sched_m2.c revision 1.15 1 /* $NetBSD: sched_m2.c,v 1.15 2008/01/15 03:37:11 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * TODO:
31 * - Implementation of fair share queue;
32 * - Support for NUMA;
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.15 2008/01/15 03:37:11 rmind Exp $");
37
38 #include <sys/param.h>
39
40 #include <sys/bitops.h>
41 #include <sys/cpu.h>
42 #include <sys/callout.h>
43 #include <sys/errno.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/lwp.h>
47 #include <sys/mutex.h>
48 #include <sys/pool.h>
49 #include <sys/proc.h>
50 #include <sys/pset.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/syscallargs.h>
55 #include <sys/sysctl.h>
56 #include <sys/types.h>
57
58 /*
59 * Priority related defintions.
60 */
61 #define PRI_TS_COUNT (NPRI_USER)
62 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
63 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
64
65 #define PRI_HIGHEST_TS (MAXPRI_USER)
66 #define PRI_DEFAULT (NPRI_USER >> 1)
67
68 const int schedppq = 1;
69
70 /*
71 * Bits per map.
72 */
73 #define BITMAP_BITS (32)
74 #define BITMAP_SHIFT (5)
75 #define BITMAP_MSB (0x80000000U)
76 #define BITMAP_MASK (BITMAP_BITS - 1)
77
78 /*
79 * Time-slices and priorities.
80 */
81 static u_int min_ts; /* Minimal time-slice */
82 static u_int max_ts; /* Maximal time-slice */
83 static u_int rt_ts; /* Real-time time-slice */
84 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
85 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
86
87 /*
88 * Migration and balancing.
89 */
90 #ifdef MULTIPROCESSOR
91
92 static u_int cacheht_time; /* Cache hotness time */
93 static u_int min_catch; /* Minimal LWP count for catching */
94
95 static u_int balance_period; /* Balance period */
96 static struct callout balance_ch; /* Callout of balancer */
97
98 static struct cpu_info * volatile worker_ci;
99
100 #define CACHE_HOT(sil) (sil->sl_lrtime && \
101 (hardclock_ticks - sil->sl_lrtime < cacheht_time))
102
103 #endif
104
105 /*
106 * Structures, runqueue.
107 */
108
109 typedef struct {
110 TAILQ_HEAD(, lwp) q_head;
111 } queue_t;
112
113 typedef struct {
114 /* Lock and bitmap */
115 kmutex_t r_rq_mutex;
116 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
117 /* Counters */
118 u_int r_count; /* Count of the threads */
119 pri_t r_highest_pri; /* Highest priority */
120 u_int r_avgcount; /* Average count of threads */
121 u_int r_mcount; /* Count of migratable threads */
122 /* Runqueues */
123 queue_t r_rt_queue[PRI_RT_COUNT];
124 queue_t r_ts_queue[PRI_TS_COUNT];
125 } runqueue_t;
126
127 typedef struct {
128 u_int sl_flags;
129 u_int sl_timeslice; /* Time-slice of thread */
130 u_int sl_slept; /* Saved sleep time for sleep sum */
131 u_int sl_slpsum; /* Sum of sleep time */
132 u_int sl_rtime; /* Saved start time of run */
133 u_int sl_rtsum; /* Sum of the run time */
134 u_int sl_lrtime; /* Last run time */
135 } sched_info_lwp_t;
136
137 /* Flags */
138 #define SL_BATCH 0x01
139
140 /* Pool of the scheduler-specific structures for threads */
141 static struct pool sil_pool;
142
143 /*
144 * Prototypes.
145 */
146
147 static inline void * sched_getrq(runqueue_t *, const pri_t);
148 static inline void sched_newts(struct lwp *);
149 static void sched_precalcts(void);
150
151 #ifdef MULTIPROCESSOR
152 static struct lwp * sched_catchlwp(void);
153 static void sched_balance(void *);
154 #endif
155
156 /*
157 * Initialization and setup.
158 */
159
160 void
161 sched_rqinit(void)
162 {
163 struct cpu_info *ci = curcpu();
164
165 if (hz < 100) {
166 panic("sched_rqinit: value of HZ is too low\n");
167 }
168
169 /* Default timing ranges */
170 min_ts = mstohz(50); /* ~50ms */
171 max_ts = mstohz(150); /* ~150ms */
172 rt_ts = mstohz(100); /* ~100ms */
173 sched_precalcts();
174
175 #ifdef MULTIPROCESSOR
176 /* Balancing */
177 worker_ci = ci;
178 cacheht_time = mstohz(5); /* ~5 ms */
179 balance_period = mstohz(300); /* ~300ms */
180 min_catch = ~0;
181 #endif
182
183 /* Pool of the scheduler-specific structures */
184 pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
185 "lwpsd", &pool_allocator_nointr, IPL_NONE);
186
187 /* Attach the primary CPU here */
188 sched_cpuattach(ci);
189
190 /* Initialize the scheduler structure of the primary LWP */
191 lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
192 sched_lwp_fork(NULL, &lwp0);
193 sched_newts(&lwp0);
194 }
195
196 void
197 sched_setup(void)
198 {
199
200 #ifdef MULTIPROCESSOR
201 /* Minimal count of LWPs for catching: log2(count of CPUs) */
202 min_catch = min(ilog2(ncpu), 4);
203
204 /* Initialize balancing callout and run it */
205 callout_init(&balance_ch, CALLOUT_MPSAFE);
206 callout_setfunc(&balance_ch, sched_balance, NULL);
207 callout_schedule(&balance_ch, balance_period);
208 #endif
209 }
210
211 void
212 sched_cpuattach(struct cpu_info *ci)
213 {
214 runqueue_t *ci_rq;
215 void *rq_ptr;
216 u_int i, size;
217
218 /*
219 * Allocate the run queue.
220 * XXX: Estimate cache behaviour more..
221 */
222 size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
223 rq_ptr = kmem_zalloc(size, KM_SLEEP);
224 if (rq_ptr == NULL) {
225 panic("scheduler: could not allocate the runqueue");
226 }
227 /* XXX: Save the original pointer for future.. */
228 ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
229
230 /* Initialize run queues */
231 mutex_init(&ci_rq->r_rq_mutex, MUTEX_DEFAULT, IPL_SCHED);
232 for (i = 0; i < PRI_RT_COUNT; i++)
233 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
234 for (i = 0; i < PRI_TS_COUNT; i++)
235 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
236 ci_rq->r_highest_pri = 0;
237
238 ci->ci_schedstate.spc_sched_info = ci_rq;
239 ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
240 }
241
242 /* Pre-calculate the time-slices for the priorities */
243 static void
244 sched_precalcts(void)
245 {
246 pri_t p;
247
248 /* Time-sharing range */
249 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
250 ts_map[p] = max_ts -
251 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
252 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
253 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
254 }
255
256 /* Real-time range */
257 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
258 ts_map[p] = rt_ts;
259 high_pri[p] = p;
260 }
261 }
262
263 /*
264 * Hooks.
265 */
266
267 void
268 sched_proc_fork(struct proc *parent, struct proc *child)
269 {
270 struct lwp *l;
271
272 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
273 lwp_lock(l);
274 sched_newts(l);
275 lwp_unlock(l);
276 }
277 }
278
279 void
280 sched_proc_exit(struct proc *child, struct proc *parent)
281 {
282
283 /* Dummy */
284 }
285
286 void
287 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
288 {
289
290 KASSERT(l2->l_sched_info == NULL);
291 l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
292 memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
293 if (l2->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
294 l2->l_priority = PRI_DEFAULT;
295 }
296
297 void
298 sched_lwp_exit(struct lwp *l)
299 {
300
301 KASSERT(l->l_sched_info != NULL);
302 pool_put(&sil_pool, l->l_sched_info);
303 l->l_sched_info = NULL;
304 }
305
306 void
307 sched_lwp_collect(struct lwp *l)
308 {
309
310 }
311
312 void
313 sched_setrunnable(struct lwp *l)
314 {
315
316 /* Dummy */
317 }
318
319 void
320 sched_schedclock(struct lwp *l)
321 {
322
323 /* Dummy */
324 }
325
326 /*
327 * Priorities and time-slice.
328 */
329
330 void
331 sched_nice(struct proc *p, int prio)
332 {
333 int nprio;
334 struct lwp *l;
335
336 KASSERT(mutex_owned(&p->p_smutex));
337
338 p->p_nice = prio;
339 nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
340
341 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
342 lwp_lock(l);
343 lwp_changepri(l, nprio);
344 lwp_unlock(l);
345 }
346 }
347
348 /* Recalculate the time-slice */
349 static inline void
350 sched_newts(struct lwp *l)
351 {
352 sched_info_lwp_t *sil = l->l_sched_info;
353
354 sil->sl_timeslice = ts_map[lwp_eprio(l)];
355 }
356
357 /*
358 * Control of the runqueue.
359 */
360
361 static inline void *
362 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
363 {
364
365 KASSERT(prio < PRI_COUNT);
366 return (prio <= PRI_HIGHEST_TS) ?
367 &ci_rq->r_ts_queue[prio].q_head :
368 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
369 }
370
371 void
372 sched_enqueue(struct lwp *l, bool swtch)
373 {
374 runqueue_t *ci_rq;
375 sched_info_lwp_t *sil = l->l_sched_info;
376 TAILQ_HEAD(, lwp) *q_head;
377 const pri_t eprio = lwp_eprio(l);
378
379 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
380 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
381
382 /* Update the last run time on switch */
383 if (__predict_true(swtch == true)) {
384 sil->sl_lrtime = hardclock_ticks;
385 sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
386 } else if (sil->sl_lrtime == 0)
387 sil->sl_lrtime = hardclock_ticks;
388
389 /* Enqueue the thread */
390 q_head = sched_getrq(ci_rq, eprio);
391 if (TAILQ_EMPTY(q_head)) {
392 u_int i;
393 uint32_t q;
394
395 /* Mark bit */
396 i = eprio >> BITMAP_SHIFT;
397 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
398 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
399 ci_rq->r_bitmap[i] |= q;
400 }
401 TAILQ_INSERT_TAIL(q_head, l, l_runq);
402 ci_rq->r_count++;
403 if ((l->l_flag & LW_BOUND) == 0)
404 ci_rq->r_mcount++;
405
406 /*
407 * Update the value of highest priority in the runqueue,
408 * if priority of this thread is higher.
409 */
410 if (eprio > ci_rq->r_highest_pri)
411 ci_rq->r_highest_pri = eprio;
412
413 sched_newts(l);
414 }
415
416 void
417 sched_dequeue(struct lwp *l)
418 {
419 runqueue_t *ci_rq;
420 TAILQ_HEAD(, lwp) *q_head;
421 const pri_t eprio = lwp_eprio(l);
422
423 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
424 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
425
426 KASSERT(eprio <= ci_rq->r_highest_pri);
427 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
428 KASSERT(ci_rq->r_count > 0);
429
430 ci_rq->r_count--;
431 if ((l->l_flag & LW_BOUND) == 0)
432 ci_rq->r_mcount--;
433
434 q_head = sched_getrq(ci_rq, eprio);
435 TAILQ_REMOVE(q_head, l, l_runq);
436 if (TAILQ_EMPTY(q_head)) {
437 u_int i;
438 uint32_t q;
439
440 /* Unmark bit */
441 i = eprio >> BITMAP_SHIFT;
442 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
443 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
444 ci_rq->r_bitmap[i] &= ~q;
445
446 /*
447 * Update the value of highest priority in the runqueue, in a
448 * case it was a last thread in the queue of highest priority.
449 */
450 if (eprio != ci_rq->r_highest_pri)
451 return;
452
453 do {
454 q = ffs(ci_rq->r_bitmap[i]);
455 if (q) {
456 ci_rq->r_highest_pri =
457 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
458 return;
459 }
460 } while (i--);
461
462 /* If not found - set the lowest value */
463 ci_rq->r_highest_pri = 0;
464 }
465 }
466
467 void
468 sched_slept(struct lwp *l)
469 {
470 sched_info_lwp_t *sil = l->l_sched_info;
471
472 /* Save the time when thread has slept */
473 sil->sl_slept = hardclock_ticks;
474
475 /*
476 * If thread is in time-sharing queue and batch flag is not marked,
477 * increase the the priority, and run with the lower time-quantum.
478 */
479 if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
480 KASSERT(l->l_class == SCHED_OTHER);
481 l->l_priority++;
482 }
483 }
484
485 void
486 sched_wakeup(struct lwp *l)
487 {
488 sched_info_lwp_t *sil = l->l_sched_info;
489
490 /* Update sleep time delta */
491 sil->sl_slpsum += (l->l_slptime == 0) ?
492 (hardclock_ticks - sil->sl_slept) : hz;
493
494 /* If thread was sleeping a second or more - set a high priority */
495 if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
496 l->l_priority = high_pri[l->l_priority];
497
498 /* Also, consider looking for a better CPU to wake up */
499 if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
500 l->l_cpu = sched_takecpu(l);
501 }
502
503 void
504 sched_pstats_hook(struct lwp *l)
505 {
506 sched_info_lwp_t *sil = l->l_sched_info;
507 pri_t prio;
508 bool batch;
509
510 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
511 l->l_stat == LSSUSPENDED)
512 l->l_slptime++;
513
514 /*
515 * Set that thread is more CPU-bound, if sum of run time exceeds the
516 * sum of sleep time. Check if thread is CPU-bound a first time.
517 */
518 batch = (sil->sl_rtsum > sil->sl_slpsum);
519 if (batch) {
520 if ((sil->sl_flags & SL_BATCH) == 0)
521 batch = false;
522 sil->sl_flags |= SL_BATCH;
523 } else
524 sil->sl_flags &= ~SL_BATCH;
525
526 /* Reset the time sums */
527 sil->sl_slpsum = 0;
528 sil->sl_rtsum = 0;
529
530 /* Estimate threads on time-sharing queue only */
531 if (l->l_priority >= PRI_HIGHEST_TS)
532 return;
533
534 /* If it is CPU-bound not a first time - decrease the priority */
535 prio = l->l_priority;
536 if (batch && prio != 0)
537 prio--;
538
539 /* If thread was not ran a second or more - set a high priority */
540 if (l->l_stat == LSRUN) {
541 if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
542 prio = high_pri[prio];
543 /* Re-enqueue the thread if priority has changed */
544 if (prio != l->l_priority)
545 lwp_changepri(l, prio);
546 } else {
547 /* In other states, change the priority directly */
548 l->l_priority = prio;
549 }
550 }
551
552 /*
553 * Migration and balancing.
554 */
555
556 #ifdef MULTIPROCESSOR
557
558 /* Check if LWP can migrate to the chosen CPU */
559 static inline bool
560 sched_migratable(const struct lwp *l, struct cpu_info *ci)
561 {
562 const struct schedstate_percpu *spc = &ci->ci_schedstate;
563
564 /* CPU is offline */
565 if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
566 return false;
567
568 /* Affinity bind */
569 if (__predict_false(l->l_flag & LW_AFFINITY))
570 return CPU_ISSET(cpu_index(ci), &l->l_affinity);
571
572 /* Processor-set */
573 return (spc->spc_psid == l->l_psid);
574 }
575
576 /*
577 * Estimate the migration of LWP to the other CPU.
578 * Take and return the CPU, if migration is needed.
579 */
580 struct cpu_info *
581 sched_takecpu(struct lwp *l)
582 {
583 struct cpu_info *ci, *tci;
584 struct schedstate_percpu *spc;
585 runqueue_t *ci_rq;
586 sched_info_lwp_t *sil;
587 CPU_INFO_ITERATOR cii;
588 pri_t eprio, lpri;
589
590 KASSERT(lwp_locked(l, NULL));
591
592 ci = l->l_cpu;
593 spc = &ci->ci_schedstate;
594 ci_rq = spc->spc_sched_info;
595
596 /* If thread is strictly bound, do not estimate other CPUs */
597 if (l->l_flag & LW_BOUND)
598 return ci;
599
600 /* CPU of this thread is idling - run there */
601 if (ci_rq->r_count == 0)
602 return ci;
603
604 eprio = lwp_eprio(l);
605 sil = l->l_sched_info;
606
607 /* Stay if thread is cache-hot */
608 if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
609 CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
610 return ci;
611
612 /* Run on current CPU if priority of thread is higher */
613 ci = curcpu();
614 spc = &ci->ci_schedstate;
615 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
616 return ci;
617
618 /*
619 * Look for the CPU with the lowest priority thread. In case of
620 * equal the priority - check the lower count of the threads.
621 */
622 tci = l->l_cpu;
623 lpri = PRI_COUNT;
624 for (CPU_INFO_FOREACH(cii, ci)) {
625 runqueue_t *ici_rq;
626 pri_t pri;
627
628 spc = &ci->ci_schedstate;
629 ici_rq = spc->spc_sched_info;
630 pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
631 if (pri > lpri)
632 continue;
633
634 if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
635 continue;
636
637 if (!sched_migratable(l, ci))
638 continue;
639
640 lpri = pri;
641 tci = ci;
642 ci_rq = ici_rq;
643 }
644 return tci;
645 }
646
647 /*
648 * Tries to catch an LWP from the runqueue of other CPU.
649 */
650 static struct lwp *
651 sched_catchlwp(void)
652 {
653 struct cpu_info *curci = curcpu(), *ci = worker_ci;
654 TAILQ_HEAD(, lwp) *q_head;
655 runqueue_t *ci_rq;
656 struct lwp *l;
657
658 if (curci == ci)
659 return NULL;
660
661 /* Lockless check */
662 ci_rq = ci->ci_schedstate.spc_sched_info;
663 if (ci_rq->r_count < min_catch)
664 return NULL;
665
666 /*
667 * Double-lock the runqueues.
668 */
669 if (curci < ci) {
670 spc_lock(ci);
671 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
672 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
673
674 spc_unlock(curci);
675 spc_lock(ci);
676 spc_lock(curci);
677
678 if (cur_rq->r_count) {
679 spc_unlock(ci);
680 return NULL;
681 }
682 }
683
684 if (ci_rq->r_count < min_catch) {
685 spc_unlock(ci);
686 return NULL;
687 }
688
689 /* Take the highest priority thread */
690 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
691 l = TAILQ_FIRST(q_head);
692
693 for (;;) {
694 sched_info_lwp_t *sil;
695
696 /* Check the first and next result from the queue */
697 if (l == NULL)
698 break;
699
700 /* Look for threads, whose are allowed to migrate */
701 sil = l->l_sched_info;
702 if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
703 !sched_migratable(l, curci)) {
704 l = TAILQ_NEXT(l, l_runq);
705 continue;
706 }
707 /* Recheck if chosen thread is still on the runqueue */
708 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
709 sched_dequeue(l);
710 l->l_cpu = curci;
711 lwp_setlock(l, curci->ci_schedstate.spc_mutex);
712 sched_enqueue(l, false);
713 break;
714 }
715 l = TAILQ_NEXT(l, l_runq);
716 }
717 spc_unlock(ci);
718
719 return l;
720 }
721
722 /*
723 * Periodical calculations for balancing.
724 */
725 static void
726 sched_balance(void *nocallout)
727 {
728 struct cpu_info *ci, *hci;
729 runqueue_t *ci_rq;
730 CPU_INFO_ITERATOR cii;
731 u_int highest;
732
733 hci = curcpu();
734 highest = 0;
735
736 /* Make lockless countings */
737 for (CPU_INFO_FOREACH(cii, ci)) {
738 ci_rq = ci->ci_schedstate.spc_sched_info;
739
740 /* Average count of the threads */
741 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
742
743 /* Look for CPU with the highest average */
744 if (ci_rq->r_avgcount > highest) {
745 hci = ci;
746 highest = ci_rq->r_avgcount;
747 }
748 }
749
750 /* Update the worker */
751 worker_ci = hci;
752
753 if (nocallout == NULL)
754 callout_schedule(&balance_ch, balance_period);
755 }
756
757 #else
758
759 struct cpu_info *
760 sched_takecpu(struct lwp *l)
761 {
762
763 return l->l_cpu;
764 }
765
766 #endif /* MULTIPROCESSOR */
767
768 /*
769 * Scheduler mill.
770 */
771 struct lwp *
772 sched_nextlwp(void)
773 {
774 struct cpu_info *ci = curcpu();
775 struct schedstate_percpu *spc;
776 TAILQ_HEAD(, lwp) *q_head;
777 sched_info_lwp_t *sil;
778 runqueue_t *ci_rq;
779 struct lwp *l;
780
781 spc = &ci->ci_schedstate;
782 ci_rq = ci->ci_schedstate.spc_sched_info;
783
784 #ifdef MULTIPROCESSOR
785 /* If runqueue is empty, try to catch some thread from other CPU */
786 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
787 if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
788 return NULL;
789 } else if (ci_rq->r_count == 0) {
790 /* Reset the counter, and call the balancer */
791 ci_rq->r_avgcount = 0;
792 sched_balance(ci);
793
794 /* The re-locking will be done inside */
795 return sched_catchlwp();
796 }
797 #else
798 if (ci_rq->r_count == 0)
799 return NULL;
800 #endif
801
802 /* Take the highest priority thread */
803 KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
804 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
805 l = TAILQ_FIRST(q_head);
806 KASSERT(l != NULL);
807
808 /* Update the counters */
809 sil = l->l_sched_info;
810 KASSERT(sil->sl_timeslice >= min_ts);
811 KASSERT(sil->sl_timeslice <= max_ts);
812 spc->spc_ticks = sil->sl_timeslice;
813 sil->sl_rtime = hardclock_ticks;
814
815 return l;
816 }
817
818 bool
819 sched_curcpu_runnable_p(void)
820 {
821 const struct cpu_info *ci = curcpu();
822 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
823
824 #ifndef __HAVE_FAST_SOFTINTS
825 if (ci->ci_data.cpu_softints)
826 return true;
827 #endif
828
829 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
830 return (ci_rq->r_count - ci_rq->r_mcount);
831
832 return ci_rq->r_count;
833 }
834
835 /*
836 * Time-driven events.
837 */
838
839 /*
840 * Called once per time-quantum. This routine is CPU-local and runs at
841 * IPL_SCHED, thus the locking is not needed.
842 */
843 void
844 sched_tick(struct cpu_info *ci)
845 {
846 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
847 struct schedstate_percpu *spc = &ci->ci_schedstate;
848 struct lwp *l = curlwp;
849 sched_info_lwp_t *sil = l->l_sched_info;
850
851 if (CURCPU_IDLE_P())
852 return;
853
854 switch (l->l_class) {
855 case SCHED_FIFO:
856 /*
857 * Update the time-quantum, and continue running,
858 * if thread runs on FIFO real-time policy.
859 */
860 spc->spc_ticks = sil->sl_timeslice;
861 return;
862 case SCHED_OTHER:
863 /*
864 * If thread is in time-sharing queue, decrease the priority,
865 * and run with a higher time-quantum.
866 */
867 if (l->l_priority > PRI_HIGHEST_TS)
868 break;
869 if (l->l_priority != 0)
870 l->l_priority--;
871 break;
872 }
873
874 /*
875 * If there are higher priority threads or threads in the same queue,
876 * mark that thread should yield, otherwise, continue running.
877 */
878 if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
879 spc->spc_flags |= SPCF_SHOULDYIELD;
880 cpu_need_resched(ci, 0);
881 } else
882 spc->spc_ticks = sil->sl_timeslice;
883 }
884
885 /*
886 * Sysctl nodes and initialization.
887 */
888
889 static int
890 sysctl_sched_rtts(SYSCTLFN_ARGS)
891 {
892 struct sysctlnode node;
893 int rttsms = hztoms(rt_ts);
894
895 node = *rnode;
896 node.sysctl_data = &rttsms;
897 return sysctl_lookup(SYSCTLFN_CALL(&node));
898 }
899
900 static int
901 sysctl_sched_mints(SYSCTLFN_ARGS)
902 {
903 struct sysctlnode node;
904 struct cpu_info *ci;
905 int error, newsize;
906 CPU_INFO_ITERATOR cii;
907
908 node = *rnode;
909 node.sysctl_data = &newsize;
910
911 newsize = hztoms(min_ts);
912 error = sysctl_lookup(SYSCTLFN_CALL(&node));
913 if (error || newp == NULL)
914 return error;
915
916 newsize = mstohz(newsize);
917 if (newsize < 1 || newsize > hz || newsize >= max_ts)
918 return EINVAL;
919
920 /* It is safe to do this in such order */
921 for (CPU_INFO_FOREACH(cii, ci))
922 spc_lock(ci);
923
924 min_ts = newsize;
925 sched_precalcts();
926
927 for (CPU_INFO_FOREACH(cii, ci))
928 spc_unlock(ci);
929
930 return 0;
931 }
932
933 static int
934 sysctl_sched_maxts(SYSCTLFN_ARGS)
935 {
936 struct sysctlnode node;
937 struct cpu_info *ci;
938 int error, newsize;
939 CPU_INFO_ITERATOR cii;
940
941 node = *rnode;
942 node.sysctl_data = &newsize;
943
944 newsize = hztoms(max_ts);
945 error = sysctl_lookup(SYSCTLFN_CALL(&node));
946 if (error || newp == NULL)
947 return error;
948
949 newsize = mstohz(newsize);
950 if (newsize < 10 || newsize > hz || newsize <= min_ts)
951 return EINVAL;
952
953 /* It is safe to do this in such order */
954 for (CPU_INFO_FOREACH(cii, ci))
955 spc_lock(ci);
956
957 max_ts = newsize;
958 sched_precalcts();
959
960 for (CPU_INFO_FOREACH(cii, ci))
961 spc_unlock(ci);
962
963 return 0;
964 }
965
966 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
967 {
968 const struct sysctlnode *node = NULL;
969
970 sysctl_createv(clog, 0, NULL, NULL,
971 CTLFLAG_PERMANENT,
972 CTLTYPE_NODE, "kern", NULL,
973 NULL, 0, NULL, 0,
974 CTL_KERN, CTL_EOL);
975 sysctl_createv(clog, 0, NULL, &node,
976 CTLFLAG_PERMANENT,
977 CTLTYPE_NODE, "sched",
978 SYSCTL_DESCR("Scheduler options"),
979 NULL, 0, NULL, 0,
980 CTL_KERN, CTL_CREATE, CTL_EOL);
981
982 if (node == NULL)
983 return;
984
985 sysctl_createv(clog, 0, &node, NULL,
986 CTLFLAG_PERMANENT,
987 CTLTYPE_STRING, "name", NULL,
988 NULL, 0, __UNCONST("M2"), 0,
989 CTL_CREATE, CTL_EOL);
990 sysctl_createv(clog, 0, &node, NULL,
991 CTLFLAG_PERMANENT,
992 CTLTYPE_INT, "rtts",
993 SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
994 sysctl_sched_rtts, 0, NULL, 0,
995 CTL_CREATE, CTL_EOL);
996 sysctl_createv(clog, 0, &node, NULL,
997 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
998 CTLTYPE_INT, "maxts",
999 SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
1000 sysctl_sched_maxts, 0, &max_ts, 0,
1001 CTL_CREATE, CTL_EOL);
1002 sysctl_createv(clog, 0, &node, NULL,
1003 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1004 CTLTYPE_INT, "mints",
1005 SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
1006 sysctl_sched_mints, 0, &min_ts, 0,
1007 CTL_CREATE, CTL_EOL);
1008
1009 #ifdef MULTIPROCESSOR
1010 sysctl_createv(clog, 0, &node, NULL,
1011 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1012 CTLTYPE_INT, "cacheht_time",
1013 SYSCTL_DESCR("Cache hotness time (in ticks)"),
1014 NULL, 0, &cacheht_time, 0,
1015 CTL_CREATE, CTL_EOL);
1016 sysctl_createv(clog, 0, &node, NULL,
1017 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1018 CTLTYPE_INT, "balance_period",
1019 SYSCTL_DESCR("Balance period (in ticks)"),
1020 NULL, 0, &balance_period, 0,
1021 CTL_CREATE, CTL_EOL);
1022 sysctl_createv(clog, 0, &node, NULL,
1023 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1024 CTLTYPE_INT, "min_catch",
1025 SYSCTL_DESCR("Minimal count of the threads for catching"),
1026 NULL, 0, &min_catch, 0,
1027 CTL_CREATE, CTL_EOL);
1028 #endif
1029 }
1030
1031 /*
1032 * Debugging.
1033 */
1034
1035 #ifdef DDB
1036
1037 void
1038 sched_print_runqueue(void (*pr)(const char *, ...))
1039 {
1040 runqueue_t *ci_rq;
1041 sched_info_lwp_t *sil;
1042 struct lwp *l;
1043 struct proc *p;
1044 int i;
1045
1046 struct cpu_info *ci;
1047 CPU_INFO_ITERATOR cii;
1048
1049 for (CPU_INFO_FOREACH(cii, ci)) {
1050 ci_rq = ci->ci_schedstate.spc_sched_info;
1051
1052 (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1053 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1054 "avgcount = %u, highest pri = %d\n",
1055 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1056 ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1057 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1058 do {
1059 uint32_t q;
1060 q = ci_rq->r_bitmap[i];
1061 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1062 } while (i--);
1063 }
1064
1065 (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1066 "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1067
1068 PROCLIST_FOREACH(p, &allproc) {
1069 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1070 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1071 sil = l->l_sched_info;
1072 ci = l->l_cpu;
1073 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1074 "%u ST=%d RT=%d %d\n",
1075 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1076 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1077 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1078 sil->sl_timeslice, l, ci->ci_cpuid,
1079 (u_int)(hardclock_ticks - sil->sl_lrtime),
1080 sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1081 }
1082 }
1083 }
1084
1085 #endif /* defined(DDB) */
1086