1.1 rmind * If thread is not a real-time and batch flag is not marked,
465 1.1 rmind * increase the the priority, and run with lower time-quantum.
466 1.1 rmind */
467 1.1 rmind if (l->l_usrpri > PRI_REALTIME && (sil->sl_flags & SL_BATCH) == 0)
468 1.1 rmind l->l_usrpri--;
469 1.1 rmind }
470 1.1 rmind
471 1.1 rmind void
472 1.1 rmind sched_wakeup(struct lwp *l)
473 1.1 rmind {
474 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
475 1.1 rmind
476 1.1 rmind /* Update sleep time delta */
477 1.1 rmind sil->sl_slpsum += (l->l_slptime == 0) ?
478 1.1 rmind (hardclock_ticks - sil->sl_slept) : hz;
479 1.1 rmind
480 1.1 rmind /* If thread was sleeping a second or more - set a high priority */
481 1.1 rmind if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
482 1.1 rmind l->l_usrpri = l->l_priority = high_pri[l->l_usrpri];
483 1.1 rmind
484 1.1 rmind /* Also, consider looking for a better CPU to wake up */
485 1.1 rmind if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
486 1.1 rmind l->l_cpu = sched_takecpu(l);
487 1.1 rmind }
488 1.1 rmind
489 1.1 rmind void
490 1.1 rmind sched_pstats_hook(struct lwp *l)
491 1.1 rmind {
492 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
493 1.1 rmind
494 1.1 rmind /*
495 1.1 rmind * Set that thread is more CPU-bound, if sum of run time exceeds the
496 1.1 rmind * sum of sleep time. If it is CPU-bound not a first time - decrease
497 1.1 rmind * the priority.
498 1.1 rmind */
499 1.1 rmind if (sil->sl_rtsum > sil->sl_slpsum) {
500 1.1 rmind if ((sil->sl_flags & SL_BATCH) && (l->l_usrpri < PRI_MAX))
501 1.1 rmind l->l_usrpri++;
502 1.1 rmind sil->sl_flags |= SL_BATCH;
503 1.1 rmind } else {
504 1.1 rmind sil->sl_flags &= ~SL_BATCH;
505 1.1 rmind }
506 1.1 rmind sil->sl_slpsum = 0;
507 1.1 rmind sil->sl_rtsum = 0;
508 1.1 rmind
509 1.1 rmind /*
510 1.1 rmind * Estimate only threads on time-sharing run queue, also,
511 1.1 rmind * ignore the highest time-sharing priority.
512 1.1 rmind */
513 1.1 rmind if (l->l_stat != LSRUN || l->l_usrpri <= PRI_REALTIME)
514 1.1 rmind return;
515 1.1 rmind
516 1.1 rmind /* If thread was not ran a second or more - set a high priority */
517 1.1 rmind if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
518 1.1 rmind lwp_changepri(l, high_pri[l->l_usrpri]);
519 1.1 rmind }
520 1.1 rmind
521 1.1 rmind /*
522 1.1 rmind * Migration and balancing.
523 1.1 rmind */
524 1.1 rmind
525 1.1 rmind #ifdef MULTIPROCESSOR
526 1.1 rmind
527 1.1 rmind /* Check if LWP can migrate to the chosen CPU */
528 1.1 rmind static inline bool
529 1.1 rmind sched_migratable(const struct lwp *l, const struct cpu_info *ci)
530 1.1 rmind {
531 1.1 rmind
532 1.1 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
533 1.1 rmind return false;
534 1.1 rmind
535 1.1 rmind if ((l->l_flag & LW_BOUND) == 0)
536 1.1 rmind return true;
537 1.1 rmind #if 0
538 1.1 rmind return cpu_in_pset(ci, l->l_psid);
539 1.1 rmind #else
540 1.1 rmind return false;
541 1.1 rmind #endif
542 1.1 rmind }
543 1.1 rmind
544 1.1 rmind /*
545 1.1 rmind * Estimate the migration of LWP to the other CPU.
546 1.1 rmind * Take and return the CPU, if migration is needed.
547 1.1 rmind */
548 1.1 rmind struct cpu_info *
549 1.1 rmind sched_takecpu(struct lwp *l)
550 1.1 rmind {
551 1.1 rmind struct cpu_info *ci, *tci = NULL;
552 1.1 rmind struct schedstate_percpu *spc;
553 1.1 rmind runqueue_t *ci_rq;
554 1.1 rmind sched_info_lwp_t *sil;
555 1.1 rmind CPU_INFO_ITERATOR cii;
556 1.1 rmind pri_t eprio, lpri;
557 1.1 rmind
558 1.1 rmind ci = l->l_cpu;
559 1.1 rmind spc = &ci->ci_schedstate;
560 1.1 rmind ci_rq = spc->spc_sched_info;
561 1.1 rmind
562 1.1 rmind /* CPU of this thread is idling - run there */
563 1.1 rmind if (ci_rq->r_count == 0)
564 1.1 rmind return ci;
565 1.1 rmind
566 1.1 rmind eprio = lwp_eprio(l);
567 1.1 rmind sil = l->l_sched_info;
568 1.1 rmind
569 1.1 rmind /* Stay if thread is cache-hot */
570 1.1 rmind if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
571 1.1 rmind CACHE_HOT(sil) && eprio <= spc->spc_curpriority)
572 1.1 rmind return ci;
573 1.1 rmind
574 1.1 rmind /* Run on current CPU if priority of thread is higher */
575 1.1 rmind ci = curcpu();
576 1.1 rmind spc = &ci->ci_schedstate;
577 1.1 rmind if (eprio < spc->spc_curpriority && sched_migratable(l, ci))
578 1.1 rmind return ci;
579 1.1 rmind
580 1.1 rmind /*
581 1.1 rmind * Look for the CPU with the lowest priority thread. In case of
582 1.1 rmind * equal the priority - check the lower count of the threads.
583 1.1 rmind */
584 1.1 rmind lpri = 0;
585 1.1 rmind ci_rq = NULL;
586 1.1 rmind tci = l->l_cpu;
587 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
588 1.1 rmind runqueue_t *ici_rq;
589 1.1 rmind pri_t pri;
590 1.1 rmind
591 1.1 rmind spc = &ci->ci_schedstate;
592 1.1 rmind ici_rq = spc->spc_sched_info;
593 1.1 rmind pri = min(spc->spc_curpriority, ici_rq->r_highest_pri);
594 1.1 rmind if (pri < lpri)
595 1.1 rmind continue;
596 1.1 rmind
597 1.1 rmind if (pri == lpri && ci_rq && ci_rq->r_count < ici_rq->r_count)
598 1.1 rmind continue;
599 1.1 rmind
600 1.1 rmind if (sched_migratable(l, ci) == false)
601 1.1 rmind continue;
602 1.1 rmind
603 1.1 rmind lpri = pri;
604 1.1 rmind tci = ci;
605 1.1 rmind ci_rq = ici_rq;
606 1.1 rmind }
607 1.1 rmind
608 1.1 rmind return tci;
609 1.1 rmind }
610 1.1 rmind
611 1.1 rmind /*
612 1.1 rmind * Tries to catch an LWP from the runqueue of other CPU.
613 1.1 rmind */
614 1.1 rmind static struct lwp *
615 1.1 rmind sched_catchlwp(void)
616 1.1 rmind {
617 1.1 rmind struct cpu_info *curci = curcpu(), *ci = worker_ci;
618 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
619 1.1 rmind runqueue_t *ci_rq;
620 1.1 rmind struct lwp *l;
621 1.1 rmind
622 1.1 rmind if (curci == ci)
623 1.1 rmind return NULL;
624 1.1 rmind
625 1.1 rmind /* Lockless check */
626 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
627 1.1 rmind if (ci_rq->r_count < min_catch)
628 1.1 rmind return NULL;
629 1.1 rmind
630 1.1 rmind /*
631 1.1 rmind * Double-lock the runqueues.
632 1.1 rmind */
633 1.3 rmind if (curci < ci) {
634 1.1 rmind spc_lock(ci);
635 1.1 rmind } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
636 1.1 rmind const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
637 1.1 rmind
638 1.1 rmind spc_unlock(curci);
639 1.1 rmind spc_lock(ci);
640 1.1 rmind spc_lock(curci);
641 1.1 rmind
642 1.1 rmind if (cur_rq->r_count) {
643 1.1 rmind spc_unlock(ci);
644 1.1 rmind return NULL;
645 1.1 rmind }
646 1.1 rmind }
647 1.1 rmind
648 1.1 rmind if (ci_rq->r_count < min_catch) {
649 1.1 rmind spc_unlock(ci);
650 1.1 rmind return NULL;
651 1.1 rmind }
652 1.1 rmind
653 1.1 rmind /* Take the highest priority thread */
654 1.1 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
655 1.1 rmind l = TAILQ_FIRST(q_head);
656 1.1 rmind
657 1.1 rmind for (;;) {
658 1.1 rmind sched_info_lwp_t *sil;
659 1.1 rmind
660 1.1 rmind /* Check the first and next result from the queue */
661 1.1 rmind if (l == NULL)
662 1.1 rmind break;
663 1.1 rmind
664 1.1 rmind /* Look for threads, whose are allowed to migrate */
665 1.1 rmind sil = l->l_sched_info;
666 1.1 rmind if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
667 1.1 rmind sched_migratable(l, curci) == false) {
668 1.1 rmind l = TAILQ_NEXT(l, l_runq);
669 1.1 rmind continue;
670 1.1 rmind }
671 1.1 rmind /* Recheck if chosen thread is still on the runqueue */
672 1.1 rmind if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
673 1.1 rmind sched_dequeue(l);
674 1.1 rmind l->l_cpu = curci;
675 1.1 rmind lwp_setlock(l, curci->ci_schedstate.spc_mutex);
676 1.1 rmind sched_enqueue(l, false);
677 1.1 rmind break;
678 1.1 rmind }
679 1.1 rmind l = TAILQ_NEXT(l, l_runq);
680 1.1 rmind }
681 1.1 rmind spc_unlock(ci);
682 1.1 rmind
683 1.1 rmind return l;
684 1.1 rmind }
685 1.1 rmind
686 1.1 rmind /*
687 1.1 rmind * Periodical calculations for balancing.
688 1.1 rmind */
689 1.1 rmind static void
690 1.1 rmind sched_balance(void *nocallout)
691 1.1 rmind {
692 1.1 rmind struct cpu_info *ci, *hci;
693 1.1 rmind runqueue_t *ci_rq;
694 1.1 rmind CPU_INFO_ITERATOR cii;
695 1.1 rmind u_int highest;
696 1.1 rmind
697 1.1 rmind hci = curcpu();
698 1.1 rmind highest = 0;
699 1.1 rmind
700 1.1 rmind /* Make lockless countings */
701 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
702 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
703 1.1 rmind
704 1.1 rmind /* Average count of the threads */
705 1.1 rmind ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
706 1.1 rmind
707 1.1 rmind /* Look for CPU with the highest average */
708 1.1 rmind if (ci_rq->r_avgcount > highest) {
709 1.1 rmind hci = ci;
710 1.1 rmind highest = ci_rq->r_avgcount;
711 1.1 rmind }
712 1.1 rmind }
713 1.1 rmind
714 1.1 rmind /* Update the worker */
715 1.1 rmind worker_ci = hci;
716 1.1 rmind
717 1.1 rmind if (nocallout == NULL)
718 1.1 rmind callout_schedule(&balance_ch, balance_period);
719 1.1 rmind }
720 1.1 rmind
721 1.1 rmind #else
722 1.1 rmind
723 1.1 rmind struct cpu_info *
724 1.1 rmind sched_takecpu(struct lwp *l)
725 1.1 rmind {
726 1.1 rmind
727 1.1 rmind return l->l_cpu;
728 1.1 rmind }
729 1.1 rmind
730 1.1 rmind #endif /* MULTIPROCESSOR */
731 1.1 rmind
732 1.1 rmind /*
733 1.1 rmind * Scheduler mill.
734 1.1 rmind */
735 1.1 rmind struct lwp *
736 1.1 rmind sched_nextlwp(void)
737 1.1 rmind {
738 1.1 rmind struct cpu_info *ci = curcpu();
739 1.1 rmind struct schedstate_percpu *spc;
740 1.1 rmind TAILQ_HEAD(, lwp) *q_head;
741 1.1 rmind sched_info_lwp_t *sil;
742 1.1 rmind runqueue_t *ci_rq;
743 1.1 rmind struct lwp *l;
744 1.1 rmind
745 1.1 rmind spc = &ci->ci_schedstate;
746 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
747 1.1 rmind
748 1.1 rmind #ifdef MULTIPROCESSOR
749 1.1 rmind /* If runqueue is empty, try to catch some thread from other CPU */
750 1.1 rmind if (spc->spc_flags & SPCF_OFFLINE) {
751 1.7 rmind if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
752 1.1 rmind return NULL;
753 1.1 rmind } else if (ci_rq->r_count == 0) {
754 1.1 rmind /* Reset the counter, and call the balancer */
755 1.1 rmind ci_rq->r_avgcount = 0;
756 1.1 rmind sched_balance(ci);
757 1.1 rmind
758 1.1 rmind /* The re-locking will be done inside */
759 1.1 rmind return sched_catchlwp();
760 1.1 rmind }
761 1.1 rmind #else
762 1.1 rmind if (ci_rq->r_count == 0)
763 1.1 rmind return NULL;
764 1.1 rmind #endif
765 1.1 rmind
766 1.1 rmind /* Take the highest priority thread */
767 1.1 rmind KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
768 1.1 rmind q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
769 1.1 rmind l = TAILQ_FIRST(q_head);
770 1.1 rmind KASSERT(l != NULL);
771 1.1 rmind
772 1.1 rmind /* Update the counters */
773 1.1 rmind sil = l->l_sched_info;
774 1.1 rmind KASSERT(sil->sl_timeslice >= min_ts);
775 1.1 rmind KASSERT(sil->sl_timeslice <= max_ts);
776 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
777 1.1 rmind sil->sl_rtime = hardclock_ticks;
778 1.1 rmind
779 1.1 rmind return l;
780 1.1 rmind }
781 1.1 rmind
782 1.1 rmind bool
783 1.1 rmind sched_curcpu_runnable_p(void)
784 1.1 rmind {
785 1.1 rmind const struct cpu_info *ci = curcpu();
786 1.1 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
787 1.1 rmind
788 1.1 rmind if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
789 1.7 rmind return (ci_rq->r_count - ci_rq->r_mcount);
790 1.1 rmind
791 1.1 rmind return ci_rq->r_count;
792 1.1 rmind }
793 1.1 rmind
794 1.1 rmind /*
795 1.1 rmind * Time-driven events.
796 1.1 rmind */
797 1.1 rmind
798 1.1 rmind /*
799 1.1 rmind * Called once per time-quantum. This routine is CPU-local and runs at
800 1.1 rmind * IPL_SCHED, thus the locking is not needed.
801 1.1 rmind */
802 1.1 rmind void
803 1.1 rmind sched_tick(struct cpu_info *ci)
804 1.1 rmind {
805 1.1 rmind const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
806 1.1 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
807 1.1 rmind struct lwp *l = curlwp;
808 1.1 rmind sched_info_lwp_t *sil = l->l_sched_info;
809 1.1 rmind
810 1.2 rmind if (CURCPU_IDLE_P())
811 1.2 rmind return;
812 1.1 rmind
813 1.2 rmind switch (l->l_policy) {
814 1.2 rmind case SCHED_FIFO:
815 1.2 rmind /*
816 1.2 rmind * Update the time-quantum, and continue running,
817 1.2 rmind * if thread runs on FIFO real-time policy.
818 1.2 rmind */
819 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
820 1.1 rmind return;
821 1.2 rmind case SCHED_OTHER:
822 1.2 rmind /* Decrease the priority, and run with a higher time-quantum */
823 1.2 rmind if (l->l_usrpri < PRI_REALTIME)
824 1.2 rmind break;
825 1.2 rmind l->l_usrpri = min(l->l_usrpri + 1, PRI_MAX);
826 1.2 rmind l->l_priority = l->l_usrpri;
827 1.2 rmind break;
828 1.1 rmind }
829 1.1 rmind
830 1.1 rmind /*
831 1.2 rmind * If there are higher priority threads or threads in the same queue,
832 1.2 rmind * mark that thread should yield, otherwise, continue running.
833 1.1 rmind */
834 1.2 rmind if (lwp_eprio(l) >= ci_rq->r_highest_pri) {
835 1.1 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
836 1.1 rmind cpu_need_resched(ci, 0);
837 1.1 rmind } else
838 1.1 rmind spc->spc_ticks = sil->sl_timeslice;
839 1.1 rmind }
840 1.1 rmind
841 1.1 rmind /*
842 1.1 rmind * Sysctl nodes and initialization.
843 1.1 rmind */
844 1.1 rmind
845 1.1 rmind static int
846 1.1 rmind sysctl_sched_mints(SYSCTLFN_ARGS)
847 1.1 rmind {
848 1.1 rmind struct sysctlnode node;
849 1.1 rmind struct cpu_info *ci;
850 1.1 rmind int error, newsize;
851 1.1 rmind CPU_INFO_ITERATOR cii;
852 1.1 rmind
853 1.1 rmind node = *rnode;
854 1.1 rmind node.sysctl_data = &newsize;
855 1.1 rmind
856 1.1 rmind newsize = hztoms(min_ts);
857 1.1 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
858 1.1 rmind if (error || newp == NULL)
859 1.1 rmind return error;
860 1.1 rmind
861 1.8 rmind newsize = mstohz(newsize);
862 1.1 rmind if (newsize < 1 || newsize > hz || newsize >= max_ts)
863 1.1 rmind return EINVAL;
864 1.1 rmind
865 1.1 rmind /* It is safe to do this in such order */
866 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
867 1.1 rmind spc_lock(ci);
868 1.1 rmind
869 1.8 rmind min_ts = newsize;
870 1.1 rmind sched_precalcts();
871 1.1 rmind
872 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
873 1.1 rmind spc_unlock(ci);
874 1.1 rmind
875 1.1 rmind return 0;
876 1.1 rmind }
877 1.1 rmind
878 1.1 rmind static int
879 1.1 rmind sysctl_sched_maxts(SYSCTLFN_ARGS)
880 1.1 rmind {
881 1.1 rmind struct sysctlnode node;
882 1.1 rmind struct cpu_info *ci;
883 1.1 rmind int error, newsize;
884 1.1 rmind CPU_INFO_ITERATOR cii;
885 1.1 rmind
886 1.1 rmind node = *rnode;
887 1.1 rmind node.sysctl_data = &newsize;
888 1.1 rmind
889 1.1 rmind newsize = hztoms(max_ts);
890 1.1 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
891 1.1 rmind if (error || newp == NULL)
892 1.1 rmind return error;
893 1.1 rmind
894 1.8 rmind newsize = mstohz(newsize);
895 1.1 rmind if (newsize < 10 || newsize > hz || newsize <= min_ts)
896 1.1 rmind return EINVAL;
897 1.1 rmind
898 1.1 rmind /* It is safe to do this in such order */
899 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
900 1.1 rmind spc_lock(ci);
901 1.1 rmind
902 1.8 rmind max_ts = newsize;
903 1.1 rmind sched_precalcts();
904 1.1 rmind
905 1.1 rmind for (CPU_INFO_FOREACH(cii, ci))
906 1.1 rmind spc_unlock(ci);
907 1.1 rmind
908 1.1 rmind return 0;
909 1.1 rmind }
910 1.1 rmind
911 1.1 rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
912 1.1 rmind {
913 1.1 rmind const struct sysctlnode *node = NULL;
914 1.1 rmind
915 1.1 rmind sysctl_createv(clog, 0, NULL, NULL,
916 1.1 rmind CTLFLAG_PERMANENT,
917 1.1 rmind CTLTYPE_NODE, "kern", NULL,
918 1.1 rmind NULL, 0, NULL, 0,
919 1.1 rmind CTL_KERN, CTL_EOL);
920 1.1 rmind sysctl_createv(clog, 0, NULL, &node,
921 1.1 rmind CTLFLAG_PERMANENT,
922 1.1 rmind CTLTYPE_NODE, "sched",
923 1.1 rmind SYSCTL_DESCR("Scheduler options"),
924 1.1 rmind NULL, 0, NULL, 0,
925 1.1 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
926 1.1 rmind
927 1.1 rmind if (node == NULL)
928 1.1 rmind return;
929 1.1 rmind
930 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
931 1.1 rmind CTLFLAG_PERMANENT,
932 1.1 rmind CTLTYPE_STRING, "name", NULL,
933 1.1 rmind NULL, 0, __UNCONST("M2"), 0,
934 1.1 rmind CTL_CREATE, CTL_EOL);
935 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
936 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
937 1.1 rmind CTLTYPE_INT, "maxts",
938 1.8 rmind SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
939 1.1 rmind sysctl_sched_maxts, 0, &max_ts, 0,
940 1.1 rmind CTL_CREATE, CTL_EOL);
941 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
942 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
943 1.1 rmind CTLTYPE_INT, "mints",
944 1.8 rmind SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
945 1.1 rmind sysctl_sched_mints, 0, &min_ts, 0,
946 1.1 rmind CTL_CREATE, CTL_EOL);
947 1.1 rmind
948 1.1 rmind #ifdef MULTIPROCESSOR
949 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
950 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
951 1.1 rmind CTLTYPE_INT, "cacheht_time",
952 1.8 rmind SYSCTL_DESCR("Cache hotness time (in ticks)"),
953 1.1 rmind NULL, 0, &cacheht_time, 0,
954 1.1 rmind CTL_CREATE, CTL_EOL);
955 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
956 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
957 1.8 rmind CTLTYPE_INT, "balance_period (in ticks)",
958 1.1 rmind SYSCTL_DESCR("Balance period"),
959 1.1 rmind NULL, 0, &balance_period, 0,
960 1.1 rmind CTL_CREATE, CTL_EOL);
961 1.1 rmind sysctl_createv(clog, 0, &node, NULL,
962 1.1 rmind CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
963 1.1 rmind CTLTYPE_INT, "min_catch",
964 1.8 rmind SYSCTL_DESCR("Minimal count of the threads for catching"),
965 1.1 rmind NULL, 0, &min_catch, 0,
966 1.1 rmind CTL_CREATE, CTL_EOL);
967 1.1 rmind #endif
968 1.1 rmind }
969 1.1 rmind
970 1.1 rmind /*
971 1.1 rmind * Debugging.
972 1.1 rmind */
973 1.1 rmind
974 1.1 rmind #ifdef DDB
975 1.1 rmind
976 1.1 rmind void
977 1.1 rmind sched_print_runqueue(void (*pr)(const char *, ...))
978 1.1 rmind {
979 1.1 rmind runqueue_t *ci_rq;
980 1.1 rmind sched_info_lwp_t *sil;
981 1.1 rmind struct lwp *l;
982 1.1 rmind struct proc *p;
983 1.1 rmind int i;
984 1.1 rmind
985 1.1 rmind struct cpu_info *ci;
986 1.1 rmind CPU_INFO_ITERATOR cii;
987 1.1 rmind
988 1.1 rmind for (CPU_INFO_FOREACH(cii, ci)) {
989 1.1 rmind ci_rq = ci->ci_schedstate.spc_sched_info;
990 1.1 rmind
991 1.1 rmind (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
992 1.1 rmind (*pr)(" pid.lid = %d.%d, threads count = %u, "
993 1.1 rmind "avgcount = %u, highest pri = %d\n",
994 1.1 rmind ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
995 1.1 rmind ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
996 1.1 rmind i = 0;
997 1.1 rmind do {
998 1.1 rmind int b;
999 1.1 rmind b = ci_rq->r_bitmap[i];
1000 1.1 rmind (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(b), b);
1001 1.1 rmind } while (++i < BITMAP_SIZE);
1002 1.1 rmind }
1003 1.1 rmind
1004 1.1 rmind (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1005 1.1 rmind "LID", "PRI", "UPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1006 1.1 rmind
1007 1.1 rmind PROCLIST_FOREACH(p, &allproc) {
1008 1.1 rmind (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1009 1.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1010 1.1 rmind sil = l->l_sched_info;
1011 1.1 rmind ci = l->l_cpu;
1012 1.1 rmind (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1013 1.1 rmind "%u ST=%d RT=%d %d\n",
1014 1.1 rmind (int)l->l_lid, l->l_priority, l->l_usrpri,
1015 1.1 rmind l->l_flag, l->l_stat == LSRUN ? "RQ" :
1016 1.1 rmind (l->l_stat == LSSLEEP ? "SQ" : "-"),
1017 1.1 rmind sil->sl_timeslice, l, ci->ci_cpuid,
1018 1.1 rmind (u_int)(hardclock_ticks - sil->sl_lrtime),
1019 1.1 rmind sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1020 1.1 rmind }
1021 1.1 rmind }
1022 1.1 rmind }
1023 1.1 rmind
1024 1.1 rmind #endif /* defined(DDB) */
1025