sched_m2.c revision 1.14 1 /* $NetBSD: sched_m2.c,v 1.14 2007/12/21 12:05:39 ad Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * TODO:
31 * - Implementation of fair share queue;
32 * - Support for NUMA;
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.14 2007/12/21 12:05:39 ad Exp $");
37
38 #include <sys/param.h>
39
40 #include <sys/bitops.h>
41 #include <sys/cpu.h>
42 #include <sys/callout.h>
43 #include <sys/errno.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/lwp.h>
47 #include <sys/mutex.h>
48 #include <sys/pool.h>
49 #include <sys/proc.h>
50 #include <sys/resource.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/syscallargs.h>
54 #include <sys/sysctl.h>
55 #include <sys/types.h>
56
57 /*
58 * Priority related defintions.
59 */
60 #define PRI_TS_COUNT (NPRI_USER)
61 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
62 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
63
64 #define PRI_HIGHEST_TS (MAXPRI_USER)
65 #define PRI_DEFAULT (NPRI_USER >> 1)
66
67 const int schedppq = 1;
68
69 /*
70 * Bits per map.
71 */
72 #define BITMAP_BITS (32)
73 #define BITMAP_SHIFT (5)
74 #define BITMAP_MSB (0x80000000U)
75 #define BITMAP_MASK (BITMAP_BITS - 1)
76
77 /*
78 * Time-slices and priorities.
79 */
80 static u_int min_ts; /* Minimal time-slice */
81 static u_int max_ts; /* Maximal time-slice */
82 static u_int rt_ts; /* Real-time time-slice */
83 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
84 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
85
86 /*
87 * Migration and balancing.
88 */
89 #ifdef MULTIPROCESSOR
90 static u_int cacheht_time; /* Cache hotness time */
91 static u_int min_catch; /* Minimal LWP count for catching */
92
93 static u_int balance_period; /* Balance period */
94 static struct callout balance_ch; /* Callout of balancer */
95
96 static struct cpu_info * volatile worker_ci;
97
98 #define CACHE_HOT(sil) (sil->sl_lrtime && \
99 (hardclock_ticks - sil->sl_lrtime < cacheht_time))
100
101 #endif
102
103 /*
104 * Structures, runqueue.
105 */
106
107 typedef struct {
108 TAILQ_HEAD(, lwp) q_head;
109 } queue_t;
110
111 typedef struct {
112 /* Lock and bitmap */
113 kmutex_t r_rq_mutex;
114 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
115 /* Counters */
116 u_int r_count; /* Count of the threads */
117 pri_t r_highest_pri; /* Highest priority */
118 u_int r_avgcount; /* Average count of threads */
119 u_int r_mcount; /* Count of migratable threads */
120 /* Runqueues */
121 queue_t r_rt_queue[PRI_RT_COUNT];
122 queue_t r_ts_queue[PRI_TS_COUNT];
123 } runqueue_t;
124
125 typedef struct {
126 u_int sl_flags;
127 u_int sl_timeslice; /* Time-slice of thread */
128 u_int sl_slept; /* Saved sleep time for sleep sum */
129 u_int sl_slpsum; /* Sum of sleep time */
130 u_int sl_rtime; /* Saved start time of run */
131 u_int sl_rtsum; /* Sum of the run time */
132 u_int sl_lrtime; /* Last run time */
133 } sched_info_lwp_t;
134
135 /* Flags */
136 #define SL_BATCH 0x01
137
138 /* Pool of the scheduler-specific structures for threads */
139 static struct pool sil_pool;
140
141 /*
142 * Prototypes.
143 */
144
145 static inline void * sched_getrq(runqueue_t *, const pri_t);
146 static inline void sched_newts(struct lwp *);
147 static void sched_precalcts(void);
148
149 #ifdef MULTIPROCESSOR
150 static struct lwp * sched_catchlwp(void);
151 static void sched_balance(void *);
152 #endif
153
154 /*
155 * Initialization and setup.
156 */
157
158 void
159 sched_rqinit(void)
160 {
161 struct cpu_info *ci = curcpu();
162
163 if (hz < 100) {
164 panic("sched_rqinit: value of HZ is too low\n");
165 }
166
167 /* Default timing ranges */
168 min_ts = mstohz(50); /* ~50ms */
169 max_ts = mstohz(150); /* ~150ms */
170 rt_ts = mstohz(100); /* ~100ms */
171 sched_precalcts();
172
173 #ifdef MULTIPROCESSOR
174 /* Balancing */
175 worker_ci = ci;
176 cacheht_time = mstohz(5); /* ~5 ms */
177 balance_period = mstohz(300); /* ~300ms */
178 min_catch = ~0;
179 #endif
180
181 /* Pool of the scheduler-specific structures */
182 pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
183 "lwpsd", &pool_allocator_nointr, IPL_NONE);
184
185 /* Attach the primary CPU here */
186 sched_cpuattach(ci);
187
188 /* Initialize the scheduler structure of the primary LWP */
189 lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
190 sched_lwp_fork(NULL, &lwp0);
191 sched_newts(&lwp0);
192 }
193
194 void
195 sched_setup(void)
196 {
197
198 #ifdef MULTIPROCESSOR
199 /* Minimal count of LWPs for catching: log2(count of CPUs) */
200 min_catch = min(ilog2(ncpu), 4);
201
202 /* Initialize balancing callout and run it */
203 callout_init(&balance_ch, CALLOUT_MPSAFE);
204 callout_setfunc(&balance_ch, sched_balance, NULL);
205 callout_schedule(&balance_ch, balance_period);
206 #endif
207 }
208
209 void
210 sched_cpuattach(struct cpu_info *ci)
211 {
212 runqueue_t *ci_rq;
213 void *rq_ptr;
214 u_int i, size;
215
216 /*
217 * Allocate the run queue.
218 * XXX: Estimate cache behaviour more..
219 */
220 size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
221 rq_ptr = kmem_zalloc(size, KM_SLEEP);
222 if (rq_ptr == NULL) {
223 panic("scheduler: could not allocate the runqueue");
224 }
225 /* XXX: Save the original pointer for future.. */
226 ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
227
228 /* Initialize run queues */
229 mutex_init(&ci_rq->r_rq_mutex, MUTEX_DEFAULT, IPL_SCHED);
230 for (i = 0; i < PRI_RT_COUNT; i++)
231 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
232 for (i = 0; i < PRI_TS_COUNT; i++)
233 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
234 ci_rq->r_highest_pri = 0;
235
236 ci->ci_schedstate.spc_sched_info = ci_rq;
237 ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
238 }
239
240 /* Pre-calculate the time-slices for the priorities */
241 static void
242 sched_precalcts(void)
243 {
244 pri_t p;
245
246 /* Time-sharing range */
247 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
248 ts_map[p] = max_ts -
249 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
250 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
251 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
252 }
253
254 /* Real-time range */
255 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
256 ts_map[p] = rt_ts;
257 high_pri[p] = p;
258 }
259 }
260
261 /*
262 * Hooks.
263 */
264
265 void
266 sched_proc_fork(struct proc *parent, struct proc *child)
267 {
268 struct lwp *l;
269
270 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
271 lwp_lock(l);
272 sched_newts(l);
273 lwp_unlock(l);
274 }
275 }
276
277 void
278 sched_proc_exit(struct proc *child, struct proc *parent)
279 {
280
281 /* Dummy */
282 }
283
284 void
285 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
286 {
287
288 KASSERT(l2->l_sched_info == NULL);
289 l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
290 memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
291 if (l2->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
292 l2->l_priority = PRI_DEFAULT;
293 }
294
295 void
296 sched_lwp_exit(struct lwp *l)
297 {
298
299 KASSERT(l->l_sched_info != NULL);
300 pool_put(&sil_pool, l->l_sched_info);
301 l->l_sched_info = NULL;
302 }
303
304 void
305 sched_lwp_collect(struct lwp *l)
306 {
307
308 }
309
310 void
311 sched_setrunnable(struct lwp *l)
312 {
313
314 /* Dummy */
315 }
316
317 void
318 sched_schedclock(struct lwp *l)
319 {
320
321 /* Dummy */
322 }
323
324 /*
325 * Priorities and time-slice.
326 */
327
328 void
329 sched_nice(struct proc *p, int prio)
330 {
331 int nprio;
332 struct lwp *l;
333
334 KASSERT(mutex_owned(&p->p_smutex));
335
336 p->p_nice = prio;
337 nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
338
339 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
340 lwp_lock(l);
341 lwp_changepri(l, nprio);
342 lwp_unlock(l);
343 }
344 }
345
346 /* Recalculate the time-slice */
347 static inline void
348 sched_newts(struct lwp *l)
349 {
350 sched_info_lwp_t *sil = l->l_sched_info;
351
352 sil->sl_timeslice = ts_map[lwp_eprio(l)];
353 }
354
355 /*
356 * Control of the runqueue.
357 */
358
359 static inline void *
360 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
361 {
362
363 KASSERT(prio < PRI_COUNT);
364 return (prio <= PRI_HIGHEST_TS) ?
365 &ci_rq->r_ts_queue[prio].q_head :
366 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
367 }
368
369 void
370 sched_enqueue(struct lwp *l, bool swtch)
371 {
372 runqueue_t *ci_rq;
373 sched_info_lwp_t *sil = l->l_sched_info;
374 TAILQ_HEAD(, lwp) *q_head;
375 const pri_t eprio = lwp_eprio(l);
376
377 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
378 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
379
380 /* Update the last run time on switch */
381 if (__predict_true(swtch == true)) {
382 sil->sl_lrtime = hardclock_ticks;
383 sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
384 } else if (sil->sl_lrtime == 0)
385 sil->sl_lrtime = hardclock_ticks;
386
387 /* Enqueue the thread */
388 q_head = sched_getrq(ci_rq, eprio);
389 if (TAILQ_EMPTY(q_head)) {
390 u_int i;
391 uint32_t q;
392
393 /* Mark bit */
394 i = eprio >> BITMAP_SHIFT;
395 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
396 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
397 ci_rq->r_bitmap[i] |= q;
398 }
399 TAILQ_INSERT_TAIL(q_head, l, l_runq);
400 ci_rq->r_count++;
401 if ((l->l_flag & LW_BOUND) == 0)
402 ci_rq->r_mcount++;
403
404 /*
405 * Update the value of highest priority in the runqueue,
406 * if priority of this thread is higher.
407 */
408 if (eprio > ci_rq->r_highest_pri)
409 ci_rq->r_highest_pri = eprio;
410
411 sched_newts(l);
412 }
413
414 void
415 sched_dequeue(struct lwp *l)
416 {
417 runqueue_t *ci_rq;
418 TAILQ_HEAD(, lwp) *q_head;
419 const pri_t eprio = lwp_eprio(l);
420
421 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
422 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
423 KASSERT(eprio <= ci_rq->r_highest_pri);
424 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
425 KASSERT(ci_rq->r_count > 0);
426
427 ci_rq->r_count--;
428 if ((l->l_flag & LW_BOUND) == 0)
429 ci_rq->r_mcount--;
430
431 q_head = sched_getrq(ci_rq, eprio);
432 TAILQ_REMOVE(q_head, l, l_runq);
433 if (TAILQ_EMPTY(q_head)) {
434 u_int i;
435 uint32_t q;
436
437 /* Unmark bit */
438 i = eprio >> BITMAP_SHIFT;
439 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
440 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
441 ci_rq->r_bitmap[i] &= ~q;
442
443 /*
444 * Update the value of highest priority in the runqueue, in a
445 * case it was a last thread in the queue of highest priority.
446 */
447 if (eprio != ci_rq->r_highest_pri)
448 return;
449
450 do {
451 q = ffs(ci_rq->r_bitmap[i]);
452 if (q) {
453 ci_rq->r_highest_pri =
454 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
455 return;
456 }
457 } while (i--);
458
459 /* If not found - set the lowest value */
460 ci_rq->r_highest_pri = 0;
461 }
462 }
463
464 void
465 sched_slept(struct lwp *l)
466 {
467 sched_info_lwp_t *sil = l->l_sched_info;
468
469 /* Save the time when thread has slept */
470 sil->sl_slept = hardclock_ticks;
471
472 /*
473 * If thread is in time-sharing queue and batch flag is not marked,
474 * increase the the priority, and run with the lower time-quantum.
475 */
476 if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
477 KASSERT(l->l_class == SCHED_OTHER);
478 l->l_priority++;
479 }
480 }
481
482 void
483 sched_wakeup(struct lwp *l)
484 {
485 sched_info_lwp_t *sil = l->l_sched_info;
486
487 /* Update sleep time delta */
488 sil->sl_slpsum += (l->l_slptime == 0) ?
489 (hardclock_ticks - sil->sl_slept) : hz;
490
491 /* If thread was sleeping a second or more - set a high priority */
492 if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
493 l->l_priority = high_pri[l->l_priority];
494
495 /* Also, consider looking for a better CPU to wake up */
496 if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
497 l->l_cpu = sched_takecpu(l);
498 }
499
500 void
501 sched_pstats_hook(struct lwp *l)
502 {
503 sched_info_lwp_t *sil = l->l_sched_info;
504 pri_t prio;
505 bool batch;
506
507 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
508 l->l_stat == LSSUSPENDED)
509 l->l_slptime++;
510
511 /*
512 * Set that thread is more CPU-bound, if sum of run time exceeds the
513 * sum of sleep time. Check if thread is CPU-bound a first time.
514 */
515 batch = (sil->sl_rtsum > sil->sl_slpsum);
516 if (batch) {
517 if ((sil->sl_flags & SL_BATCH) == 0)
518 batch = false;
519 sil->sl_flags |= SL_BATCH;
520 } else
521 sil->sl_flags &= ~SL_BATCH;
522
523 /* Reset the time sums */
524 sil->sl_slpsum = 0;
525 sil->sl_rtsum = 0;
526
527 /* Estimate threads on time-sharing queue only */
528 if (l->l_priority >= PRI_HIGHEST_TS)
529 return;
530
531 /* If it is CPU-bound not a first time - decrease the priority */
532 prio = l->l_priority;
533 if (batch && prio != 0)
534 prio--;
535
536 /* If thread was not ran a second or more - set a high priority */
537 if (l->l_stat == LSRUN) {
538 if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
539 prio = high_pri[prio];
540 /* Re-enqueue the thread if priority has changed */
541 if (prio != l->l_priority)
542 lwp_changepri(l, prio);
543 } else {
544 /* In other states, change the priority directly */
545 l->l_priority = prio;
546 }
547 }
548
549 /*
550 * Migration and balancing.
551 */
552
553 #ifdef MULTIPROCESSOR
554
555 /* Check if LWP can migrate to the chosen CPU */
556 static inline bool
557 sched_migratable(const struct lwp *l, const struct cpu_info *ci)
558 {
559
560 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
561 return false;
562
563 if ((l->l_flag & LW_BOUND) == 0)
564 return true;
565 #if 0
566 return cpu_in_pset(ci, l->l_psid);
567 #else
568 return false;
569 #endif
570 }
571
572 /*
573 * Estimate the migration of LWP to the other CPU.
574 * Take and return the CPU, if migration is needed.
575 */
576 struct cpu_info *
577 sched_takecpu(struct lwp *l)
578 {
579 struct cpu_info *ci, *tci = NULL;
580 struct schedstate_percpu *spc;
581 runqueue_t *ci_rq;
582 sched_info_lwp_t *sil;
583 CPU_INFO_ITERATOR cii;
584 pri_t eprio, lpri;
585
586 ci = l->l_cpu;
587 spc = &ci->ci_schedstate;
588 ci_rq = spc->spc_sched_info;
589
590 /* CPU of this thread is idling - run there */
591 if (ci_rq->r_count == 0)
592 return ci;
593
594 eprio = lwp_eprio(l);
595 sil = l->l_sched_info;
596
597 /* Stay if thread is cache-hot */
598 if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
599 CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
600 return ci;
601
602 /* Run on current CPU if priority of thread is higher */
603 ci = curcpu();
604 spc = &ci->ci_schedstate;
605 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
606 return ci;
607
608 /*
609 * Look for the CPU with the lowest priority thread. In case of
610 * equal the priority - check the lower count of the threads.
611 */
612 lpri = PRI_COUNT;
613 for (CPU_INFO_FOREACH(cii, ci)) {
614 runqueue_t *ici_rq;
615 pri_t pri;
616
617 spc = &ci->ci_schedstate;
618 ici_rq = spc->spc_sched_info;
619 pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
620 if (pri > lpri)
621 continue;
622
623 if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
624 continue;
625
626 if (sched_migratable(l, ci) == false)
627 continue;
628
629 lpri = pri;
630 tci = ci;
631 ci_rq = ici_rq;
632 }
633
634 KASSERT(tci != NULL);
635 return tci;
636 }
637
638 /*
639 * Tries to catch an LWP from the runqueue of other CPU.
640 */
641 static struct lwp *
642 sched_catchlwp(void)
643 {
644 struct cpu_info *curci = curcpu(), *ci = worker_ci;
645 TAILQ_HEAD(, lwp) *q_head;
646 runqueue_t *ci_rq;
647 struct lwp *l;
648
649 if (curci == ci)
650 return NULL;
651
652 /* Lockless check */
653 ci_rq = ci->ci_schedstate.spc_sched_info;
654 if (ci_rq->r_count < min_catch)
655 return NULL;
656
657 /*
658 * Double-lock the runqueues.
659 */
660 if (curci < ci) {
661 spc_lock(ci);
662 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
663 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
664
665 spc_unlock(curci);
666 spc_lock(ci);
667 spc_lock(curci);
668
669 if (cur_rq->r_count) {
670 spc_unlock(ci);
671 return NULL;
672 }
673 }
674
675 if (ci_rq->r_count < min_catch) {
676 spc_unlock(ci);
677 return NULL;
678 }
679
680 /* Take the highest priority thread */
681 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
682 l = TAILQ_FIRST(q_head);
683
684 for (;;) {
685 sched_info_lwp_t *sil;
686
687 /* Check the first and next result from the queue */
688 if (l == NULL)
689 break;
690
691 /* Look for threads, whose are allowed to migrate */
692 sil = l->l_sched_info;
693 if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
694 sched_migratable(l, curci) == false) {
695 l = TAILQ_NEXT(l, l_runq);
696 continue;
697 }
698 /* Recheck if chosen thread is still on the runqueue */
699 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
700 sched_dequeue(l);
701 l->l_cpu = curci;
702 lwp_setlock(l, curci->ci_schedstate.spc_mutex);
703 sched_enqueue(l, false);
704 break;
705 }
706 l = TAILQ_NEXT(l, l_runq);
707 }
708 spc_unlock(ci);
709
710 return l;
711 }
712
713 /*
714 * Periodical calculations for balancing.
715 */
716 static void
717 sched_balance(void *nocallout)
718 {
719 struct cpu_info *ci, *hci;
720 runqueue_t *ci_rq;
721 CPU_INFO_ITERATOR cii;
722 u_int highest;
723
724 hci = curcpu();
725 highest = 0;
726
727 /* Make lockless countings */
728 for (CPU_INFO_FOREACH(cii, ci)) {
729 ci_rq = ci->ci_schedstate.spc_sched_info;
730
731 /* Average count of the threads */
732 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
733
734 /* Look for CPU with the highest average */
735 if (ci_rq->r_avgcount > highest) {
736 hci = ci;
737 highest = ci_rq->r_avgcount;
738 }
739 }
740
741 /* Update the worker */
742 worker_ci = hci;
743
744 if (nocallout == NULL)
745 callout_schedule(&balance_ch, balance_period);
746 }
747
748 #else
749
750 struct cpu_info *
751 sched_takecpu(struct lwp *l)
752 {
753
754 return l->l_cpu;
755 }
756
757 #endif /* MULTIPROCESSOR */
758
759 /*
760 * Scheduler mill.
761 */
762 struct lwp *
763 sched_nextlwp(void)
764 {
765 struct cpu_info *ci = curcpu();
766 struct schedstate_percpu *spc;
767 TAILQ_HEAD(, lwp) *q_head;
768 sched_info_lwp_t *sil;
769 runqueue_t *ci_rq;
770 struct lwp *l;
771
772 spc = &ci->ci_schedstate;
773 ci_rq = ci->ci_schedstate.spc_sched_info;
774
775 #ifdef MULTIPROCESSOR
776 /* If runqueue is empty, try to catch some thread from other CPU */
777 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
778 if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
779 return NULL;
780 } else if (ci_rq->r_count == 0) {
781 /* Reset the counter, and call the balancer */
782 ci_rq->r_avgcount = 0;
783 sched_balance(ci);
784
785 /* The re-locking will be done inside */
786 return sched_catchlwp();
787 }
788 #else
789 if (ci_rq->r_count == 0)
790 return NULL;
791 #endif
792
793 /* Take the highest priority thread */
794 KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
795 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
796 l = TAILQ_FIRST(q_head);
797 KASSERT(l != NULL);
798
799 /* Update the counters */
800 sil = l->l_sched_info;
801 KASSERT(sil->sl_timeslice >= min_ts);
802 KASSERT(sil->sl_timeslice <= max_ts);
803 spc->spc_ticks = sil->sl_timeslice;
804 sil->sl_rtime = hardclock_ticks;
805
806 return l;
807 }
808
809 bool
810 sched_curcpu_runnable_p(void)
811 {
812 const struct cpu_info *ci = curcpu();
813 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
814
815 #ifndef __HAVE_FAST_SOFTINTS
816 if (ci->ci_data.cpu_softints)
817 return true;
818 #endif
819
820 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
821 return (ci_rq->r_count - ci_rq->r_mcount);
822
823 return ci_rq->r_count;
824 }
825
826 /*
827 * Time-driven events.
828 */
829
830 /*
831 * Called once per time-quantum. This routine is CPU-local and runs at
832 * IPL_SCHED, thus the locking is not needed.
833 */
834 void
835 sched_tick(struct cpu_info *ci)
836 {
837 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
838 struct schedstate_percpu *spc = &ci->ci_schedstate;
839 struct lwp *l = curlwp;
840 sched_info_lwp_t *sil = l->l_sched_info;
841
842 if (CURCPU_IDLE_P())
843 return;
844
845 switch (l->l_class) {
846 case SCHED_FIFO:
847 /*
848 * Update the time-quantum, and continue running,
849 * if thread runs on FIFO real-time policy.
850 */
851 spc->spc_ticks = sil->sl_timeslice;
852 return;
853 case SCHED_OTHER:
854 /*
855 * If thread is in time-sharing queue, decrease the priority,
856 * and run with a higher time-quantum.
857 */
858 if (l->l_priority > PRI_HIGHEST_TS)
859 break;
860 if (l->l_priority != 0)
861 l->l_priority--;
862 break;
863 }
864
865 /*
866 * If there are higher priority threads or threads in the same queue,
867 * mark that thread should yield, otherwise, continue running.
868 */
869 if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
870 spc->spc_flags |= SPCF_SHOULDYIELD;
871 cpu_need_resched(ci, 0);
872 } else
873 spc->spc_ticks = sil->sl_timeslice;
874 }
875
876 /*
877 * Sysctl nodes and initialization.
878 */
879
880 static int
881 sysctl_sched_mints(SYSCTLFN_ARGS)
882 {
883 struct sysctlnode node;
884 struct cpu_info *ci;
885 int error, newsize;
886 CPU_INFO_ITERATOR cii;
887
888 node = *rnode;
889 node.sysctl_data = &newsize;
890
891 newsize = hztoms(min_ts);
892 error = sysctl_lookup(SYSCTLFN_CALL(&node));
893 if (error || newp == NULL)
894 return error;
895
896 newsize = mstohz(newsize);
897 if (newsize < 1 || newsize > hz || newsize >= max_ts)
898 return EINVAL;
899
900 /* It is safe to do this in such order */
901 for (CPU_INFO_FOREACH(cii, ci))
902 spc_lock(ci);
903
904 min_ts = newsize;
905 sched_precalcts();
906
907 for (CPU_INFO_FOREACH(cii, ci))
908 spc_unlock(ci);
909
910 return 0;
911 }
912
913 static int
914 sysctl_sched_maxts(SYSCTLFN_ARGS)
915 {
916 struct sysctlnode node;
917 struct cpu_info *ci;
918 int error, newsize;
919 CPU_INFO_ITERATOR cii;
920
921 node = *rnode;
922 node.sysctl_data = &newsize;
923
924 newsize = hztoms(max_ts);
925 error = sysctl_lookup(SYSCTLFN_CALL(&node));
926 if (error || newp == NULL)
927 return error;
928
929 newsize = mstohz(newsize);
930 if (newsize < 10 || newsize > hz || newsize <= min_ts)
931 return EINVAL;
932
933 /* It is safe to do this in such order */
934 for (CPU_INFO_FOREACH(cii, ci))
935 spc_lock(ci);
936
937 max_ts = newsize;
938 sched_precalcts();
939
940 for (CPU_INFO_FOREACH(cii, ci))
941 spc_unlock(ci);
942
943 return 0;
944 }
945
946 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
947 {
948 const struct sysctlnode *node = NULL;
949
950 sysctl_createv(clog, 0, NULL, NULL,
951 CTLFLAG_PERMANENT,
952 CTLTYPE_NODE, "kern", NULL,
953 NULL, 0, NULL, 0,
954 CTL_KERN, CTL_EOL);
955 sysctl_createv(clog, 0, NULL, &node,
956 CTLFLAG_PERMANENT,
957 CTLTYPE_NODE, "sched",
958 SYSCTL_DESCR("Scheduler options"),
959 NULL, 0, NULL, 0,
960 CTL_KERN, CTL_CREATE, CTL_EOL);
961
962 if (node == NULL)
963 return;
964
965 sysctl_createv(clog, 0, &node, NULL,
966 CTLFLAG_PERMANENT,
967 CTLTYPE_STRING, "name", NULL,
968 NULL, 0, __UNCONST("M2"), 0,
969 CTL_CREATE, CTL_EOL);
970 sysctl_createv(clog, 0, &node, NULL,
971 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
972 CTLTYPE_INT, "maxts",
973 SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
974 sysctl_sched_maxts, 0, &max_ts, 0,
975 CTL_CREATE, CTL_EOL);
976 sysctl_createv(clog, 0, &node, NULL,
977 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
978 CTLTYPE_INT, "mints",
979 SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
980 sysctl_sched_mints, 0, &min_ts, 0,
981 CTL_CREATE, CTL_EOL);
982
983 #ifdef MULTIPROCESSOR
984 sysctl_createv(clog, 0, &node, NULL,
985 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
986 CTLTYPE_INT, "cacheht_time",
987 SYSCTL_DESCR("Cache hotness time (in ticks)"),
988 NULL, 0, &cacheht_time, 0,
989 CTL_CREATE, CTL_EOL);
990 sysctl_createv(clog, 0, &node, NULL,
991 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
992 CTLTYPE_INT, "balance_period",
993 SYSCTL_DESCR("Balance period (in ticks)"),
994 NULL, 0, &balance_period, 0,
995 CTL_CREATE, CTL_EOL);
996 sysctl_createv(clog, 0, &node, NULL,
997 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
998 CTLTYPE_INT, "min_catch",
999 SYSCTL_DESCR("Minimal count of the threads for catching"),
1000 NULL, 0, &min_catch, 0,
1001 CTL_CREATE, CTL_EOL);
1002 #endif
1003 }
1004
1005 /*
1006 * Debugging.
1007 */
1008
1009 #ifdef DDB
1010
1011 void
1012 sched_print_runqueue(void (*pr)(const char *, ...))
1013 {
1014 runqueue_t *ci_rq;
1015 sched_info_lwp_t *sil;
1016 struct lwp *l;
1017 struct proc *p;
1018 int i;
1019
1020 struct cpu_info *ci;
1021 CPU_INFO_ITERATOR cii;
1022
1023 for (CPU_INFO_FOREACH(cii, ci)) {
1024 ci_rq = ci->ci_schedstate.spc_sched_info;
1025
1026 (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1027 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1028 "avgcount = %u, highest pri = %d\n",
1029 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1030 ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1031 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1032 do {
1033 uint32_t q;
1034 q = ci_rq->r_bitmap[i];
1035 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1036 } while (i--);
1037 }
1038
1039 (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1040 "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1041
1042 PROCLIST_FOREACH(p, &allproc) {
1043 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1044 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1045 sil = l->l_sched_info;
1046 ci = l->l_cpu;
1047 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1048 "%u ST=%d RT=%d %d\n",
1049 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1050 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1051 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1052 sil->sl_timeslice, l, ci->ci_cpuid,
1053 (u_int)(hardclock_ticks - sil->sl_lrtime),
1054 sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1055 }
1056 }
1057 }
1058
1059 #endif /* defined(DDB) */
1060