sched_m2.c revision 1.20 1 /* $NetBSD: sched_m2.c,v 1.20 2008/02/14 14:26:57 ad Exp $ */
2
3 /*
4 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * TODO:
31 * - Implementation of fair share queue;
32 * - Support for NUMA;
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.20 2008/02/14 14:26:57 ad Exp $");
37
38 #include <sys/param.h>
39
40 #include <sys/bitops.h>
41 #include <sys/cpu.h>
42 #include <sys/callout.h>
43 #include <sys/errno.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/lwp.h>
47 #include <sys/mutex.h>
48 #include <sys/pool.h>
49 #include <sys/proc.h>
50 #include <sys/pset.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/syscallargs.h>
55 #include <sys/sysctl.h>
56 #include <sys/types.h>
57
58 /*
59 * Priority related defintions.
60 */
61 #define PRI_TS_COUNT (NPRI_USER)
62 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
63 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
64
65 #define PRI_HIGHEST_TS (MAXPRI_USER)
66
67 const int schedppq = 1;
68
69 /*
70 * Bits per map.
71 */
72 #define BITMAP_BITS (32)
73 #define BITMAP_SHIFT (5)
74 #define BITMAP_MSB (0x80000000U)
75 #define BITMAP_MASK (BITMAP_BITS - 1)
76
77 /*
78 * Time-slices and priorities.
79 */
80 static u_int min_ts; /* Minimal time-slice */
81 static u_int max_ts; /* Maximal time-slice */
82 static u_int rt_ts; /* Real-time time-slice */
83 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
84 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
85
86 /*
87 * Migration and balancing.
88 */
89 #ifdef MULTIPROCESSOR
90
91 static u_int cacheht_time; /* Cache hotness time */
92 static u_int min_catch; /* Minimal LWP count for catching */
93
94 static u_int balance_period; /* Balance period */
95 static struct callout balance_ch; /* Callout of balancer */
96
97 static struct cpu_info * volatile worker_ci;
98
99 #endif
100
101 /*
102 * Structures, runqueue.
103 */
104
105 typedef struct {
106 TAILQ_HEAD(, lwp) q_head;
107 } queue_t;
108
109 typedef struct {
110 /* Lock and bitmap */
111 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
112 /* Counters */
113 u_int r_count; /* Count of the threads */
114 pri_t r_highest_pri; /* Highest priority */
115 u_int r_avgcount; /* Average count of threads */
116 u_int r_mcount; /* Count of migratable threads */
117 /* Runqueues */
118 queue_t r_rt_queue[PRI_RT_COUNT];
119 queue_t r_ts_queue[PRI_TS_COUNT];
120 } runqueue_t;
121
122 typedef struct {
123 u_int sl_flags;
124 u_int sl_timeslice; /* Time-slice of thread */
125 u_int sl_slept; /* Saved sleep time for sleep sum */
126 u_int sl_slpsum; /* Sum of sleep time */
127 u_int sl_rtime; /* Saved start time of run */
128 u_int sl_rtsum; /* Sum of the run time */
129 u_int sl_lrtime; /* Last run time */
130 } sched_info_lwp_t;
131
132 /* Flags */
133 #define SL_BATCH 0x01
134
135 /* Pool of the scheduler-specific structures for threads */
136 static pool_cache_t sil_pool;
137
138 /*
139 * Prototypes.
140 */
141
142 static inline void * sched_getrq(runqueue_t *, const pri_t);
143 static inline void sched_newts(struct lwp *);
144 static void sched_precalcts(void);
145
146 #ifdef MULTIPROCESSOR
147 static struct lwp * sched_catchlwp(void);
148 static void sched_balance(void *);
149 #endif
150
151 /*
152 * Initialization and setup.
153 */
154
155 void
156 sched_rqinit(void)
157 {
158 struct cpu_info *ci = curcpu();
159
160 if (hz < 100) {
161 panic("sched_rqinit: value of HZ is too low\n");
162 }
163
164 /* Default timing ranges */
165 min_ts = mstohz(50); /* ~50ms */
166 max_ts = mstohz(150); /* ~150ms */
167 rt_ts = mstohz(100); /* ~100ms */
168 sched_precalcts();
169
170 #ifdef MULTIPROCESSOR
171 /* Balancing */
172 worker_ci = ci;
173 cacheht_time = mstohz(5); /* ~5 ms */
174 balance_period = mstohz(300); /* ~300ms */
175 min_catch = ~0;
176 #endif
177
178 /* Pool of the scheduler-specific structures */
179 sil_pool = pool_cache_init(sizeof(sched_info_lwp_t), CACHE_LINE_SIZE,
180 0, 0, "lwpsd", NULL, IPL_NONE, NULL, NULL, NULL);
181
182 /* Attach the primary CPU here */
183 sched_cpuattach(ci);
184
185 sched_lwp_fork(NULL, &lwp0);
186 sched_newts(&lwp0);
187 }
188
189 void
190 sched_setup(void)
191 {
192
193 #ifdef MULTIPROCESSOR
194 /* Minimal count of LWPs for catching: log2(count of CPUs) */
195 min_catch = min(ilog2(ncpu), 4);
196
197 /* Initialize balancing callout and run it */
198 callout_init(&balance_ch, CALLOUT_MPSAFE);
199 callout_setfunc(&balance_ch, sched_balance, NULL);
200 callout_schedule(&balance_ch, balance_period);
201 #endif
202 }
203
204 void
205 sched_cpuattach(struct cpu_info *ci)
206 {
207 runqueue_t *ci_rq;
208 void *rq_ptr;
209 u_int i, size;
210
211 if (ci == lwp0.l_cpu) {
212 /* Initialize the scheduler structure of the primary LWP */
213 lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
214 }
215
216 if (ci->ci_schedstate.spc_mutex != NULL) {
217 /* Already initialized. */
218 return;
219 }
220
221 /* Allocate the run queue */
222 size = roundup2(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
223 rq_ptr = kmem_zalloc(size, KM_SLEEP);
224 if (rq_ptr == NULL) {
225 panic("sched_cpuattach: could not allocate the runqueue");
226 }
227 ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), CACHE_LINE_SIZE));
228
229 /* Initialize run queues */
230 KASSERT(sizeof(kmutex_t) <= CACHE_LINE_SIZE);
231 ci->ci_schedstate.spc_mutex = kmem_alloc(CACHE_LINE_SIZE, KM_SLEEP);
232 mutex_init(ci->ci_schedstate.spc_mutex, MUTEX_DEFAULT, IPL_SCHED);
233 for (i = 0; i < PRI_RT_COUNT; i++)
234 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
235 for (i = 0; i < PRI_TS_COUNT; i++)
236 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
237 ci_rq->r_highest_pri = 0;
238
239 ci->ci_schedstate.spc_sched_info = ci_rq;
240 }
241
242 /* Pre-calculate the time-slices for the priorities */
243 static void
244 sched_precalcts(void)
245 {
246 pri_t p;
247
248 /* Time-sharing range */
249 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
250 ts_map[p] = max_ts -
251 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
252 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
253 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
254 }
255
256 /* Real-time range */
257 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
258 ts_map[p] = rt_ts;
259 high_pri[p] = p;
260 }
261 }
262
263 /*
264 * Hooks.
265 */
266
267 void
268 sched_proc_fork(struct proc *parent, struct proc *child)
269 {
270 struct lwp *l;
271
272 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
273 lwp_lock(l);
274 sched_newts(l);
275 lwp_unlock(l);
276 }
277 }
278
279 void
280 sched_proc_exit(struct proc *child, struct proc *parent)
281 {
282
283 /* Dummy */
284 }
285
286 void
287 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
288 {
289
290 KASSERT(l2->l_sched_info == NULL);
291 l2->l_sched_info = pool_cache_get(sil_pool, PR_WAITOK);
292 memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
293 }
294
295 void
296 sched_lwp_exit(struct lwp *l)
297 {
298
299 KASSERT(l->l_sched_info != NULL);
300 pool_cache_put(sil_pool, l->l_sched_info);
301 l->l_sched_info = NULL;
302 }
303
304 void
305 sched_lwp_collect(struct lwp *l)
306 {
307
308 }
309
310 void
311 sched_setrunnable(struct lwp *l)
312 {
313
314 /* Dummy */
315 }
316
317 void
318 sched_schedclock(struct lwp *l)
319 {
320
321 /* Dummy */
322 }
323
324 /*
325 * Priorities and time-slice.
326 */
327
328 void
329 sched_nice(struct proc *p, int prio)
330 {
331
332 /* TODO: implement as SCHED_IA */
333 }
334
335 /* Recalculate the time-slice */
336 static inline void
337 sched_newts(struct lwp *l)
338 {
339 sched_info_lwp_t *sil = l->l_sched_info;
340
341 sil->sl_timeslice = ts_map[lwp_eprio(l)];
342 }
343
344 /*
345 * Control of the runqueue.
346 */
347
348 static inline void *
349 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
350 {
351
352 KASSERT(prio < PRI_COUNT);
353 return (prio <= PRI_HIGHEST_TS) ?
354 &ci_rq->r_ts_queue[prio].q_head :
355 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
356 }
357
358 void
359 sched_enqueue(struct lwp *l, bool swtch)
360 {
361 runqueue_t *ci_rq;
362 sched_info_lwp_t *sil = l->l_sched_info;
363 TAILQ_HEAD(, lwp) *q_head;
364 const pri_t eprio = lwp_eprio(l);
365
366 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
367 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
368
369 /* Update the last run time on switch */
370 if (__predict_true(swtch == true)) {
371 sil->sl_lrtime = hardclock_ticks;
372 sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
373 } else if (sil->sl_lrtime == 0)
374 sil->sl_lrtime = hardclock_ticks;
375
376 /* Enqueue the thread */
377 q_head = sched_getrq(ci_rq, eprio);
378 if (TAILQ_EMPTY(q_head)) {
379 u_int i;
380 uint32_t q;
381
382 /* Mark bit */
383 i = eprio >> BITMAP_SHIFT;
384 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
385 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
386 ci_rq->r_bitmap[i] |= q;
387 }
388 TAILQ_INSERT_TAIL(q_head, l, l_runq);
389 ci_rq->r_count++;
390 if ((l->l_flag & LW_BOUND) == 0)
391 ci_rq->r_mcount++;
392
393 /*
394 * Update the value of highest priority in the runqueue,
395 * if priority of this thread is higher.
396 */
397 if (eprio > ci_rq->r_highest_pri)
398 ci_rq->r_highest_pri = eprio;
399
400 sched_newts(l);
401 }
402
403 void
404 sched_dequeue(struct lwp *l)
405 {
406 runqueue_t *ci_rq;
407 TAILQ_HEAD(, lwp) *q_head;
408 const pri_t eprio = lwp_eprio(l);
409
410 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
411 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
412
413 KASSERT(eprio <= ci_rq->r_highest_pri);
414 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
415 KASSERT(ci_rq->r_count > 0);
416
417 ci_rq->r_count--;
418 if ((l->l_flag & LW_BOUND) == 0)
419 ci_rq->r_mcount--;
420
421 q_head = sched_getrq(ci_rq, eprio);
422 TAILQ_REMOVE(q_head, l, l_runq);
423 if (TAILQ_EMPTY(q_head)) {
424 u_int i;
425 uint32_t q;
426
427 /* Unmark bit */
428 i = eprio >> BITMAP_SHIFT;
429 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
430 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
431 ci_rq->r_bitmap[i] &= ~q;
432
433 /*
434 * Update the value of highest priority in the runqueue, in a
435 * case it was a last thread in the queue of highest priority.
436 */
437 if (eprio != ci_rq->r_highest_pri)
438 return;
439
440 do {
441 q = ffs(ci_rq->r_bitmap[i]);
442 if (q) {
443 ci_rq->r_highest_pri =
444 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
445 return;
446 }
447 } while (i--);
448
449 /* If not found - set the lowest value */
450 ci_rq->r_highest_pri = 0;
451 }
452 }
453
454 void
455 sched_slept(struct lwp *l)
456 {
457 sched_info_lwp_t *sil = l->l_sched_info;
458
459 /* Save the time when thread has slept */
460 sil->sl_slept = hardclock_ticks;
461
462 /*
463 * If thread is in time-sharing queue and batch flag is not marked,
464 * increase the the priority, and run with the lower time-quantum.
465 */
466 if (l->l_priority < PRI_HIGHEST_TS &&
467 (sil->sl_flags & SL_BATCH) == 0) {
468 KASSERT(l->l_class == SCHED_OTHER);
469 l->l_priority++;
470 }
471 }
472
473 void
474 sched_wakeup(struct lwp *l)
475 {
476 sched_info_lwp_t *sil = l->l_sched_info;
477
478 /* Update sleep time delta */
479 sil->sl_slpsum += (l->l_slptime == 0) ?
480 (hardclock_ticks - sil->sl_slept) : hz;
481
482 /* If thread was sleeping a second or more - set a high priority */
483 if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
484 l->l_priority = high_pri[l->l_priority];
485
486 /* Also, consider looking for a better CPU to wake up */
487 if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
488 l->l_cpu = sched_takecpu(l);
489 }
490
491 void
492 sched_pstats_hook(struct lwp *l)
493 {
494 sched_info_lwp_t *sil = l->l_sched_info;
495 pri_t prio;
496 bool batch;
497
498 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
499 l->l_stat == LSSUSPENDED)
500 l->l_slptime++;
501
502 /*
503 * Set that thread is more CPU-bound, if sum of run time exceeds the
504 * sum of sleep time. Check if thread is CPU-bound a first time.
505 */
506 batch = (sil->sl_rtsum > sil->sl_slpsum);
507 if (batch) {
508 if ((sil->sl_flags & SL_BATCH) == 0)
509 batch = false;
510 sil->sl_flags |= SL_BATCH;
511 } else
512 sil->sl_flags &= ~SL_BATCH;
513
514 /* Reset the time sums */
515 sil->sl_slpsum = 0;
516 sil->sl_rtsum = 0;
517
518 /* Estimate threads on time-sharing queue only */
519 if (l->l_priority >= PRI_HIGHEST_TS)
520 return;
521 KASSERT(l->l_class == SCHED_OTHER);
522
523 /* If it is CPU-bound not a first time - decrease the priority */
524 prio = l->l_priority;
525 if (batch && prio != 0)
526 prio--;
527
528 /* If thread was not ran a second or more - set a high priority */
529 if (l->l_stat == LSRUN) {
530 if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
531 prio = high_pri[prio];
532 /* Re-enqueue the thread if priority has changed */
533 if (prio != l->l_priority)
534 lwp_changepri(l, prio);
535 } else {
536 /* In other states, change the priority directly */
537 l->l_priority = prio;
538 }
539 }
540
541 /*
542 * Migration and balancing.
543 */
544
545 #ifdef MULTIPROCESSOR
546
547 /* Estimate if LWP is cache-hot */
548 static inline bool
549 lwp_cache_hot(const struct lwp *l)
550 {
551 const sched_info_lwp_t *sil = l->l_sched_info;
552
553 if (l->l_slptime || sil->sl_lrtime == 0)
554 return false;
555
556 return (hardclock_ticks - sil->sl_lrtime < cacheht_time);
557 }
558
559 /* Check if LWP can migrate to the chosen CPU */
560 static inline bool
561 sched_migratable(const struct lwp *l, struct cpu_info *ci)
562 {
563 const struct schedstate_percpu *spc = &ci->ci_schedstate;
564
565 /* CPU is offline */
566 if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
567 return false;
568
569 /* Affinity bind */
570 if (__predict_false(l->l_flag & LW_AFFINITY))
571 return CPU_ISSET(cpu_index(ci), &l->l_affinity);
572
573 /* Processor-set */
574 return (spc->spc_psid == l->l_psid);
575 }
576
577 /*
578 * Estimate the migration of LWP to the other CPU.
579 * Take and return the CPU, if migration is needed.
580 */
581 struct cpu_info *
582 sched_takecpu(struct lwp *l)
583 {
584 struct cpu_info *ci, *tci;
585 struct schedstate_percpu *spc;
586 runqueue_t *ci_rq;
587 CPU_INFO_ITERATOR cii;
588 pri_t eprio, lpri;
589
590 KASSERT(lwp_locked(l, NULL));
591
592 ci = l->l_cpu;
593 spc = &ci->ci_schedstate;
594 ci_rq = spc->spc_sched_info;
595
596 /* If thread is strictly bound, do not estimate other CPUs */
597 if (l->l_flag & LW_BOUND)
598 return ci;
599
600 /* CPU of this thread is idling - run there */
601 if (ci_rq->r_count == 0)
602 return ci;
603
604 eprio = lwp_eprio(l);
605
606 /* Stay if thread is cache-hot */
607 if (__predict_true(l->l_stat != LSIDL) &&
608 lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
609 return ci;
610
611 /* Run on current CPU if priority of thread is higher */
612 ci = curcpu();
613 spc = &ci->ci_schedstate;
614 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
615 return ci;
616
617 /*
618 * Look for the CPU with the lowest priority thread. In case of
619 * equal the priority - check the lower count of the threads.
620 */
621 tci = l->l_cpu;
622 lpri = PRI_COUNT;
623 for (CPU_INFO_FOREACH(cii, ci)) {
624 runqueue_t *ici_rq;
625 pri_t pri;
626
627 spc = &ci->ci_schedstate;
628 ici_rq = spc->spc_sched_info;
629 pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
630 if (pri > lpri)
631 continue;
632
633 if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
634 continue;
635
636 if (!sched_migratable(l, ci))
637 continue;
638
639 lpri = pri;
640 tci = ci;
641 ci_rq = ici_rq;
642 }
643 return tci;
644 }
645
646 /*
647 * Tries to catch an LWP from the runqueue of other CPU.
648 */
649 static struct lwp *
650 sched_catchlwp(void)
651 {
652 struct cpu_info *curci = curcpu(), *ci = worker_ci;
653 TAILQ_HEAD(, lwp) *q_head;
654 runqueue_t *ci_rq;
655 struct lwp *l;
656
657 if (curci == ci)
658 return NULL;
659
660 /* Lockless check */
661 ci_rq = ci->ci_schedstate.spc_sched_info;
662 if (ci_rq->r_count < min_catch)
663 return NULL;
664
665 /*
666 * Double-lock the runqueues.
667 */
668 if (curci < ci) {
669 spc_lock(ci);
670 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
671 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
672
673 spc_unlock(curci);
674 spc_lock(ci);
675 spc_lock(curci);
676
677 if (cur_rq->r_count) {
678 spc_unlock(ci);
679 return NULL;
680 }
681 }
682
683 if (ci_rq->r_count < min_catch) {
684 spc_unlock(ci);
685 return NULL;
686 }
687
688 /* Take the highest priority thread */
689 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
690 l = TAILQ_FIRST(q_head);
691
692 for (;;) {
693 /* Check the first and next result from the queue */
694 if (l == NULL)
695 break;
696
697 /* Look for threads, whose are allowed to migrate */
698 if ((l->l_flag & LW_SYSTEM) || lwp_cache_hot(l) ||
699 !sched_migratable(l, curci)) {
700 l = TAILQ_NEXT(l, l_runq);
701 continue;
702 }
703 /* Recheck if chosen thread is still on the runqueue */
704 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
705 sched_dequeue(l);
706 l->l_cpu = curci;
707 lwp_setlock(l, curci->ci_schedstate.spc_mutex);
708 sched_enqueue(l, false);
709 break;
710 }
711 l = TAILQ_NEXT(l, l_runq);
712 }
713 spc_unlock(ci);
714
715 return l;
716 }
717
718 /*
719 * Periodical calculations for balancing.
720 */
721 static void
722 sched_balance(void *nocallout)
723 {
724 struct cpu_info *ci, *hci;
725 runqueue_t *ci_rq;
726 CPU_INFO_ITERATOR cii;
727 u_int highest;
728
729 hci = curcpu();
730 highest = 0;
731
732 /* Make lockless countings */
733 for (CPU_INFO_FOREACH(cii, ci)) {
734 ci_rq = ci->ci_schedstate.spc_sched_info;
735
736 /* Average count of the threads */
737 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
738
739 /* Look for CPU with the highest average */
740 if (ci_rq->r_avgcount > highest) {
741 hci = ci;
742 highest = ci_rq->r_avgcount;
743 }
744 }
745
746 /* Update the worker */
747 worker_ci = hci;
748
749 if (nocallout == NULL)
750 callout_schedule(&balance_ch, balance_period);
751 }
752
753 #else
754
755 struct cpu_info *
756 sched_takecpu(struct lwp *l)
757 {
758
759 return l->l_cpu;
760 }
761
762 #endif /* MULTIPROCESSOR */
763
764 /*
765 * Scheduler mill.
766 */
767 struct lwp *
768 sched_nextlwp(void)
769 {
770 struct cpu_info *ci = curcpu();
771 struct schedstate_percpu *spc;
772 TAILQ_HEAD(, lwp) *q_head;
773 sched_info_lwp_t *sil;
774 runqueue_t *ci_rq;
775 struct lwp *l;
776
777 spc = &ci->ci_schedstate;
778 ci_rq = ci->ci_schedstate.spc_sched_info;
779
780 #ifdef MULTIPROCESSOR
781 /* If runqueue is empty, try to catch some thread from other CPU */
782 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
783 if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
784 return NULL;
785 } else if (ci_rq->r_count == 0) {
786 /* Reset the counter, and call the balancer */
787 ci_rq->r_avgcount = 0;
788 sched_balance(ci);
789
790 /* The re-locking will be done inside */
791 return sched_catchlwp();
792 }
793 #else
794 if (ci_rq->r_count == 0)
795 return NULL;
796 #endif
797
798 /* Take the highest priority thread */
799 KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
800 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
801 l = TAILQ_FIRST(q_head);
802 KASSERT(l != NULL);
803
804 /* Update the counters */
805 sil = l->l_sched_info;
806 KASSERT(sil->sl_timeslice >= min_ts);
807 KASSERT(sil->sl_timeslice <= max_ts);
808 spc->spc_ticks = sil->sl_timeslice;
809 sil->sl_rtime = hardclock_ticks;
810
811 return l;
812 }
813
814 bool
815 sched_curcpu_runnable_p(void)
816 {
817 const struct cpu_info *ci = curcpu();
818 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
819
820 #ifndef __HAVE_FAST_SOFTINTS
821 if (ci->ci_data.cpu_softints)
822 return true;
823 #endif
824
825 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
826 return (ci_rq->r_count - ci_rq->r_mcount);
827
828 return ci_rq->r_count;
829 }
830
831 /*
832 * Time-driven events.
833 */
834
835 /*
836 * Called once per time-quantum. This routine is CPU-local and runs at
837 * IPL_SCHED, thus the locking is not needed.
838 */
839 void
840 sched_tick(struct cpu_info *ci)
841 {
842 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
843 struct schedstate_percpu *spc = &ci->ci_schedstate;
844 struct lwp *l = curlwp;
845 const sched_info_lwp_t *sil = l->l_sched_info;
846
847 if (CURCPU_IDLE_P())
848 return;
849
850 switch (l->l_class) {
851 case SCHED_FIFO:
852 /*
853 * Update the time-quantum, and continue running,
854 * if thread runs on FIFO real-time policy.
855 */
856 KASSERT(l->l_priority > PRI_HIGHEST_TS);
857 spc->spc_ticks = sil->sl_timeslice;
858 return;
859 case SCHED_OTHER:
860 /*
861 * If thread is in time-sharing queue, decrease the priority,
862 * and run with a higher time-quantum.
863 */
864 KASSERT(l->l_priority <= PRI_HIGHEST_TS);
865 if (l->l_priority != 0)
866 l->l_priority--;
867 break;
868 }
869
870 /*
871 * If there are higher priority threads or threads in the same queue,
872 * mark that thread should yield, otherwise, continue running.
873 */
874 if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
875 spc->spc_flags |= SPCF_SHOULDYIELD;
876 cpu_need_resched(ci, 0);
877 } else
878 spc->spc_ticks = sil->sl_timeslice;
879 }
880
881 /*
882 * Sysctl nodes and initialization.
883 */
884
885 static int
886 sysctl_sched_rtts(SYSCTLFN_ARGS)
887 {
888 struct sysctlnode node;
889 int rttsms = hztoms(rt_ts);
890
891 node = *rnode;
892 node.sysctl_data = &rttsms;
893 return sysctl_lookup(SYSCTLFN_CALL(&node));
894 }
895
896 static int
897 sysctl_sched_mints(SYSCTLFN_ARGS)
898 {
899 struct sysctlnode node;
900 struct cpu_info *ci;
901 int error, newsize;
902 CPU_INFO_ITERATOR cii;
903
904 node = *rnode;
905 node.sysctl_data = &newsize;
906
907 newsize = hztoms(min_ts);
908 error = sysctl_lookup(SYSCTLFN_CALL(&node));
909 if (error || newp == NULL)
910 return error;
911
912 newsize = mstohz(newsize);
913 if (newsize < 1 || newsize > hz || newsize >= max_ts)
914 return EINVAL;
915
916 /* It is safe to do this in such order */
917 for (CPU_INFO_FOREACH(cii, ci))
918 spc_lock(ci);
919
920 min_ts = newsize;
921 sched_precalcts();
922
923 for (CPU_INFO_FOREACH(cii, ci))
924 spc_unlock(ci);
925
926 return 0;
927 }
928
929 static int
930 sysctl_sched_maxts(SYSCTLFN_ARGS)
931 {
932 struct sysctlnode node;
933 struct cpu_info *ci;
934 int error, newsize;
935 CPU_INFO_ITERATOR cii;
936
937 node = *rnode;
938 node.sysctl_data = &newsize;
939
940 newsize = hztoms(max_ts);
941 error = sysctl_lookup(SYSCTLFN_CALL(&node));
942 if (error || newp == NULL)
943 return error;
944
945 newsize = mstohz(newsize);
946 if (newsize < 10 || newsize > hz || newsize <= min_ts)
947 return EINVAL;
948
949 /* It is safe to do this in such order */
950 for (CPU_INFO_FOREACH(cii, ci))
951 spc_lock(ci);
952
953 max_ts = newsize;
954 sched_precalcts();
955
956 for (CPU_INFO_FOREACH(cii, ci))
957 spc_unlock(ci);
958
959 return 0;
960 }
961
962 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
963 {
964 const struct sysctlnode *node = NULL;
965
966 sysctl_createv(clog, 0, NULL, NULL,
967 CTLFLAG_PERMANENT,
968 CTLTYPE_NODE, "kern", NULL,
969 NULL, 0, NULL, 0,
970 CTL_KERN, CTL_EOL);
971 sysctl_createv(clog, 0, NULL, &node,
972 CTLFLAG_PERMANENT,
973 CTLTYPE_NODE, "sched",
974 SYSCTL_DESCR("Scheduler options"),
975 NULL, 0, NULL, 0,
976 CTL_KERN, CTL_CREATE, CTL_EOL);
977
978 if (node == NULL)
979 return;
980
981 sysctl_createv(clog, 0, &node, NULL,
982 CTLFLAG_PERMANENT,
983 CTLTYPE_STRING, "name", NULL,
984 NULL, 0, __UNCONST("M2"), 0,
985 CTL_CREATE, CTL_EOL);
986 sysctl_createv(clog, 0, &node, NULL,
987 CTLFLAG_PERMANENT,
988 CTLTYPE_INT, "rtts",
989 SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
990 sysctl_sched_rtts, 0, NULL, 0,
991 CTL_CREATE, CTL_EOL);
992 sysctl_createv(clog, 0, &node, NULL,
993 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
994 CTLTYPE_INT, "maxts",
995 SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
996 sysctl_sched_maxts, 0, &max_ts, 0,
997 CTL_CREATE, CTL_EOL);
998 sysctl_createv(clog, 0, &node, NULL,
999 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1000 CTLTYPE_INT, "mints",
1001 SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
1002 sysctl_sched_mints, 0, &min_ts, 0,
1003 CTL_CREATE, CTL_EOL);
1004
1005 #ifdef MULTIPROCESSOR
1006 sysctl_createv(clog, 0, &node, NULL,
1007 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1008 CTLTYPE_INT, "cacheht_time",
1009 SYSCTL_DESCR("Cache hotness time (in ticks)"),
1010 NULL, 0, &cacheht_time, 0,
1011 CTL_CREATE, CTL_EOL);
1012 sysctl_createv(clog, 0, &node, NULL,
1013 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1014 CTLTYPE_INT, "balance_period",
1015 SYSCTL_DESCR("Balance period (in ticks)"),
1016 NULL, 0, &balance_period, 0,
1017 CTL_CREATE, CTL_EOL);
1018 sysctl_createv(clog, 0, &node, NULL,
1019 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1020 CTLTYPE_INT, "min_catch",
1021 SYSCTL_DESCR("Minimal count of the threads for catching"),
1022 NULL, 0, &min_catch, 0,
1023 CTL_CREATE, CTL_EOL);
1024 #endif
1025 }
1026
1027 /*
1028 * Debugging.
1029 */
1030
1031 #ifdef DDB
1032
1033 void
1034 sched_print_runqueue(void (*pr)(const char *, ...))
1035 {
1036 runqueue_t *ci_rq;
1037 sched_info_lwp_t *sil;
1038 struct lwp *l;
1039 struct proc *p;
1040 int i;
1041
1042 struct cpu_info *ci;
1043 CPU_INFO_ITERATOR cii;
1044
1045 for (CPU_INFO_FOREACH(cii, ci)) {
1046 ci_rq = ci->ci_schedstate.spc_sched_info;
1047
1048 (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1049 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1050 "avgcount = %u, highest pri = %d\n",
1051 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1052 ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1053 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1054 do {
1055 uint32_t q;
1056 q = ci_rq->r_bitmap[i];
1057 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1058 } while (i--);
1059 }
1060
1061 (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1062 "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1063
1064 PROCLIST_FOREACH(p, &allproc) {
1065 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1066 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1067 sil = l->l_sched_info;
1068 ci = l->l_cpu;
1069 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1070 "%u ST=%d RT=%d %d\n",
1071 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1072 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1073 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1074 sil->sl_timeslice, l, ci->ci_cpuid,
1075 (u_int)(hardclock_ticks - sil->sl_lrtime),
1076 sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1077 }
1078 }
1079 }
1080
1081 #endif
1082