sched_m2.c revision 1.25 1 /* $NetBSD: sched_m2.c,v 1.25 2008/05/19 12:48:54 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * TODO:
31 * - Implementation of fair share queue;
32 * - Support for NUMA;
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.25 2008/05/19 12:48:54 rmind Exp $");
37
38 #include <sys/param.h>
39
40 #include <sys/bitops.h>
41 #include <sys/cpu.h>
42 #include <sys/callout.h>
43 #include <sys/errno.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/lwp.h>
47 #include <sys/mutex.h>
48 #include <sys/pool.h>
49 #include <sys/proc.h>
50 #include <sys/pset.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/syscallargs.h>
55 #include <sys/sysctl.h>
56 #include <sys/types.h>
57
58 /*
59 * Priority related defintions.
60 */
61 #define PRI_TS_COUNT (NPRI_USER)
62 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
63 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
64
65 #define PRI_HIGHEST_TS (MAXPRI_USER)
66
67 /*
68 * Time-slices and priorities.
69 */
70 static u_int min_ts; /* Minimal time-slice */
71 static u_int max_ts; /* Maximal time-slice */
72 static u_int rt_ts; /* Real-time time-slice */
73 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
74 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
75
76 static void sched_precalcts(void);
77
78 typedef struct {
79 u_int sl_timeslice; /* Time-slice of thread */
80 } sched_info_lwp_t;
81
82 static pool_cache_t sil_pool;
83
84 /*
85 * Initialization and setup.
86 */
87
88 void
89 sched_rqinit(void)
90 {
91 struct cpu_info *ci = curcpu();
92
93 if (hz < 100) {
94 panic("sched_rqinit: value of HZ is too low\n");
95 }
96
97 /* Default timing ranges */
98 min_ts = mstohz(50); /* ~50ms */
99 max_ts = mstohz(150); /* ~150ms */
100 rt_ts = mstohz(100); /* ~100ms */
101 sched_precalcts();
102
103 /* Pool of the scheduler-specific structures */
104 sil_pool = pool_cache_init(sizeof(sched_info_lwp_t), coherency_unit,
105 0, 0, "lwpsd", NULL, IPL_NONE, NULL, NULL, NULL);
106
107 /* Attach the primary CPU here */
108 sched_cpuattach(ci);
109
110 sched_lwp_fork(NULL, &lwp0);
111 sched_newts(&lwp0);
112 }
113
114 /* Pre-calculate the time-slices for the priorities */
115 static void
116 sched_precalcts(void)
117 {
118 pri_t p;
119
120 /* Time-sharing range */
121 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
122 ts_map[p] = max_ts -
123 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
124 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
125 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
126 }
127
128 /* Real-time range */
129 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
130 ts_map[p] = rt_ts;
131 high_pri[p] = p;
132 }
133 }
134
135 /*
136 * Hooks.
137 */
138
139 void
140 sched_proc_fork(struct proc *parent, struct proc *child)
141 {
142 struct lwp *l;
143
144 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
145 lwp_lock(l);
146 sched_newts(l);
147 lwp_unlock(l);
148 }
149 }
150
151 void
152 sched_proc_exit(struct proc *child, struct proc *parent)
153 {
154
155 /* Dummy */
156 }
157
158 void
159 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
160 {
161
162 KASSERT(l2->l_sched_info == NULL);
163 l2->l_sched_info = pool_cache_get(sil_pool, PR_WAITOK);
164 memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
165 }
166
167 void
168 sched_lwp_exit(struct lwp *l)
169 {
170
171 KASSERT(l->l_sched_info != NULL);
172 pool_cache_put(sil_pool, l->l_sched_info);
173 l->l_sched_info = NULL;
174 }
175
176 void
177 sched_lwp_collect(struct lwp *l)
178 {
179
180 }
181
182 void
183 sched_setrunnable(struct lwp *l)
184 {
185
186 /* Dummy */
187 }
188
189 void
190 sched_schedclock(struct lwp *l)
191 {
192
193 /* Dummy */
194 }
195
196 /*
197 * Priorities and time-slice.
198 */
199
200 void
201 sched_nice(struct proc *p, int prio)
202 {
203
204 /* TODO: implement as SCHED_IA */
205 }
206
207 /* Recalculate the time-slice */
208 void
209 sched_newts(struct lwp *l)
210 {
211 sched_info_lwp_t *sil = l->l_sched_info;
212
213 sil->sl_timeslice = ts_map[lwp_eprio(l)];
214 }
215
216 void
217 sched_slept(struct lwp *l)
218 {
219
220 /*
221 * If thread is in time-sharing queue and batch flag is not marked,
222 * increase the the priority, and run with the lower time-quantum.
223 */
224 if (l->l_priority < PRI_HIGHEST_TS && (l->l_flag & LW_BATCH) == 0) {
225 KASSERT(l->l_class == SCHED_OTHER);
226 l->l_priority++;
227 }
228 }
229
230 void
231 sched_wakeup(struct lwp *l)
232 {
233
234 /* If thread was sleeping a second or more - set a high priority */
235 if (l->l_slptime >= 1)
236 l->l_priority = high_pri[l->l_priority];
237 }
238
239 void
240 sched_pstats_hook(struct lwp *l, int batch)
241 {
242 pri_t prio;
243
244 /*
245 * Estimate threads on time-sharing queue only, however,
246 * exclude the highest priority for performance purposes.
247 */
248 if (l->l_priority >= PRI_HIGHEST_TS)
249 return;
250 KASSERT(l->l_class == SCHED_OTHER);
251
252 /* If it is CPU-bound not a first time - decrease the priority */
253 prio = l->l_priority;
254 if (batch && prio != 0)
255 prio--;
256
257 /* If thread was not ran a second or more - set a high priority */
258 if (l->l_stat == LSRUN) {
259 if (l->l_rticks && (hardclock_ticks - l->l_rticks >= hz))
260 prio = high_pri[prio];
261 /* Re-enqueue the thread if priority has changed */
262 if (prio != l->l_priority)
263 lwp_changepri(l, prio);
264 } else {
265 /* In other states, change the priority directly */
266 l->l_priority = prio;
267 }
268 }
269
270 void
271 sched_oncpu(lwp_t *l)
272 {
273 sched_info_lwp_t *sil = l->l_sched_info;
274
275 /* Update the counters */
276 sil = l->l_sched_info;
277 KASSERT(sil->sl_timeslice >= min_ts);
278 KASSERT(sil->sl_timeslice <= max_ts);
279 l->l_cpu->ci_schedstate.spc_ticks = sil->sl_timeslice;
280 }
281
282 /*
283 * Time-driven events.
284 */
285
286 /*
287 * Called once per time-quantum. This routine is CPU-local and runs at
288 * IPL_SCHED, thus the locking is not needed.
289 */
290 void
291 sched_tick(struct cpu_info *ci)
292 {
293 struct schedstate_percpu *spc = &ci->ci_schedstate;
294 struct lwp *l = curlwp;
295 const sched_info_lwp_t *sil = l->l_sched_info;
296
297 if (CURCPU_IDLE_P())
298 return;
299
300 switch (l->l_class) {
301 case SCHED_FIFO:
302 /*
303 * Update the time-quantum, and continue running,
304 * if thread runs on FIFO real-time policy.
305 */
306 KASSERT(l->l_priority > PRI_HIGHEST_TS);
307 spc->spc_ticks = sil->sl_timeslice;
308 return;
309 case SCHED_OTHER:
310 /*
311 * If thread is in time-sharing queue, decrease the priority,
312 * and run with a higher time-quantum.
313 */
314 KASSERT(l->l_priority <= PRI_HIGHEST_TS);
315 if (l->l_priority != 0)
316 l->l_priority--;
317 break;
318 }
319
320 /*
321 * If there are higher priority threads or threads in the same queue,
322 * mark that thread should yield, otherwise, continue running.
323 */
324 if (lwp_eprio(l) <= spc->spc_maxpriority || l->l_target_cpu) {
325 spc->spc_flags |= SPCF_SHOULDYIELD;
326 cpu_need_resched(ci, 0);
327 } else
328 spc->spc_ticks = sil->sl_timeslice;
329 }
330
331 /*
332 * Sysctl nodes and initialization.
333 */
334
335 static int
336 sysctl_sched_rtts(SYSCTLFN_ARGS)
337 {
338 struct sysctlnode node;
339 int rttsms = hztoms(rt_ts);
340
341 node = *rnode;
342 node.sysctl_data = &rttsms;
343 return sysctl_lookup(SYSCTLFN_CALL(&node));
344 }
345
346 static int
347 sysctl_sched_mints(SYSCTLFN_ARGS)
348 {
349 struct sysctlnode node;
350 struct cpu_info *ci;
351 int error, newsize;
352 CPU_INFO_ITERATOR cii;
353
354 node = *rnode;
355 node.sysctl_data = &newsize;
356
357 newsize = hztoms(min_ts);
358 error = sysctl_lookup(SYSCTLFN_CALL(&node));
359 if (error || newp == NULL)
360 return error;
361
362 newsize = mstohz(newsize);
363 if (newsize < 1 || newsize > hz || newsize >= max_ts)
364 return EINVAL;
365
366 /* It is safe to do this in such order */
367 for (CPU_INFO_FOREACH(cii, ci))
368 spc_lock(ci);
369
370 min_ts = newsize;
371 sched_precalcts();
372
373 for (CPU_INFO_FOREACH(cii, ci))
374 spc_unlock(ci);
375
376 return 0;
377 }
378
379 static int
380 sysctl_sched_maxts(SYSCTLFN_ARGS)
381 {
382 struct sysctlnode node;
383 struct cpu_info *ci;
384 int error, newsize;
385 CPU_INFO_ITERATOR cii;
386
387 node = *rnode;
388 node.sysctl_data = &newsize;
389
390 newsize = hztoms(max_ts);
391 error = sysctl_lookup(SYSCTLFN_CALL(&node));
392 if (error || newp == NULL)
393 return error;
394
395 newsize = mstohz(newsize);
396 if (newsize < 10 || newsize > hz || newsize <= min_ts)
397 return EINVAL;
398
399 /* It is safe to do this in such order */
400 for (CPU_INFO_FOREACH(cii, ci))
401 spc_lock(ci);
402
403 max_ts = newsize;
404 sched_precalcts();
405
406 for (CPU_INFO_FOREACH(cii, ci))
407 spc_unlock(ci);
408
409 return 0;
410 }
411
412 SYSCTL_SETUP(sysctl_sched_m2_setup, "sysctl sched setup")
413 {
414 const struct sysctlnode *node = NULL;
415
416 sysctl_createv(clog, 0, NULL, NULL,
417 CTLFLAG_PERMANENT,
418 CTLTYPE_NODE, "kern", NULL,
419 NULL, 0, NULL, 0,
420 CTL_KERN, CTL_EOL);
421 sysctl_createv(clog, 0, NULL, &node,
422 CTLFLAG_PERMANENT,
423 CTLTYPE_NODE, "sched",
424 SYSCTL_DESCR("Scheduler options"),
425 NULL, 0, NULL, 0,
426 CTL_KERN, CTL_CREATE, CTL_EOL);
427
428 if (node == NULL)
429 return;
430
431 sysctl_createv(NULL, 0, &node, NULL,
432 CTLFLAG_PERMANENT,
433 CTLTYPE_STRING, "name", NULL,
434 NULL, 0, __UNCONST("M2"), 0,
435 CTL_CREATE, CTL_EOL);
436 sysctl_createv(NULL, 0, &node, NULL,
437 CTLFLAG_PERMANENT,
438 CTLTYPE_INT, "rtts",
439 SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
440 sysctl_sched_rtts, 0, NULL, 0,
441 CTL_CREATE, CTL_EOL);
442 sysctl_createv(NULL, 0, &node, NULL,
443 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
444 CTLTYPE_INT, "maxts",
445 SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
446 sysctl_sched_maxts, 0, &max_ts, 0,
447 CTL_CREATE, CTL_EOL);
448 sysctl_createv(NULL, 0, &node, NULL,
449 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
450 CTLTYPE_INT, "mints",
451 SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
452 sysctl_sched_mints, 0, &min_ts, 0,
453 CTL_CREATE, CTL_EOL);
454 }
455