sched_m2.c revision 1.3.2.5 1 /* $NetBSD: sched_m2.c,v 1.3.2.5 2007/10/23 20:17:13 ad Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
19 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * TODO:
30 * - Implementation of fair share queue;
31 * - Support for NUMA;
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.3.2.5 2007/10/23 20:17:13 ad Exp $");
36
37 #include <sys/param.h>
38
39 #include <sys/cpu.h>
40 #include <sys/callout.h>
41 #include <sys/errno.h>
42 #include <sys/kernel.h>
43 #include <sys/kmem.h>
44 #include <sys/lwp.h>
45 #include <sys/mutex.h>
46 #include <sys/pool.h>
47 #include <sys/proc.h>
48 #include <sys/resource.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/syscallargs.h>
52 #include <sys/sysctl.h>
53 #include <sys/types.h>
54
55 /*
56 * Priority related defintions.
57 */
58 #define PRI_TS_COUNT (NPRI_USER)
59 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
60 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
61
62 #define PRI_HIGHEST_TS (PRI_KERNEL - 1)
63 #define PRI_DEFAULT (NPRI_USER >> 1)
64
65 const int schedppq = 1;
66
67 /*
68 * Bits per map.
69 */
70 #define BITMAP_BITS (32)
71 #define BITMAP_SHIFT (5)
72 #define BITMAP_MSB (0x80000000)
73 #define BITMAP_MASK (BITMAP_BITS - 1)
74
75 /*
76 * Time-slices and priorities.
77 */
78 static u_int min_ts; /* Minimal time-slice */
79 static u_int max_ts; /* Maximal time-slice */
80 static u_int rt_ts; /* Real-time time-slice */
81 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
82 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
83
84 /*
85 * Migration and balancing.
86 */
87 #ifdef MULTIPROCESSOR
88 static u_int cacheht_time; /* Cache hotness time */
89 static u_int min_catch; /* Minimal LWP count for catching */
90
91 static u_int balance_period; /* Balance period */
92 static struct callout balance_ch; /* Callout of balancer */
93
94 static struct cpu_info * volatile worker_ci;
95
96 #define CACHE_HOT(sil) (sil->sl_lrtime && \
97 (hardclock_ticks - sil->sl_lrtime < cacheht_time))
98
99 #endif
100
101 /*
102 * Structures, runqueue.
103 */
104
105 typedef struct {
106 TAILQ_HEAD(, lwp) q_head;
107 } queue_t;
108
109 typedef struct {
110 /* Lock and bitmap */
111 kmutex_t r_rq_mutex;
112 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
113 /* Counters */
114 u_int r_count; /* Count of the threads */
115 pri_t r_highest_pri; /* Highest priority */
116 u_int r_avgcount; /* Average count of threads */
117 u_int r_mcount; /* Count of migratable threads */
118 /* Runqueues */
119 queue_t r_rt_queue[PRI_RT_COUNT];
120 queue_t r_ts_queue[PRI_TS_COUNT];
121 } runqueue_t;
122
123 typedef struct {
124 u_int sl_flags;
125 u_int sl_timeslice; /* Time-slice of thread */
126 u_int sl_slept; /* Saved sleep time for sleep sum */
127 u_int sl_slpsum; /* Sum of sleep time */
128 u_int sl_rtime; /* Saved start time of run */
129 u_int sl_rtsum; /* Sum of the run time */
130 u_int sl_lrtime; /* Last run time */
131 } sched_info_lwp_t;
132
133 /* Flags */
134 #define SL_BATCH 0x01
135
136 /* Pool of the scheduler-specific structures for threads */
137 static struct pool sil_pool;
138
139 /*
140 * Prototypes.
141 */
142
143 static inline void * sched_getrq(runqueue_t *, const pri_t);
144 static inline void sched_newts(struct lwp *);
145 static void sched_precalcts(void);
146
147 #ifdef MULTIPROCESSOR
148 static struct lwp * sched_catchlwp(void);
149 static void sched_balance(void *);
150 #endif
151
152 /*
153 * Initialization and setup.
154 */
155
156 void
157 sched_rqinit(void)
158 {
159 struct cpu_info *ci = curcpu();
160
161 if (hz < 100) {
162 panic("sched_rqinit: value of HZ is too low\n");
163 }
164
165 /* Default timing ranges */
166 min_ts = mstohz(50); /* ~50ms */
167 max_ts = mstohz(150); /* ~150ms */
168 rt_ts = mstohz(100); /* ~100ms */
169 sched_precalcts();
170
171 #ifdef MULTIPROCESSOR
172 /* Balancing */
173 worker_ci = ci;
174 cacheht_time = mstohz(5); /* ~5 ms */
175 balance_period = mstohz(300); /* ~300ms */
176 min_catch = ~0;
177 #endif
178
179 /* Pool of the scheduler-specific structures */
180 pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
181 "lwpsd", &pool_allocator_nointr, IPL_NONE);
182
183 /* Attach the primary CPU here */
184 sched_cpuattach(ci);
185
186 /* Initialize the scheduler structure of the primary LWP */
187 lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
188 sched_lwp_fork(&lwp0);
189 sched_newts(&lwp0);
190 }
191
192 void
193 sched_setup(void)
194 {
195
196 #ifdef MULTIPROCESSOR
197 /* Minimal count of LWPs for catching: log2(count of CPUs) */
198 min_catch = min(ffs(ncpu) - 1, 4);
199
200 /* Initialize balancing callout and run it */
201 callout_init(&balance_ch, CALLOUT_MPSAFE);
202 callout_setfunc(&balance_ch, sched_balance, NULL);
203 callout_schedule(&balance_ch, balance_period);
204 #endif
205 }
206
207 void
208 sched_cpuattach(struct cpu_info *ci)
209 {
210 runqueue_t *ci_rq;
211 void *rq_ptr;
212 u_int i, size;
213
214 /*
215 * Allocate the run queue.
216 * XXX: Estimate cache behaviour more..
217 */
218 size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
219 rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
220 if (rq_ptr == NULL) {
221 panic("scheduler: could not allocate the runqueue");
222 }
223 /* XXX: Save the original pointer for future.. */
224 ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
225
226 /* Initialize run queues */
227 mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
228 for (i = 0; i < PRI_RT_COUNT; i++)
229 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
230 for (i = 0; i < PRI_TS_COUNT; i++)
231 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
232 ci_rq->r_highest_pri = 0;
233
234 ci->ci_schedstate.spc_sched_info = ci_rq;
235 ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
236 }
237
238 /* Pre-calculate the time-slices for the priorities */
239 static void
240 sched_precalcts(void)
241 {
242 pri_t p;
243
244 /* Time-sharing range */
245 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
246 ts_map[p] = max_ts -
247 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
248 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
249 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
250 }
251
252 /* Real-time range */
253 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
254 ts_map[p] = rt_ts;
255 high_pri[p] = p;
256 }
257 }
258
259 /*
260 * Hooks.
261 */
262
263 void
264 sched_proc_fork(struct proc *parent, struct proc *child)
265 {
266 struct lwp *l;
267
268 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
269 lwp_lock(l);
270 sched_newts(l);
271 lwp_unlock(l);
272 }
273 }
274
275 void
276 sched_proc_exit(struct proc *child, struct proc *parent)
277 {
278
279 /* Dummy */
280 }
281
282 void
283 sched_lwp_fork(struct lwp *l)
284 {
285
286 KASSERT(l->l_sched_info == NULL);
287 l->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
288 memset(l->l_sched_info, 0, sizeof(sched_info_lwp_t));
289 if (l->l_usrpri <= PRI_HIGHEST_TS) /* XXX: For now only.. */
290 l->l_usrpri = l->l_priority = PRI_DEFAULT;
291 }
292
293 void
294 sched_lwp_exit(struct lwp *l)
295 {
296
297 KASSERT(l->l_sched_info != NULL);
298 pool_put(&sil_pool, l->l_sched_info);
299 l->l_sched_info = NULL;
300 }
301
302 void
303 sched_setrunnable(struct lwp *l)
304 {
305
306 /* Dummy */
307 }
308
309 void
310 sched_schedclock(struct lwp *l)
311 {
312
313 /* Dummy */
314 }
315
316 /*
317 * Priorities and time-slice.
318 */
319
320 void
321 sched_nice(struct proc *p, int prio)
322 {
323 int nprio;
324 struct lwp *l;
325
326 KASSERT(mutex_owned(&p->p_stmutex));
327
328 p->p_nice = prio;
329 nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
330
331 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
332 lwp_lock(l);
333 lwp_changepri(l, nprio);
334 lwp_unlock(l);
335 }
336 }
337
338 /* Recalculate the time-slice */
339 static inline void
340 sched_newts(struct lwp *l)
341 {
342 sched_info_lwp_t *sil = l->l_sched_info;
343
344 sil->sl_timeslice = ts_map[lwp_eprio(l)];
345 }
346
347 /*
348 * Control of the runqueue.
349 */
350
351 static inline void *
352 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
353 {
354
355 KASSERT(prio < PRI_COUNT);
356 return (prio <= PRI_HIGHEST_TS) ?
357 &ci_rq->r_ts_queue[prio].q_head :
358 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
359 }
360
361 void
362 sched_enqueue(struct lwp *l, bool swtch)
363 {
364 runqueue_t *ci_rq;
365 sched_info_lwp_t *sil = l->l_sched_info;
366 TAILQ_HEAD(, lwp) *q_head;
367 const pri_t eprio = lwp_eprio(l);
368
369 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
370 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
371
372 /* Update the last run time on switch */
373 if (swtch == true) {
374 sil->sl_lrtime = hardclock_ticks;
375 sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
376 } else
377 sil->sl_lrtime = 0;
378
379 /* Enqueue the thread */
380 q_head = sched_getrq(ci_rq, eprio);
381 if (TAILQ_EMPTY(q_head)) {
382 u_int i;
383 uint32_t q;
384
385 /* Mark bit */
386 i = eprio >> BITMAP_SHIFT;
387 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
388 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
389 ci_rq->r_bitmap[i] |= q;
390 }
391 TAILQ_INSERT_TAIL(q_head, l, l_runq);
392 ci_rq->r_count++;
393 if ((l->l_flag & LW_BOUND) == 0)
394 ci_rq->r_mcount++;
395
396 /*
397 * Update the value of highest priority in the runqueue,
398 * if priority of this thread is higher.
399 */
400 if (eprio > ci_rq->r_highest_pri)
401 ci_rq->r_highest_pri = eprio;
402
403 sched_newts(l);
404 }
405
406 void
407 sched_dequeue(struct lwp *l)
408 {
409 runqueue_t *ci_rq;
410 TAILQ_HEAD(, lwp) *q_head;
411 const pri_t eprio = lwp_eprio(l);
412
413 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
414 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
415 KASSERT(eprio <= ci_rq->r_highest_pri);
416 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
417 KASSERT(ci_rq->r_count > 0);
418
419 ci_rq->r_count--;
420 if ((l->l_flag & LW_BOUND) == 0)
421 ci_rq->r_mcount--;
422
423 q_head = sched_getrq(ci_rq, eprio);
424 TAILQ_REMOVE(q_head, l, l_runq);
425 if (TAILQ_EMPTY(q_head)) {
426 u_int i;
427 uint32_t q;
428
429 /* Unmark bit */
430 i = eprio >> BITMAP_SHIFT;
431 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
432 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
433 ci_rq->r_bitmap[i] &= ~q;
434
435 /*
436 * Update the value of highest priority in the runqueue, in a
437 * case it was a last thread in the queue of highest priority.
438 */
439 if (eprio != ci_rq->r_highest_pri)
440 return;
441
442 do {
443 q = ffs(ci_rq->r_bitmap[i]);
444 if (q) {
445 ci_rq->r_highest_pri =
446 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
447 return;
448 }
449 } while (i--);
450
451 /* If not found - set the lowest value */
452 ci_rq->r_highest_pri = 0;
453 }
454 }
455
456 void
457 sched_slept(struct lwp *l)
458 {
459 sched_info_lwp_t *sil = l->l_sched_info;
460
461 /* Save the time when thread has slept */
462 sil->sl_slept = hardclock_ticks;
463
464 /*
465 * If thread is in time-sharing queue and batch flag is not marked,
466 * increase the the priority, and run with the lower time-quantum.
467 */
468 if (l->l_usrpri < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
469 KASSERT(l->l_policy == SCHED_OTHER);
470 l->l_usrpri++;
471 }
472 }
473
474 void
475 sched_wakeup(struct lwp *l)
476 {
477 sched_info_lwp_t *sil = l->l_sched_info;
478
479 /* Update sleep time delta */
480 sil->sl_slpsum += (l->l_slptime == 0) ?
481 (hardclock_ticks - sil->sl_slept) : hz;
482
483 /* If thread was sleeping a second or more - set a high priority */
484 if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
485 l->l_usrpri = l->l_priority = high_pri[l->l_usrpri];
486
487 /* Also, consider looking for a better CPU to wake up */
488 if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
489 l->l_cpu = sched_takecpu(l);
490 }
491
492 void
493 sched_pstats_hook(struct lwp *l)
494 {
495 sched_info_lwp_t *sil = l->l_sched_info;
496 bool batch;
497
498 /*
499 * Set that thread is more CPU-bound, if sum of run time exceeds the
500 * sum of sleep time. Check if thread is CPU-bound a first time.
501 */
502 batch = (sil->sl_rtsum > sil->sl_slpsum);
503 if (batch) {
504 if ((sil->sl_flags & SL_BATCH) == 0)
505 batch = false;
506 sil->sl_flags |= SL_BATCH;
507 } else
508 sil->sl_flags &= ~SL_BATCH;
509
510 /* Reset the time sums */
511 sil->sl_slpsum = 0;
512 sil->sl_rtsum = 0;
513
514 /* Estimate threads on time-sharing queue only */
515 if (l->l_usrpri >= PRI_HIGHEST_TS)
516 return;
517
518 /* If it is CPU-bound not a first time - decrease the priority */
519 if (batch && l->l_usrpri != 0)
520 l->l_usrpri--;
521
522 /* If thread was not ran a second or more - set a high priority */
523 if (l->l_stat == LSRUN && sil->sl_lrtime &&
524 (hardclock_ticks - sil->sl_lrtime >= hz))
525 lwp_changepri(l, high_pri[l->l_usrpri]);
526 }
527
528 /*
529 * Migration and balancing.
530 */
531
532 #ifdef MULTIPROCESSOR
533
534 /* Check if LWP can migrate to the chosen CPU */
535 static inline bool
536 sched_migratable(const struct lwp *l, const struct cpu_info *ci)
537 {
538
539 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
540 return false;
541
542 if ((l->l_flag & LW_BOUND) == 0)
543 return true;
544 #if 0
545 return cpu_in_pset(ci, l->l_psid);
546 #else
547 return false;
548 #endif
549 }
550
551 /*
552 * Estimate the migration of LWP to the other CPU.
553 * Take and return the CPU, if migration is needed.
554 */
555 struct cpu_info *
556 sched_takecpu(struct lwp *l)
557 {
558 struct cpu_info *ci, *tci = NULL;
559 struct schedstate_percpu *spc;
560 runqueue_t *ci_rq;
561 sched_info_lwp_t *sil;
562 CPU_INFO_ITERATOR cii;
563 pri_t eprio, lpri;
564
565 ci = l->l_cpu;
566 spc = &ci->ci_schedstate;
567 ci_rq = spc->spc_sched_info;
568
569 /* CPU of this thread is idling - run there */
570 if (ci_rq->r_count == 0)
571 return ci;
572
573 eprio = lwp_eprio(l);
574 sil = l->l_sched_info;
575
576 /* Stay if thread is cache-hot */
577 if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
578 CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
579 return ci;
580
581 /* Run on current CPU if priority of thread is higher */
582 ci = curcpu();
583 spc = &ci->ci_schedstate;
584 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
585 return ci;
586
587 /*
588 * Look for the CPU with the lowest priority thread. In case of
589 * equal the priority - check the lower count of the threads.
590 */
591 lpri = PRI_COUNT;
592 for (CPU_INFO_FOREACH(cii, ci)) {
593 runqueue_t *ici_rq;
594 pri_t pri;
595
596 spc = &ci->ci_schedstate;
597 ici_rq = spc->spc_sched_info;
598 pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
599 if (pri > lpri)
600 continue;
601
602 if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
603 continue;
604
605 if (sched_migratable(l, ci) == false)
606 continue;
607
608 lpri = pri;
609 tci = ci;
610 ci_rq = ici_rq;
611 }
612
613 KASSERT(tci != NULL);
614 return tci;
615 }
616
617 /*
618 * Tries to catch an LWP from the runqueue of other CPU.
619 */
620 static struct lwp *
621 sched_catchlwp(void)
622 {
623 struct cpu_info *curci = curcpu(), *ci = worker_ci;
624 TAILQ_HEAD(, lwp) *q_head;
625 runqueue_t *ci_rq;
626 struct lwp *l;
627
628 if (curci == ci)
629 return NULL;
630
631 /* Lockless check */
632 ci_rq = ci->ci_schedstate.spc_sched_info;
633 if (ci_rq->r_count < min_catch)
634 return NULL;
635
636 /*
637 * Double-lock the runqueues.
638 */
639 if (curci < ci) {
640 spc_lock(ci);
641 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
642 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
643
644 spc_unlock(curci);
645 spc_lock(ci);
646 spc_lock(curci);
647
648 if (cur_rq->r_count) {
649 spc_unlock(ci);
650 return NULL;
651 }
652 }
653
654 if (ci_rq->r_count < min_catch) {
655 spc_unlock(ci);
656 return NULL;
657 }
658
659 /* Take the highest priority thread */
660 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
661 l = TAILQ_FIRST(q_head);
662
663 for (;;) {
664 sched_info_lwp_t *sil;
665
666 /* Check the first and next result from the queue */
667 if (l == NULL)
668 break;
669
670 /* Look for threads, whose are allowed to migrate */
671 sil = l->l_sched_info;
672 if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
673 sched_migratable(l, curci) == false) {
674 l = TAILQ_NEXT(l, l_runq);
675 continue;
676 }
677 /* Recheck if chosen thread is still on the runqueue */
678 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
679 sched_dequeue(l);
680 l->l_cpu = curci;
681 lwp_setlock(l, curci->ci_schedstate.spc_mutex);
682 sched_enqueue(l, false);
683 break;
684 }
685 l = TAILQ_NEXT(l, l_runq);
686 }
687 spc_unlock(ci);
688
689 return l;
690 }
691
692 /*
693 * Periodical calculations for balancing.
694 */
695 static void
696 sched_balance(void *nocallout)
697 {
698 struct cpu_info *ci, *hci;
699 runqueue_t *ci_rq;
700 CPU_INFO_ITERATOR cii;
701 u_int highest;
702
703 hci = curcpu();
704 highest = 0;
705
706 /* Make lockless countings */
707 for (CPU_INFO_FOREACH(cii, ci)) {
708 ci_rq = ci->ci_schedstate.spc_sched_info;
709
710 /* Average count of the threads */
711 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
712
713 /* Look for CPU with the highest average */
714 if (ci_rq->r_avgcount > highest) {
715 hci = ci;
716 highest = ci_rq->r_avgcount;
717 }
718 }
719
720 /* Update the worker */
721 worker_ci = hci;
722
723 if (nocallout == NULL)
724 callout_schedule(&balance_ch, balance_period);
725 }
726
727 #else
728
729 struct cpu_info *
730 sched_takecpu(struct lwp *l)
731 {
732
733 return l->l_cpu;
734 }
735
736 #endif /* MULTIPROCESSOR */
737
738 /*
739 * Scheduler mill.
740 */
741 struct lwp *
742 sched_nextlwp(void)
743 {
744 struct cpu_info *ci = curcpu();
745 struct schedstate_percpu *spc;
746 TAILQ_HEAD(, lwp) *q_head;
747 sched_info_lwp_t *sil;
748 runqueue_t *ci_rq;
749 struct lwp *l;
750
751 spc = &ci->ci_schedstate;
752 ci_rq = ci->ci_schedstate.spc_sched_info;
753
754 #ifdef MULTIPROCESSOR
755 /* If runqueue is empty, try to catch some thread from other CPU */
756 if (spc->spc_flags & SPCF_OFFLINE) {
757 if (ci_rq->r_mcount == 0)
758 return NULL;
759 } else if (ci_rq->r_count == 0) {
760 /* Reset the counter, and call the balancer */
761 ci_rq->r_avgcount = 0;
762 sched_balance(ci);
763
764 /* The re-locking will be done inside */
765 return sched_catchlwp();
766 }
767 #else
768 if (ci_rq->r_count == 0)
769 return NULL;
770 #endif
771
772 /* Take the highest priority thread */
773 KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
774 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
775 l = TAILQ_FIRST(q_head);
776 KASSERT(l != NULL);
777
778 /* Update the counters */
779 sil = l->l_sched_info;
780 KASSERT(sil->sl_timeslice >= min_ts);
781 KASSERT(sil->sl_timeslice <= max_ts);
782 spc->spc_ticks = sil->sl_timeslice;
783 sil->sl_rtime = hardclock_ticks;
784
785 return l;
786 }
787
788 bool
789 sched_curcpu_runnable_p(void)
790 {
791 const struct cpu_info *ci = curcpu();
792 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
793
794 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
795 return ci_rq->r_mcount;
796
797 return ci_rq->r_count;
798 }
799
800 /*
801 * Time-driven events.
802 */
803
804 /*
805 * Called once per time-quantum. This routine is CPU-local and runs at
806 * IPL_SCHED, thus the locking is not needed.
807 */
808 void
809 sched_tick(struct cpu_info *ci)
810 {
811 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
812 struct schedstate_percpu *spc = &ci->ci_schedstate;
813 struct lwp *l = curlwp;
814 sched_info_lwp_t *sil = l->l_sched_info;
815
816 if (CURCPU_IDLE_P())
817 return;
818
819 switch (l->l_policy) {
820 case SCHED_FIFO:
821 /*
822 * Update the time-quantum, and continue running,
823 * if thread runs on FIFO real-time policy.
824 */
825 spc->spc_ticks = sil->sl_timeslice;
826 return;
827 case SCHED_OTHER:
828 /*
829 * If thread is in time-sharing queue, decrease the priority,
830 * and run with a higher time-quantum.
831 */
832 if (l->l_usrpri > PRI_HIGHEST_TS)
833 break;
834 if (l->l_usrpri != 0)
835 l->l_usrpri--;
836 l->l_priority = l->l_usrpri;
837 break;
838 }
839
840 /*
841 * If there are higher priority threads or threads in the same queue,
842 * mark that thread should yield, otherwise, continue running.
843 */
844 if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
845 spc->spc_flags |= SPCF_SHOULDYIELD;
846 cpu_need_resched(ci, 0);
847 } else
848 spc->spc_ticks = sil->sl_timeslice;
849 }
850
851 /*
852 * Sysctl nodes and initialization.
853 */
854
855 static int
856 sysctl_sched_mints(SYSCTLFN_ARGS)
857 {
858 struct sysctlnode node;
859 struct cpu_info *ci;
860 int error, newsize;
861 CPU_INFO_ITERATOR cii;
862
863 node = *rnode;
864 node.sysctl_data = &newsize;
865
866 newsize = hztoms(min_ts);
867 error = sysctl_lookup(SYSCTLFN_CALL(&node));
868 if (error || newp == NULL)
869 return error;
870
871 if (newsize < 1 || newsize > hz || newsize >= max_ts)
872 return EINVAL;
873
874 /* It is safe to do this in such order */
875 for (CPU_INFO_FOREACH(cii, ci))
876 spc_lock(ci);
877
878 min_ts = mstohz(newsize);
879 sched_precalcts();
880
881 for (CPU_INFO_FOREACH(cii, ci))
882 spc_unlock(ci);
883
884 return 0;
885 }
886
887 static int
888 sysctl_sched_maxts(SYSCTLFN_ARGS)
889 {
890 struct sysctlnode node;
891 struct cpu_info *ci;
892 int error, newsize;
893 CPU_INFO_ITERATOR cii;
894
895 node = *rnode;
896 node.sysctl_data = &newsize;
897
898 newsize = hztoms(max_ts);
899 error = sysctl_lookup(SYSCTLFN_CALL(&node));
900 if (error || newp == NULL)
901 return error;
902
903 if (newsize < 10 || newsize > hz || newsize <= min_ts)
904 return EINVAL;
905
906 /* It is safe to do this in such order */
907 for (CPU_INFO_FOREACH(cii, ci))
908 spc_lock(ci);
909
910 max_ts = mstohz(newsize);
911 sched_precalcts();
912
913 for (CPU_INFO_FOREACH(cii, ci))
914 spc_unlock(ci);
915
916 return 0;
917 }
918
919 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
920 {
921 const struct sysctlnode *node = NULL;
922
923 sysctl_createv(clog, 0, NULL, NULL,
924 CTLFLAG_PERMANENT,
925 CTLTYPE_NODE, "kern", NULL,
926 NULL, 0, NULL, 0,
927 CTL_KERN, CTL_EOL);
928 sysctl_createv(clog, 0, NULL, &node,
929 CTLFLAG_PERMANENT,
930 CTLTYPE_NODE, "sched",
931 SYSCTL_DESCR("Scheduler options"),
932 NULL, 0, NULL, 0,
933 CTL_KERN, CTL_CREATE, CTL_EOL);
934
935 if (node == NULL)
936 return;
937
938 sysctl_createv(clog, 0, &node, NULL,
939 CTLFLAG_PERMANENT,
940 CTLTYPE_STRING, "name", NULL,
941 NULL, 0, __UNCONST("M2"), 0,
942 CTL_CREATE, CTL_EOL);
943 sysctl_createv(clog, 0, &node, NULL,
944 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
945 CTLTYPE_INT, "maxts",
946 SYSCTL_DESCR("Maximal time quantum (in microseconds)"),
947 sysctl_sched_maxts, 0, &max_ts, 0,
948 CTL_CREATE, CTL_EOL);
949 sysctl_createv(clog, 0, &node, NULL,
950 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
951 CTLTYPE_INT, "mints",
952 SYSCTL_DESCR("Minimal time quantum (in microseconds)"),
953 sysctl_sched_mints, 0, &min_ts, 0,
954 CTL_CREATE, CTL_EOL);
955
956 #ifdef MULTIPROCESSOR
957 sysctl_createv(clog, 0, &node, NULL,
958 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
959 CTLTYPE_INT, "cacheht_time",
960 SYSCTL_DESCR("Cache hotness time"),
961 NULL, 0, &cacheht_time, 0,
962 CTL_CREATE, CTL_EOL);
963 sysctl_createv(clog, 0, &node, NULL,
964 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
965 CTLTYPE_INT, "balance_period",
966 SYSCTL_DESCR("Balance period"),
967 NULL, 0, &balance_period, 0,
968 CTL_CREATE, CTL_EOL);
969 sysctl_createv(clog, 0, &node, NULL,
970 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
971 CTLTYPE_INT, "min_catch",
972 SYSCTL_DESCR("Minimal count of threads for catching"),
973 NULL, 0, &min_catch, 0,
974 CTL_CREATE, CTL_EOL);
975 #endif
976 }
977
978 /*
979 * Debugging.
980 */
981
982 #ifdef DDB
983
984 void
985 sched_print_runqueue(void (*pr)(const char *, ...))
986 {
987 runqueue_t *ci_rq;
988 sched_info_lwp_t *sil;
989 struct lwp *l;
990 struct proc *p;
991 int i;
992
993 struct cpu_info *ci;
994 CPU_INFO_ITERATOR cii;
995
996 for (CPU_INFO_FOREACH(cii, ci)) {
997 ci_rq = ci->ci_schedstate.spc_sched_info;
998
999 (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1000 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1001 "avgcount = %u, highest pri = %d\n",
1002 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1003 ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1004 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1005 do {
1006 uint32_t q;
1007 q = ci_rq->r_bitmap[i];
1008 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1009 } while (i--);
1010 }
1011
1012 (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1013 "LID", "PRI", "UPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1014
1015 PROCLIST_FOREACH(p, &allproc) {
1016 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1017 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1018 sil = l->l_sched_info;
1019 ci = l->l_cpu;
1020 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1021 "%u ST=%d RT=%d %d\n",
1022 (int)l->l_lid, l->l_priority, l->l_usrpri,
1023 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1024 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1025 sil->sl_timeslice, l, ci->ci_cpuid,
1026 (u_int)(hardclock_ticks - sil->sl_lrtime),
1027 sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1028 }
1029 }
1030 }
1031
1032 #endif /* defined(DDB) */
1033