sched_m2.c revision 1.24.4.2 1 /* $NetBSD: sched_m2.c,v 1.24.4.2 2009/07/18 14:53:23 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * TODO:
31 * - Implementation of fair share queue;
32 * - Support for NUMA;
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.24.4.2 2009/07/18 14:53:23 yamt Exp $");
37
38 #include <sys/param.h>
39
40 #include <sys/cpu.h>
41 #include <sys/callout.h>
42 #include <sys/errno.h>
43 #include <sys/kernel.h>
44 #include <sys/kmem.h>
45 #include <sys/lwp.h>
46 #include <sys/mutex.h>
47 #include <sys/pool.h>
48 #include <sys/proc.h>
49 #include <sys/pset.h>
50 #include <sys/resource.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/syscallargs.h>
54 #include <sys/sysctl.h>
55 #include <sys/types.h>
56
57 /*
58 * Priority related defintions.
59 */
60 #define PRI_TS_COUNT (NPRI_USER)
61 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
62 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
63
64 #define PRI_HIGHEST_TS (MAXPRI_USER)
65
66 /*
67 * Time-slices and priorities.
68 */
69 static u_int min_ts; /* Minimal time-slice */
70 static u_int max_ts; /* Maximal time-slice */
71 static u_int rt_ts; /* Real-time time-slice */
72 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
73 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
74
75 static void sched_precalcts(void);
76
77 /*
78 * Initialization and setup.
79 */
80
81 void
82 sched_rqinit(void)
83 {
84 struct cpu_info *ci = curcpu();
85
86 if (hz < 100) {
87 panic("sched_rqinit: value of HZ is too low\n");
88 }
89
90 /* Default timing ranges */
91 min_ts = mstohz(20); /* ~20 ms */
92 max_ts = mstohz(150); /* ~150 ms */
93 rt_ts = mstohz(100); /* ~100 ms */
94 sched_precalcts();
95
96 /* Attach the primary CPU here */
97 sched_cpuattach(ci);
98
99 sched_lwp_fork(NULL, &lwp0);
100 sched_newts(&lwp0);
101 }
102
103 /* Pre-calculate the time-slices for the priorities */
104 static void
105 sched_precalcts(void)
106 {
107 pri_t p;
108
109 /* Time-sharing range */
110 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
111 ts_map[p] = max_ts -
112 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
113 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
114 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
115 }
116
117 /* Real-time range */
118 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
119 ts_map[p] = rt_ts;
120 high_pri[p] = p;
121 }
122 }
123
124 /*
125 * Hooks.
126 */
127
128 void
129 sched_proc_fork(struct proc *parent, struct proc *child)
130 {
131 struct lwp *l;
132
133 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
134 lwp_lock(l);
135 sched_newts(l);
136 lwp_unlock(l);
137 }
138 }
139
140 void
141 sched_proc_exit(struct proc *child, struct proc *parent)
142 {
143
144 }
145
146 void
147 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
148 {
149
150 }
151
152 void
153 sched_lwp_collect(struct lwp *l)
154 {
155
156 }
157
158 void
159 sched_setrunnable(struct lwp *l)
160 {
161
162 }
163
164 void
165 sched_schedclock(struct lwp *l)
166 {
167
168 }
169
170 /*
171 * Priorities and time-slice.
172 */
173
174 void
175 sched_nice(struct proc *p, int prio)
176 {
177 struct lwp *l;
178 int n;
179
180 KASSERT(mutex_owned(p->p_lock));
181
182 p->p_nice = prio;
183 n = (prio - NZERO) >> 2;
184 if (n == 0)
185 return;
186
187 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
188 lwp_lock(l);
189 if (l->l_class == SCHED_OTHER) {
190 pri_t pri = l->l_priority - n;
191 pri = (n < 0) ? min(pri, PRI_HIGHEST_TS) : imax(pri, 0);
192 lwp_changepri(l, pri);
193 }
194 lwp_unlock(l);
195 }
196 }
197
198 /* Recalculate the time-slice */
199 void
200 sched_newts(struct lwp *l)
201 {
202
203 l->l_sched.timeslice = ts_map[lwp_eprio(l)];
204 }
205
206 void
207 sched_slept(struct lwp *l)
208 {
209
210 /*
211 * If thread is in time-sharing queue and batch flag is not marked,
212 * increase the the priority, and run with the lower time-quantum.
213 */
214 if (l->l_priority < PRI_HIGHEST_TS && (l->l_flag & LW_BATCH) == 0) {
215 struct proc *p = l->l_proc;
216
217 KASSERT(l->l_class == SCHED_OTHER);
218 if (__predict_false(p->p_nice < NZERO)) {
219 const int n = max((NZERO - p->p_nice) >> 2, 1);
220 l->l_priority = min(l->l_priority + n, PRI_HIGHEST_TS);
221 } else {
222 l->l_priority++;
223 }
224 }
225 }
226
227 void
228 sched_wakeup(struct lwp *l)
229 {
230
231 /* If thread was sleeping a second or more - set a high priority */
232 if (l->l_slptime >= 1)
233 l->l_priority = high_pri[l->l_priority];
234 }
235
236 void
237 sched_pstats_hook(struct lwp *l, int batch)
238 {
239 pri_t prio;
240
241 /*
242 * Estimate threads on time-sharing queue only, however,
243 * exclude the highest priority for performance purposes.
244 */
245 KASSERT(lwp_locked(l, NULL));
246 if (l->l_priority >= PRI_HIGHEST_TS)
247 return;
248 KASSERT(l->l_class == SCHED_OTHER);
249
250 /* If it is CPU-bound not a first time - decrease the priority */
251 prio = l->l_priority;
252 if (batch && prio != 0)
253 prio--;
254
255 /* If thread was not ran a second or more - set a high priority */
256 if (l->l_stat == LSRUN) {
257 if (l->l_rticks && (hardclock_ticks - l->l_rticks >= hz))
258 prio = high_pri[prio];
259 /* Re-enqueue the thread if priority has changed */
260 if (prio != l->l_priority)
261 lwp_changepri(l, prio);
262 } else {
263 /* In other states, change the priority directly */
264 l->l_priority = prio;
265 }
266 }
267
268 void
269 sched_oncpu(lwp_t *l)
270 {
271 struct schedstate_percpu *spc = &l->l_cpu->ci_schedstate;
272
273 /* Update the counters */
274 KASSERT(l->l_sched.timeslice >= min_ts);
275 KASSERT(l->l_sched.timeslice <= max_ts);
276 spc->spc_ticks = l->l_sched.timeslice;
277 }
278
279 /*
280 * Time-driven events.
281 */
282
283 /*
284 * Called once per time-quantum. This routine is CPU-local and runs at
285 * IPL_SCHED, thus the locking is not needed.
286 */
287 void
288 sched_tick(struct cpu_info *ci)
289 {
290 struct schedstate_percpu *spc = &ci->ci_schedstate;
291 struct lwp *l = curlwp;
292 struct proc *p;
293
294 if (__predict_false(CURCPU_IDLE_P()))
295 return;
296
297 switch (l->l_class) {
298 case SCHED_FIFO:
299 /*
300 * Update the time-quantum, and continue running,
301 * if thread runs on FIFO real-time policy.
302 */
303 KASSERT(l->l_priority > PRI_HIGHEST_TS);
304 spc->spc_ticks = l->l_sched.timeslice;
305 return;
306 case SCHED_OTHER:
307 /*
308 * If thread is in time-sharing queue, decrease the priority,
309 * and run with a higher time-quantum.
310 */
311 KASSERT(l->l_priority <= PRI_HIGHEST_TS);
312 if (l->l_priority == 0)
313 break;
314
315 p = l->l_proc;
316 if (__predict_false(p->p_nice > NZERO)) {
317 const int n = max((p->p_nice - NZERO) >> 2, 1);
318 l->l_priority = imax(l->l_priority - n, 0);
319 } else
320 l->l_priority--;
321 break;
322 }
323
324 /*
325 * If there are higher priority threads or threads in the same queue,
326 * mark that thread should yield, otherwise, continue running.
327 */
328 if (lwp_eprio(l) <= spc->spc_maxpriority || l->l_target_cpu) {
329 spc->spc_flags |= SPCF_SHOULDYIELD;
330 cpu_need_resched(ci, 0);
331 } else
332 spc->spc_ticks = l->l_sched.timeslice;
333 }
334
335 /*
336 * Sysctl nodes and initialization.
337 */
338
339 static int
340 sysctl_sched_rtts(SYSCTLFN_ARGS)
341 {
342 struct sysctlnode node;
343 int rttsms = hztoms(rt_ts);
344
345 node = *rnode;
346 node.sysctl_data = &rttsms;
347 return sysctl_lookup(SYSCTLFN_CALL(&node));
348 }
349
350 static int
351 sysctl_sched_mints(SYSCTLFN_ARGS)
352 {
353 struct sysctlnode node;
354 struct cpu_info *ci;
355 int error, newsize;
356 CPU_INFO_ITERATOR cii;
357
358 node = *rnode;
359 node.sysctl_data = &newsize;
360
361 newsize = hztoms(min_ts);
362 error = sysctl_lookup(SYSCTLFN_CALL(&node));
363 if (error || newp == NULL)
364 return error;
365
366 newsize = mstohz(newsize);
367 if (newsize < 1 || newsize > hz || newsize >= max_ts)
368 return EINVAL;
369
370 /* It is safe to do this in such order */
371 for (CPU_INFO_FOREACH(cii, ci))
372 spc_lock(ci);
373
374 min_ts = newsize;
375 sched_precalcts();
376
377 for (CPU_INFO_FOREACH(cii, ci))
378 spc_unlock(ci);
379
380 return 0;
381 }
382
383 static int
384 sysctl_sched_maxts(SYSCTLFN_ARGS)
385 {
386 struct sysctlnode node;
387 struct cpu_info *ci;
388 int error, newsize;
389 CPU_INFO_ITERATOR cii;
390
391 node = *rnode;
392 node.sysctl_data = &newsize;
393
394 newsize = hztoms(max_ts);
395 error = sysctl_lookup(SYSCTLFN_CALL(&node));
396 if (error || newp == NULL)
397 return error;
398
399 newsize = mstohz(newsize);
400 if (newsize < 10 || newsize > hz || newsize <= min_ts)
401 return EINVAL;
402
403 /* It is safe to do this in such order */
404 for (CPU_INFO_FOREACH(cii, ci))
405 spc_lock(ci);
406
407 max_ts = newsize;
408 sched_precalcts();
409
410 for (CPU_INFO_FOREACH(cii, ci))
411 spc_unlock(ci);
412
413 return 0;
414 }
415
416 SYSCTL_SETUP(sysctl_sched_m2_setup, "sysctl sched setup")
417 {
418 const struct sysctlnode *node = NULL;
419
420 sysctl_createv(clog, 0, NULL, NULL,
421 CTLFLAG_PERMANENT,
422 CTLTYPE_NODE, "kern", NULL,
423 NULL, 0, NULL, 0,
424 CTL_KERN, CTL_EOL);
425 sysctl_createv(clog, 0, NULL, &node,
426 CTLFLAG_PERMANENT,
427 CTLTYPE_NODE, "sched",
428 SYSCTL_DESCR("Scheduler options"),
429 NULL, 0, NULL, 0,
430 CTL_KERN, CTL_CREATE, CTL_EOL);
431
432 if (node == NULL)
433 return;
434
435 sysctl_createv(NULL, 0, &node, NULL,
436 CTLFLAG_PERMANENT,
437 CTLTYPE_STRING, "name", NULL,
438 NULL, 0, __UNCONST("M2"), 0,
439 CTL_CREATE, CTL_EOL);
440 sysctl_createv(NULL, 0, &node, NULL,
441 CTLFLAG_PERMANENT,
442 CTLTYPE_INT, "rtts",
443 SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
444 sysctl_sched_rtts, 0, NULL, 0,
445 CTL_CREATE, CTL_EOL);
446 sysctl_createv(NULL, 0, &node, NULL,
447 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
448 CTLTYPE_INT, "maxts",
449 SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
450 sysctl_sched_maxts, 0, &max_ts, 0,
451 CTL_CREATE, CTL_EOL);
452 sysctl_createv(NULL, 0, &node, NULL,
453 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
454 CTLTYPE_INT, "mints",
455 SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
456 sysctl_sched_mints, 0, &min_ts, 0,
457 CTL_CREATE, CTL_EOL);
458 }
459