sched_m2.c revision 1.3.2.4 1 /* $NetBSD: sched_m2.c,v 1.3.2.4 2007/10/13 08:46:58 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
19 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * TODO:
30 * - Implementation of fair share queue;
31 * - Support for NUMA;
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.3.2.4 2007/10/13 08:46:58 rmind Exp $");
36
37 #include <sys/param.h>
38
39 #include <sys/cpu.h>
40 #include <sys/callout.h>
41 #include <sys/errno.h>
42 #include <sys/kernel.h>
43 #include <sys/kmem.h>
44 #include <sys/lwp.h>
45 #include <sys/mutex.h>
46 #include <sys/pool.h>
47 #include <sys/proc.h>
48 #include <sys/resource.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/syscallargs.h>
52 #include <sys/sysctl.h>
53 #include <sys/types.h>
54
55 #include <machine/cpu.h>
56
57 /*
58 * Priority related defintions.
59 */
60 #define PRI_TS_COUNT (NPRI_USER)
61 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
62 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
63
64 #define PRI_HIGHEST_TS (PRI_KERNEL - 1)
65 #define PRI_DEFAULT (NPRI_USER >> 1)
66
67 const int schedppq = 1;
68
69 /*
70 * Bits per map.
71 */
72 #define BITMAP_BITS (32)
73 #define BITMAP_SHIFT (5)
74 #define BITMAP_MSB (0x80000000)
75 #define BITMAP_MASK (BITMAP_BITS - 1)
76
77 /*
78 * Time-slices and priorities.
79 */
80 static u_int min_ts; /* Minimal time-slice */
81 static u_int max_ts; /* Maximal time-slice */
82 static u_int rt_ts; /* Real-time time-slice */
83 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
84 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
85
86 /*
87 * Migration and balancing.
88 */
89 #ifdef MULTIPROCESSOR
90 static u_int cacheht_time; /* Cache hotness time */
91 static u_int min_catch; /* Minimal LWP count for catching */
92
93 static u_int balance_period; /* Balance period */
94 static struct callout balance_ch; /* Callout of balancer */
95
96 static struct cpu_info * volatile worker_ci;
97
98 #define CACHE_HOT(sil) (sil->sl_lrtime && \
99 (hardclock_ticks - sil->sl_lrtime < cacheht_time))
100
101 #endif
102
103 /*
104 * Structures, runqueue.
105 */
106
107 typedef struct {
108 TAILQ_HEAD(, lwp) q_head;
109 } queue_t;
110
111 typedef struct {
112 /* Lock and bitmap */
113 kmutex_t r_rq_mutex;
114 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
115 /* Counters */
116 u_int r_count; /* Count of the threads */
117 pri_t r_highest_pri; /* Highest priority */
118 u_int r_avgcount; /* Average count of threads */
119 u_int r_mcount; /* Count of migratable threads */
120 /* Runqueues */
121 queue_t r_rt_queue[PRI_RT_COUNT];
122 queue_t r_ts_queue[PRI_TS_COUNT];
123 } runqueue_t;
124
125 typedef struct {
126 u_int sl_flags;
127 u_int sl_timeslice; /* Time-slice of thread */
128 u_int sl_slept; /* Saved sleep time for sleep sum */
129 u_int sl_slpsum; /* Sum of sleep time */
130 u_int sl_rtime; /* Saved start time of run */
131 u_int sl_rtsum; /* Sum of the run time */
132 u_int sl_lrtime; /* Last run time */
133 } sched_info_lwp_t;
134
135 /* Flags */
136 #define SL_BATCH 0x01
137
138 /* Pool of the scheduler-specific structures for threads */
139 static struct pool sil_pool;
140
141 /*
142 * Prototypes.
143 */
144
145 static inline void * sched_getrq(runqueue_t *, const pri_t);
146 static inline void sched_newts(struct lwp *);
147 static void sched_precalcts(void);
148
149 #ifdef MULTIPROCESSOR
150 static struct lwp * sched_catchlwp(void);
151 static void sched_balance(void *);
152 #endif
153
154 /*
155 * Initialization and setup.
156 */
157
158 void
159 sched_rqinit(void)
160 {
161 struct cpu_info *ci = curcpu();
162
163 if (hz < 100) {
164 panic("sched_rqinit: value of HZ is too low\n");
165 }
166
167 /* Default timing ranges */
168 min_ts = mstohz(50); /* ~50ms */
169 max_ts = mstohz(150); /* ~150ms */
170 rt_ts = mstohz(100); /* ~100ms */
171 sched_precalcts();
172
173 #ifdef MULTIPROCESSOR
174 /* Balancing */
175 worker_ci = ci;
176 cacheht_time = mstohz(5); /* ~5 ms */
177 balance_period = mstohz(300); /* ~300ms */
178 min_catch = ~0;
179 #endif
180
181 /* Pool of the scheduler-specific structures */
182 pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
183 "lwpsd", &pool_allocator_nointr, IPL_NONE);
184
185 /* Attach the primary CPU here */
186 sched_cpuattach(ci);
187
188 /* Initialize the scheduler structure of the primary LWP */
189 lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
190 sched_lwp_fork(&lwp0);
191 sched_newts(&lwp0);
192 }
193
194 void
195 sched_setup(void)
196 {
197
198 #ifdef MULTIPROCESSOR
199 /* Minimal count of LWPs for catching: log2(count of CPUs) */
200 min_catch = min(ffs(ncpu) - 1, 4);
201
202 /* Initialize balancing callout and run it */
203 callout_init(&balance_ch, CALLOUT_MPSAFE);
204 callout_setfunc(&balance_ch, sched_balance, NULL);
205 callout_schedule(&balance_ch, balance_period);
206 #endif
207 }
208
209 void
210 sched_cpuattach(struct cpu_info *ci)
211 {
212 runqueue_t *ci_rq;
213 void *rq_ptr;
214 u_int i, size;
215
216 /*
217 * Allocate the run queue.
218 * XXX: Estimate cache behaviour more..
219 */
220 size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
221 rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
222 if (rq_ptr == NULL) {
223 panic("scheduler: could not allocate the runqueue");
224 }
225 /* XXX: Save the original pointer for future.. */
226 ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
227
228 /* Initialize run queues */
229 mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
230 for (i = 0; i < PRI_RT_COUNT; i++)
231 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
232 for (i = 0; i < PRI_TS_COUNT; i++)
233 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
234 ci_rq->r_highest_pri = 0;
235
236 ci->ci_schedstate.spc_sched_info = ci_rq;
237 ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
238 }
239
240 /* Pre-calculate the time-slices for the priorities */
241 static void
242 sched_precalcts(void)
243 {
244 pri_t p;
245
246 /* Time-sharing range */
247 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
248 ts_map[p] = max_ts -
249 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
250 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
251 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
252 }
253
254 /* Real-time range */
255 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
256 ts_map[p] = rt_ts;
257 high_pri[p] = p;
258 }
259 }
260
261 /*
262 * Hooks.
263 */
264
265 void
266 sched_proc_fork(struct proc *parent, struct proc *child)
267 {
268 struct lwp *l;
269
270 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
271 lwp_lock(l);
272 sched_newts(l);
273 lwp_unlock(l);
274 }
275 }
276
277 void
278 sched_proc_exit(struct proc *child, struct proc *parent)
279 {
280
281 /* Dummy */
282 }
283
284 void
285 sched_lwp_fork(struct lwp *l)
286 {
287
288 KASSERT(l->l_sched_info == NULL);
289 l->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
290 memset(l->l_sched_info, 0, sizeof(sched_info_lwp_t));
291 if (l->l_usrpri <= PRI_HIGHEST_TS) /* XXX: For now only.. */
292 l->l_usrpri = l->l_priority = PRI_DEFAULT;
293 }
294
295 void
296 sched_lwp_exit(struct lwp *l)
297 {
298
299 KASSERT(l->l_sched_info != NULL);
300 pool_put(&sil_pool, l->l_sched_info);
301 l->l_sched_info = NULL;
302 }
303
304 void
305 sched_setrunnable(struct lwp *l)
306 {
307
308 /* Dummy */
309 }
310
311 void
312 sched_schedclock(struct lwp *l)
313 {
314
315 /* Dummy */
316 }
317
318 /*
319 * Priorities and time-slice.
320 */
321
322 void
323 sched_nice(struct proc *p, int prio)
324 {
325 int nprio;
326 struct lwp *l;
327
328 KASSERT(mutex_owned(&p->p_stmutex));
329
330 p->p_nice = prio;
331 nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
332
333 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
334 lwp_lock(l);
335 lwp_changepri(l, nprio);
336 lwp_unlock(l);
337 }
338 }
339
340 /* Recalculate the time-slice */
341 static inline void
342 sched_newts(struct lwp *l)
343 {
344 sched_info_lwp_t *sil = l->l_sched_info;
345
346 sil->sl_timeslice = ts_map[lwp_eprio(l)];
347 }
348
349 /*
350 * Control of the runqueue.
351 */
352
353 static inline void *
354 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
355 {
356
357 KASSERT(prio < PRI_COUNT);
358 return (prio <= PRI_HIGHEST_TS) ?
359 &ci_rq->r_ts_queue[prio].q_head :
360 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
361 }
362
363 void
364 sched_enqueue(struct lwp *l, bool swtch)
365 {
366 runqueue_t *ci_rq;
367 sched_info_lwp_t *sil = l->l_sched_info;
368 TAILQ_HEAD(, lwp) *q_head;
369 const pri_t eprio = lwp_eprio(l);
370
371 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
372 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
373
374 /* Update the last run time on switch */
375 if (swtch == true) {
376 sil->sl_lrtime = hardclock_ticks;
377 sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
378 } else
379 sil->sl_lrtime = 0;
380
381 /* Enqueue the thread */
382 q_head = sched_getrq(ci_rq, eprio);
383 if (TAILQ_EMPTY(q_head)) {
384 u_int i;
385 uint32_t q;
386
387 /* Mark bit */
388 i = eprio >> BITMAP_SHIFT;
389 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
390 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
391 ci_rq->r_bitmap[i] |= q;
392 }
393 TAILQ_INSERT_TAIL(q_head, l, l_runq);
394 ci_rq->r_count++;
395 if ((l->l_flag & LW_BOUND) == 0)
396 ci_rq->r_mcount++;
397
398 /*
399 * Update the value of highest priority in the runqueue,
400 * if priority of this thread is higher.
401 */
402 if (eprio > ci_rq->r_highest_pri)
403 ci_rq->r_highest_pri = eprio;
404
405 sched_newts(l);
406 }
407
408 void
409 sched_dequeue(struct lwp *l)
410 {
411 runqueue_t *ci_rq;
412 TAILQ_HEAD(, lwp) *q_head;
413 const pri_t eprio = lwp_eprio(l);
414
415 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
416 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
417 KASSERT(eprio <= ci_rq->r_highest_pri);
418 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
419 KASSERT(ci_rq->r_count > 0);
420
421 ci_rq->r_count--;
422 if ((l->l_flag & LW_BOUND) == 0)
423 ci_rq->r_mcount--;
424
425 q_head = sched_getrq(ci_rq, eprio);
426 TAILQ_REMOVE(q_head, l, l_runq);
427 if (TAILQ_EMPTY(q_head)) {
428 u_int i;
429 uint32_t q;
430
431 /* Unmark bit */
432 i = eprio >> BITMAP_SHIFT;
433 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
434 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
435 ci_rq->r_bitmap[i] &= ~q;
436
437 /*
438 * Update the value of highest priority in the runqueue, in a
439 * case it was a last thread in the queue of highest priority.
440 */
441 if (eprio != ci_rq->r_highest_pri)
442 return;
443
444 do {
445 q = ffs(ci_rq->r_bitmap[i]);
446 if (q) {
447 ci_rq->r_highest_pri =
448 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
449 return;
450 }
451 } while (i--);
452
453 /* If not found - set the lowest value */
454 ci_rq->r_highest_pri = 0;
455 }
456 }
457
458 void
459 sched_slept(struct lwp *l)
460 {
461 sched_info_lwp_t *sil = l->l_sched_info;
462
463 /* Save the time when thread has slept */
464 sil->sl_slept = hardclock_ticks;
465
466 /*
467 * If thread is in time-sharing queue and batch flag is not marked,
468 * increase the the priority, and run with the lower time-quantum.
469 */
470 if (l->l_usrpri < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
471 KASSERT(l->l_policy == SCHED_OTHER);
472 l->l_usrpri++;
473 }
474 }
475
476 void
477 sched_wakeup(struct lwp *l)
478 {
479 sched_info_lwp_t *sil = l->l_sched_info;
480
481 /* Update sleep time delta */
482 sil->sl_slpsum += (l->l_slptime == 0) ?
483 (hardclock_ticks - sil->sl_slept) : hz;
484
485 /* If thread was sleeping a second or more - set a high priority */
486 if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
487 l->l_usrpri = l->l_priority = high_pri[l->l_usrpri];
488 KASSERT(sil->sl_slept > 0);
489
490 /* Also, consider looking for a better CPU to wake up */
491 if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
492 l->l_cpu = sched_takecpu(l);
493 }
494
495 void
496 sched_pstats_hook(struct lwp *l)
497 {
498 sched_info_lwp_t *sil = l->l_sched_info;
499 bool batch;
500
501 /*
502 * Set that thread is more CPU-bound, if sum of run time exceeds the
503 * sum of sleep time. Check if thread is CPU-bound a first time.
504 */
505 batch = (sil->sl_rtsum > sil->sl_slpsum);
506 if (batch) {
507 if ((sil->sl_flags & SL_BATCH) == 0)
508 batch = false;
509 sil->sl_flags |= SL_BATCH;
510 } else
511 sil->sl_flags &= ~SL_BATCH;
512
513 /* Reset the time sums */
514 sil->sl_slpsum = 0;
515 sil->sl_rtsum = 0;
516
517 /* Estimate threads on time-sharing queue only */
518 if (l->l_usrpri >= PRI_HIGHEST_TS)
519 return;
520
521 /* If it is CPU-bound not a first time - decrease the priority */
522 if (batch && l->l_usrpri != 0)
523 l->l_usrpri--;
524
525 /* If thread was not ran a second or more - set a high priority */
526 if (l->l_stat == LSRUN && sil->sl_lrtime &&
527 (hardclock_ticks - sil->sl_lrtime >= hz))
528 lwp_changepri(l, high_pri[l->l_usrpri]);
529 }
530
531 /*
532 * Migration and balancing.
533 */
534
535 #ifdef MULTIPROCESSOR
536
537 /* Check if LWP can migrate to the chosen CPU */
538 static inline bool
539 sched_migratable(const struct lwp *l, const struct cpu_info *ci)
540 {
541
542 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
543 return false;
544
545 if ((l->l_flag & LW_BOUND) == 0)
546 return true;
547 #if 0
548 return cpu_in_pset(ci, l->l_psid);
549 #else
550 return false;
551 #endif
552 }
553
554 /*
555 * Estimate the migration of LWP to the other CPU.
556 * Take and return the CPU, if migration is needed.
557 */
558 struct cpu_info *
559 sched_takecpu(struct lwp *l)
560 {
561 struct cpu_info *ci, *tci = NULL;
562 struct schedstate_percpu *spc;
563 runqueue_t *ci_rq;
564 sched_info_lwp_t *sil;
565 CPU_INFO_ITERATOR cii;
566 pri_t eprio, lpri;
567
568 ci = l->l_cpu;
569 spc = &ci->ci_schedstate;
570 ci_rq = spc->spc_sched_info;
571
572 /* CPU of this thread is idling - run there */
573 if (ci_rq->r_count == 0)
574 return ci;
575
576 eprio = lwp_eprio(l);
577 sil = l->l_sched_info;
578
579 /* Stay if thread is cache-hot */
580 if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
581 CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
582 return ci;
583
584 /* Run on current CPU if priority of thread is higher */
585 ci = curcpu();
586 spc = &ci->ci_schedstate;
587 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
588 return ci;
589
590 /*
591 * Look for the CPU with the lowest priority thread. In case of
592 * equal the priority - check the lower count of the threads.
593 */
594 lpri = PRI_COUNT;
595 for (CPU_INFO_FOREACH(cii, ci)) {
596 runqueue_t *ici_rq;
597 pri_t pri;
598
599 spc = &ci->ci_schedstate;
600 ici_rq = spc->spc_sched_info;
601 pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
602 if (pri > lpri)
603 continue;
604
605 if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
606 continue;
607
608 if (sched_migratable(l, ci) == false)
609 continue;
610
611 lpri = pri;
612 tci = ci;
613 ci_rq = ici_rq;
614 }
615
616 KASSERT(tci != NULL);
617 return tci;
618 }
619
620 /*
621 * Tries to catch an LWP from the runqueue of other CPU.
622 */
623 static struct lwp *
624 sched_catchlwp(void)
625 {
626 struct cpu_info *curci = curcpu(), *ci = worker_ci;
627 TAILQ_HEAD(, lwp) *q_head;
628 runqueue_t *ci_rq;
629 struct lwp *l;
630
631 if (curci == ci)
632 return NULL;
633
634 /* Lockless check */
635 ci_rq = ci->ci_schedstate.spc_sched_info;
636 if (ci_rq->r_count < min_catch)
637 return NULL;
638
639 /*
640 * Double-lock the runqueues.
641 */
642 if (curci < ci) {
643 spc_lock(ci);
644 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
645 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
646
647 spc_unlock(curci);
648 spc_lock(ci);
649 spc_lock(curci);
650
651 if (cur_rq->r_count) {
652 spc_unlock(ci);
653 return NULL;
654 }
655 }
656
657 if (ci_rq->r_count < min_catch) {
658 spc_unlock(ci);
659 return NULL;
660 }
661
662 /* Take the highest priority thread */
663 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
664 l = TAILQ_FIRST(q_head);
665
666 for (;;) {
667 sched_info_lwp_t *sil;
668
669 /* Check the first and next result from the queue */
670 if (l == NULL)
671 break;
672
673 /* Look for threads, whose are allowed to migrate */
674 sil = l->l_sched_info;
675 if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
676 sched_migratable(l, curci) == false) {
677 l = TAILQ_NEXT(l, l_runq);
678 continue;
679 }
680 /* Recheck if chosen thread is still on the runqueue */
681 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
682 sched_dequeue(l);
683 l->l_cpu = curci;
684 lwp_setlock(l, curci->ci_schedstate.spc_mutex);
685 sched_enqueue(l, false);
686 break;
687 }
688 l = TAILQ_NEXT(l, l_runq);
689 }
690 spc_unlock(ci);
691
692 return l;
693 }
694
695 /*
696 * Periodical calculations for balancing.
697 */
698 static void
699 sched_balance(void *nocallout)
700 {
701 struct cpu_info *ci, *hci;
702 runqueue_t *ci_rq;
703 CPU_INFO_ITERATOR cii;
704 u_int highest;
705
706 hci = curcpu();
707 highest = 0;
708
709 /* Make lockless countings */
710 for (CPU_INFO_FOREACH(cii, ci)) {
711 ci_rq = ci->ci_schedstate.spc_sched_info;
712
713 /* Average count of the threads */
714 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
715
716 /* Look for CPU with the highest average */
717 if (ci_rq->r_avgcount > highest) {
718 hci = ci;
719 highest = ci_rq->r_avgcount;
720 }
721 }
722
723 /* Update the worker */
724 worker_ci = hci;
725
726 if (nocallout == NULL)
727 callout_schedule(&balance_ch, balance_period);
728 }
729
730 #else
731
732 struct cpu_info *
733 sched_takecpu(struct lwp *l)
734 {
735
736 return l->l_cpu;
737 }
738
739 #endif /* MULTIPROCESSOR */
740
741 /*
742 * Scheduler mill.
743 */
744 struct lwp *
745 sched_nextlwp(void)
746 {
747 struct cpu_info *ci = curcpu();
748 struct schedstate_percpu *spc;
749 TAILQ_HEAD(, lwp) *q_head;
750 sched_info_lwp_t *sil;
751 runqueue_t *ci_rq;
752 struct lwp *l;
753
754 spc = &ci->ci_schedstate;
755 ci_rq = ci->ci_schedstate.spc_sched_info;
756
757 #ifdef MULTIPROCESSOR
758 /* If runqueue is empty, try to catch some thread from other CPU */
759 if (spc->spc_flags & SPCF_OFFLINE) {
760 if (ci_rq->r_mcount == 0)
761 return NULL;
762 } else if (ci_rq->r_count == 0) {
763 /* Reset the counter, and call the balancer */
764 ci_rq->r_avgcount = 0;
765 sched_balance(ci);
766
767 /* The re-locking will be done inside */
768 return sched_catchlwp();
769 }
770 #else
771 if (ci_rq->r_count == 0)
772 return NULL;
773 #endif
774
775 /* Take the highest priority thread */
776 KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
777 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
778 l = TAILQ_FIRST(q_head);
779 KASSERT(l != NULL);
780
781 /* Update the counters */
782 sil = l->l_sched_info;
783 KASSERT(sil->sl_timeslice >= min_ts);
784 KASSERT(sil->sl_timeslice <= max_ts);
785 spc->spc_ticks = sil->sl_timeslice;
786 sil->sl_rtime = hardclock_ticks;
787
788 return l;
789 }
790
791 bool
792 sched_curcpu_runnable_p(void)
793 {
794 const struct cpu_info *ci = curcpu();
795 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
796
797 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
798 return ci_rq->r_mcount;
799
800 return ci_rq->r_count;
801 }
802
803 /*
804 * Time-driven events.
805 */
806
807 /*
808 * Called once per time-quantum. This routine is CPU-local and runs at
809 * IPL_SCHED, thus the locking is not needed.
810 */
811 void
812 sched_tick(struct cpu_info *ci)
813 {
814 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
815 struct schedstate_percpu *spc = &ci->ci_schedstate;
816 struct lwp *l = curlwp;
817 sched_info_lwp_t *sil = l->l_sched_info;
818
819 if (CURCPU_IDLE_P())
820 return;
821
822 switch (l->l_policy) {
823 case SCHED_FIFO:
824 /*
825 * Update the time-quantum, and continue running,
826 * if thread runs on FIFO real-time policy.
827 */
828 spc->spc_ticks = sil->sl_timeslice;
829 return;
830 case SCHED_OTHER:
831 /*
832 * If thread is in time-sharing queue, decrease the priority,
833 * and run with a higher time-quantum.
834 */
835 if (l->l_usrpri > PRI_HIGHEST_TS)
836 break;
837 if (l->l_usrpri != 0)
838 l->l_usrpri--;
839 l->l_priority = l->l_usrpri;
840 break;
841 }
842
843 /*
844 * If there are higher priority threads or threads in the same queue,
845 * mark that thread should yield, otherwise, continue running.
846 */
847 if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
848 spc->spc_flags |= SPCF_SHOULDYIELD;
849 cpu_need_resched(ci, 0);
850 } else
851 spc->spc_ticks = sil->sl_timeslice;
852 }
853
854 /*
855 * Sysctl nodes and initialization.
856 */
857
858 static int
859 sysctl_sched_mints(SYSCTLFN_ARGS)
860 {
861 struct sysctlnode node;
862 struct cpu_info *ci;
863 int error, newsize;
864 CPU_INFO_ITERATOR cii;
865
866 node = *rnode;
867 node.sysctl_data = &newsize;
868
869 newsize = hztoms(min_ts);
870 error = sysctl_lookup(SYSCTLFN_CALL(&node));
871 if (error || newp == NULL)
872 return error;
873
874 if (newsize < 1 || newsize > hz || newsize >= max_ts)
875 return EINVAL;
876
877 /* It is safe to do this in such order */
878 for (CPU_INFO_FOREACH(cii, ci))
879 spc_lock(ci);
880
881 min_ts = mstohz(newsize);
882 sched_precalcts();
883
884 for (CPU_INFO_FOREACH(cii, ci))
885 spc_unlock(ci);
886
887 return 0;
888 }
889
890 static int
891 sysctl_sched_maxts(SYSCTLFN_ARGS)
892 {
893 struct sysctlnode node;
894 struct cpu_info *ci;
895 int error, newsize;
896 CPU_INFO_ITERATOR cii;
897
898 node = *rnode;
899 node.sysctl_data = &newsize;
900
901 newsize = hztoms(max_ts);
902 error = sysctl_lookup(SYSCTLFN_CALL(&node));
903 if (error || newp == NULL)
904 return error;
905
906 if (newsize < 10 || newsize > hz || newsize <= min_ts)
907 return EINVAL;
908
909 /* It is safe to do this in such order */
910 for (CPU_INFO_FOREACH(cii, ci))
911 spc_lock(ci);
912
913 max_ts = mstohz(newsize);
914 sched_precalcts();
915
916 for (CPU_INFO_FOREACH(cii, ci))
917 spc_unlock(ci);
918
919 return 0;
920 }
921
922 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
923 {
924 const struct sysctlnode *node = NULL;
925
926 sysctl_createv(clog, 0, NULL, NULL,
927 CTLFLAG_PERMANENT,
928 CTLTYPE_NODE, "kern", NULL,
929 NULL, 0, NULL, 0,
930 CTL_KERN, CTL_EOL);
931 sysctl_createv(clog, 0, NULL, &node,
932 CTLFLAG_PERMANENT,
933 CTLTYPE_NODE, "sched",
934 SYSCTL_DESCR("Scheduler options"),
935 NULL, 0, NULL, 0,
936 CTL_KERN, CTL_CREATE, CTL_EOL);
937
938 if (node == NULL)
939 return;
940
941 sysctl_createv(clog, 0, &node, NULL,
942 CTLFLAG_PERMANENT,
943 CTLTYPE_STRING, "name", NULL,
944 NULL, 0, __UNCONST("M2"), 0,
945 CTL_CREATE, CTL_EOL);
946 sysctl_createv(clog, 0, &node, NULL,
947 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
948 CTLTYPE_INT, "maxts",
949 SYSCTL_DESCR("Maximal time quantum (in microseconds)"),
950 sysctl_sched_maxts, 0, &max_ts, 0,
951 CTL_CREATE, CTL_EOL);
952 sysctl_createv(clog, 0, &node, NULL,
953 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
954 CTLTYPE_INT, "mints",
955 SYSCTL_DESCR("Minimal time quantum (in microseconds)"),
956 sysctl_sched_mints, 0, &min_ts, 0,
957 CTL_CREATE, CTL_EOL);
958
959 #ifdef MULTIPROCESSOR
960 sysctl_createv(clog, 0, &node, NULL,
961 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
962 CTLTYPE_INT, "cacheht_time",
963 SYSCTL_DESCR("Cache hotness time"),
964 NULL, 0, &cacheht_time, 0,
965 CTL_CREATE, CTL_EOL);
966 sysctl_createv(clog, 0, &node, NULL,
967 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
968 CTLTYPE_INT, "balance_period",
969 SYSCTL_DESCR("Balance period"),
970 NULL, 0, &balance_period, 0,
971 CTL_CREATE, CTL_EOL);
972 sysctl_createv(clog, 0, &node, NULL,
973 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
974 CTLTYPE_INT, "min_catch",
975 SYSCTL_DESCR("Minimal count of threads for catching"),
976 NULL, 0, &min_catch, 0,
977 CTL_CREATE, CTL_EOL);
978 #endif
979 }
980
981 /*
982 * Debugging.
983 */
984
985 #ifdef DDB
986
987 void
988 sched_print_runqueue(void (*pr)(const char *, ...))
989 {
990 runqueue_t *ci_rq;
991 sched_info_lwp_t *sil;
992 struct lwp *l;
993 struct proc *p;
994 int i;
995
996 struct cpu_info *ci;
997 CPU_INFO_ITERATOR cii;
998
999 for (CPU_INFO_FOREACH(cii, ci)) {
1000 ci_rq = ci->ci_schedstate.spc_sched_info;
1001
1002 (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1003 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1004 "avgcount = %u, highest pri = %d\n",
1005 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1006 ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1007 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1008 do {
1009 uint32_t q;
1010 q = ci_rq->r_bitmap[i];
1011 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1012 } while (i--);
1013 }
1014
1015 (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1016 "LID", "PRI", "UPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1017
1018 PROCLIST_FOREACH(p, &allproc) {
1019 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1020 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1021 sil = l->l_sched_info;
1022 ci = l->l_cpu;
1023 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1024 "%u ST=%d RT=%d %d\n",
1025 (int)l->l_lid, l->l_priority, l->l_usrpri,
1026 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1027 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1028 sil->sl_timeslice, l, ci->ci_cpuid,
1029 (u_int)(hardclock_ticks - sil->sl_lrtime),
1030 sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1031 }
1032 }
1033 }
1034
1035 #endif /* defined(DDB) */
1036