sched_m2.c revision 1.3.2.6 1 /* $NetBSD: sched_m2.c,v 1.3.2.6 2007/11/01 21:58:22 ad Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
19 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * TODO:
30 * - Implementation of fair share queue;
31 * - Support for NUMA;
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.3.2.6 2007/11/01 21:58:22 ad Exp $");
36
37 #include <sys/param.h>
38
39 #include <sys/cpu.h>
40 #include <sys/callout.h>
41 #include <sys/errno.h>
42 #include <sys/kernel.h>
43 #include <sys/kmem.h>
44 #include <sys/lwp.h>
45 #include <sys/mutex.h>
46 #include <sys/pool.h>
47 #include <sys/proc.h>
48 #include <sys/resource.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/syscallargs.h>
52 #include <sys/sysctl.h>
53 #include <sys/types.h>
54
55 /*
56 * Priority related defintions.
57 */
58 #define PRI_TS_COUNT (NPRI_USER)
59 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
60 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
61
62 #define PRI_HIGHEST_TS (PRI_KERNEL - 1)
63 #define PRI_DEFAULT (NPRI_USER >> 1)
64
65 const int schedppq = 1;
66
67 /*
68 * Bits per map.
69 */
70 #define BITMAP_BITS (32)
71 #define BITMAP_SHIFT (5)
72 #define BITMAP_MSB (0x80000000)
73 #define BITMAP_MASK (BITMAP_BITS - 1)
74
75 /*
76 * Time-slices and priorities.
77 */
78 static u_int min_ts; /* Minimal time-slice */
79 static u_int max_ts; /* Maximal time-slice */
80 static u_int rt_ts; /* Real-time time-slice */
81 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
82 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
83
84 /*
85 * Migration and balancing.
86 */
87 #ifdef MULTIPROCESSOR
88 static u_int cacheht_time; /* Cache hotness time */
89 static u_int min_catch; /* Minimal LWP count for catching */
90
91 static u_int balance_period; /* Balance period */
92 static struct callout balance_ch; /* Callout of balancer */
93
94 static struct cpu_info * volatile worker_ci;
95
96 #define CACHE_HOT(sil) (sil->sl_lrtime && \
97 (hardclock_ticks - sil->sl_lrtime < cacheht_time))
98
99 #endif
100
101 /*
102 * Structures, runqueue.
103 */
104
105 typedef struct {
106 TAILQ_HEAD(, lwp) q_head;
107 } queue_t;
108
109 typedef struct {
110 /* Lock and bitmap */
111 kmutex_t r_rq_mutex;
112 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
113 /* Counters */
114 u_int r_count; /* Count of the threads */
115 pri_t r_highest_pri; /* Highest priority */
116 u_int r_avgcount; /* Average count of threads */
117 u_int r_mcount; /* Count of migratable threads */
118 /* Runqueues */
119 queue_t r_rt_queue[PRI_RT_COUNT];
120 queue_t r_ts_queue[PRI_TS_COUNT];
121 } runqueue_t;
122
123 typedef struct {
124 u_int sl_flags;
125 u_int sl_timeslice; /* Time-slice of thread */
126 u_int sl_slept; /* Saved sleep time for sleep sum */
127 u_int sl_slpsum; /* Sum of sleep time */
128 u_int sl_rtime; /* Saved start time of run */
129 u_int sl_rtsum; /* Sum of the run time */
130 u_int sl_lrtime; /* Last run time */
131 } sched_info_lwp_t;
132
133 /* Flags */
134 #define SL_BATCH 0x01
135
136 /* Pool of the scheduler-specific structures for threads */
137 static struct pool sil_pool;
138
139 /*
140 * Prototypes.
141 */
142
143 static inline void * sched_getrq(runqueue_t *, const pri_t);
144 static inline void sched_newts(struct lwp *);
145 static void sched_precalcts(void);
146
147 #ifdef MULTIPROCESSOR
148 static struct lwp * sched_catchlwp(void);
149 static void sched_balance(void *);
150 #endif
151
152 /*
153 * Initialization and setup.
154 */
155
156 void
157 sched_rqinit(void)
158 {
159 struct cpu_info *ci = curcpu();
160
161 if (hz < 100) {
162 panic("sched_rqinit: value of HZ is too low\n");
163 }
164
165 /* Default timing ranges */
166 min_ts = mstohz(50); /* ~50ms */
167 max_ts = mstohz(150); /* ~150ms */
168 rt_ts = mstohz(100); /* ~100ms */
169 sched_precalcts();
170
171 #ifdef MULTIPROCESSOR
172 /* Balancing */
173 worker_ci = ci;
174 cacheht_time = mstohz(5); /* ~5 ms */
175 balance_period = mstohz(300); /* ~300ms */
176 min_catch = ~0;
177 #endif
178
179 /* Pool of the scheduler-specific structures */
180 pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
181 "lwpsd", &pool_allocator_nointr, IPL_NONE);
182
183 /* Attach the primary CPU here */
184 sched_cpuattach(ci);
185
186 /* Initialize the scheduler structure of the primary LWP */
187 lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
188 sched_lwp_fork(&lwp0);
189 sched_newts(&lwp0);
190 }
191
192 void
193 sched_setup(void)
194 {
195
196 #ifdef MULTIPROCESSOR
197 /* Minimal count of LWPs for catching: log2(count of CPUs) */
198 min_catch = min(ffs(ncpu) - 1, 4);
199
200 /* Initialize balancing callout and run it */
201 callout_init(&balance_ch, CALLOUT_MPSAFE);
202 callout_setfunc(&balance_ch, sched_balance, NULL);
203 callout_schedule(&balance_ch, balance_period);
204 #endif
205 }
206
207 void
208 sched_cpuattach(struct cpu_info *ci)
209 {
210 runqueue_t *ci_rq;
211 void *rq_ptr;
212 u_int i, size;
213
214 /*
215 * Allocate the run queue.
216 * XXX: Estimate cache behaviour more..
217 */
218 size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
219 rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
220 if (rq_ptr == NULL) {
221 panic("scheduler: could not allocate the runqueue");
222 }
223 /* XXX: Save the original pointer for future.. */
224 ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
225
226 /* Initialize run queues */
227 mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
228 for (i = 0; i < PRI_RT_COUNT; i++)
229 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
230 for (i = 0; i < PRI_TS_COUNT; i++)
231 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
232 ci_rq->r_highest_pri = 0;
233
234 ci->ci_schedstate.spc_sched_info = ci_rq;
235 ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
236 }
237
238 /* Pre-calculate the time-slices for the priorities */
239 static void
240 sched_precalcts(void)
241 {
242 pri_t p;
243
244 /* Time-sharing range */
245 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
246 ts_map[p] = max_ts -
247 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
248 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
249 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
250 }
251
252 /* Real-time range */
253 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
254 ts_map[p] = rt_ts;
255 high_pri[p] = p;
256 }
257 }
258
259 /*
260 * Hooks.
261 */
262
263 void
264 sched_proc_fork(struct proc *parent, struct proc *child)
265 {
266 struct lwp *l;
267
268 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
269 lwp_lock(l);
270 sched_newts(l);
271 lwp_unlock(l);
272 }
273 }
274
275 void
276 sched_proc_exit(struct proc *child, struct proc *parent)
277 {
278
279 /* Dummy */
280 }
281
282 void
283 sched_lwp_fork(struct lwp *l)
284 {
285
286 KASSERT(l->l_sched_info == NULL);
287 l->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
288 memset(l->l_sched_info, 0, sizeof(sched_info_lwp_t));
289 if (l->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
290 l->l_priority = PRI_DEFAULT;
291 }
292
293 void
294 sched_lwp_exit(struct lwp *l)
295 {
296
297 KASSERT(l->l_sched_info != NULL);
298 pool_put(&sil_pool, l->l_sched_info);
299 l->l_sched_info = NULL;
300 }
301
302 void
303 sched_setrunnable(struct lwp *l)
304 {
305
306 /* Dummy */
307 }
308
309 void
310 sched_schedclock(struct lwp *l)
311 {
312
313 /* Dummy */
314 }
315
316 /*
317 * Priorities and time-slice.
318 */
319
320 void
321 sched_nice(struct proc *p, int prio)
322 {
323 int nprio;
324 struct lwp *l;
325
326 KASSERT(mutex_owned(&p->p_stmutex));
327
328 p->p_nice = prio;
329 nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
330
331 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
332 lwp_lock(l);
333 lwp_changepri(l, nprio);
334 lwp_unlock(l);
335 }
336 }
337
338 /* Recalculate the time-slice */
339 static inline void
340 sched_newts(struct lwp *l)
341 {
342 sched_info_lwp_t *sil = l->l_sched_info;
343
344 sil->sl_timeslice = ts_map[lwp_eprio(l)];
345 }
346
347 /*
348 * Control of the runqueue.
349 */
350
351 static inline void *
352 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
353 {
354
355 KASSERT(prio < PRI_COUNT);
356 return (prio <= PRI_HIGHEST_TS) ?
357 &ci_rq->r_ts_queue[prio].q_head :
358 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
359 }
360
361 void
362 sched_enqueue(struct lwp *l, bool swtch)
363 {
364 runqueue_t *ci_rq;
365 sched_info_lwp_t *sil = l->l_sched_info;
366 TAILQ_HEAD(, lwp) *q_head;
367 const pri_t eprio = lwp_eprio(l);
368
369 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
370 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
371
372 /* Update the last run time on switch */
373 if (swtch == true) {
374 sil->sl_lrtime = hardclock_ticks;
375 sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
376 } else
377 sil->sl_lrtime = 0;
378
379 /* Enqueue the thread */
380 q_head = sched_getrq(ci_rq, eprio);
381 if (TAILQ_EMPTY(q_head)) {
382 u_int i;
383 uint32_t q;
384
385 /* Mark bit */
386 i = eprio >> BITMAP_SHIFT;
387 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
388 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
389 ci_rq->r_bitmap[i] |= q;
390 }
391 TAILQ_INSERT_TAIL(q_head, l, l_runq);
392 ci_rq->r_count++;
393 if ((l->l_flag & LW_BOUND) == 0)
394 ci_rq->r_mcount++;
395
396 /*
397 * Update the value of highest priority in the runqueue,
398 * if priority of this thread is higher.
399 */
400 if (eprio > ci_rq->r_highest_pri)
401 ci_rq->r_highest_pri = eprio;
402
403 sched_newts(l);
404 }
405
406 void
407 sched_dequeue(struct lwp *l)
408 {
409 runqueue_t *ci_rq;
410 TAILQ_HEAD(, lwp) *q_head;
411 const pri_t eprio = lwp_eprio(l);
412
413 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
414 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
415 KASSERT(eprio <= ci_rq->r_highest_pri);
416 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
417 KASSERT(ci_rq->r_count > 0);
418
419 ci_rq->r_count--;
420 if ((l->l_flag & LW_BOUND) == 0)
421 ci_rq->r_mcount--;
422
423 q_head = sched_getrq(ci_rq, eprio);
424 TAILQ_REMOVE(q_head, l, l_runq);
425 if (TAILQ_EMPTY(q_head)) {
426 u_int i;
427 uint32_t q;
428
429 /* Unmark bit */
430 i = eprio >> BITMAP_SHIFT;
431 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
432 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
433 ci_rq->r_bitmap[i] &= ~q;
434
435 /*
436 * Update the value of highest priority in the runqueue, in a
437 * case it was a last thread in the queue of highest priority.
438 */
439 if (eprio != ci_rq->r_highest_pri)
440 return;
441
442 do {
443 q = ffs(ci_rq->r_bitmap[i]);
444 if (q) {
445 ci_rq->r_highest_pri =
446 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
447 return;
448 }
449 } while (i--);
450
451 /* If not found - set the lowest value */
452 ci_rq->r_highest_pri = 0;
453 }
454 }
455
456 void
457 sched_slept(struct lwp *l)
458 {
459 sched_info_lwp_t *sil = l->l_sched_info;
460
461 /* Save the time when thread has slept */
462 sil->sl_slept = hardclock_ticks;
463
464 /*
465 * If thread is in time-sharing queue and batch flag is not marked,
466 * increase the the priority, and run with the lower time-quantum.
467 */
468 if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
469 KASSERT(l->l_policy == SCHED_OTHER);
470 l->l_priority++;
471 }
472 }
473
474 void
475 sched_wakeup(struct lwp *l)
476 {
477 sched_info_lwp_t *sil = l->l_sched_info;
478
479 /* Update sleep time delta */
480 sil->sl_slpsum += (l->l_slptime == 0) ?
481 (hardclock_ticks - sil->sl_slept) : hz;
482
483 /* If thread was sleeping a second or more - set a high priority */
484 if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
485 l->l_priority = high_pri[l->l_priority];
486
487 /* Also, consider looking for a better CPU to wake up */
488 if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
489 l->l_cpu = sched_takecpu(l);
490 }
491
492 void
493 sched_pstats_hook(struct lwp *l)
494 {
495 sched_info_lwp_t *sil = l->l_sched_info;
496 bool batch;
497
498 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
499 l->l_stat == LSSUSPENDED)
500 l->l_slptime++;
501
502 /*
503 * Set that thread is more CPU-bound, if sum of run time exceeds the
504 * sum of sleep time. Check if thread is CPU-bound a first time.
505 */
506 batch = (sil->sl_rtsum > sil->sl_slpsum);
507 if (batch) {
508 if ((sil->sl_flags & SL_BATCH) == 0)
509 batch = false;
510 sil->sl_flags |= SL_BATCH;
511 } else
512 sil->sl_flags &= ~SL_BATCH;
513
514 /* Reset the time sums */
515 sil->sl_slpsum = 0;
516 sil->sl_rtsum = 0;
517
518 /* Estimate threads on time-sharing queue only */
519 if (l->l_priority >= PRI_HIGHEST_TS)
520 return;
521
522 /* If it is CPU-bound not a first time - decrease the priority */
523 if (batch && l->l_priority != 0)
524 l->l_priority--;
525
526 /* If thread was not ran a second or more - set a high priority */
527 if (l->l_stat == LSRUN && sil->sl_lrtime &&
528 (hardclock_ticks - sil->sl_lrtime >= hz))
529 lwp_changepri(l, high_pri[l->l_priority]);
530 }
531
532 /*
533 * Migration and balancing.
534 */
535
536 #ifdef MULTIPROCESSOR
537
538 /* Check if LWP can migrate to the chosen CPU */
539 static inline bool
540 sched_migratable(const struct lwp *l, const struct cpu_info *ci)
541 {
542
543 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
544 return false;
545
546 if ((l->l_flag & LW_BOUND) == 0)
547 return true;
548 #if 0
549 return cpu_in_pset(ci, l->l_psid);
550 #else
551 return false;
552 #endif
553 }
554
555 /*
556 * Estimate the migration of LWP to the other CPU.
557 * Take and return the CPU, if migration is needed.
558 */
559 struct cpu_info *
560 sched_takecpu(struct lwp *l)
561 {
562 struct cpu_info *ci, *tci = NULL;
563 struct schedstate_percpu *spc;
564 runqueue_t *ci_rq;
565 sched_info_lwp_t *sil;
566 CPU_INFO_ITERATOR cii;
567 pri_t eprio, lpri;
568
569 ci = l->l_cpu;
570 spc = &ci->ci_schedstate;
571 ci_rq = spc->spc_sched_info;
572
573 /* CPU of this thread is idling - run there */
574 if (ci_rq->r_count == 0)
575 return ci;
576
577 eprio = lwp_eprio(l);
578 sil = l->l_sched_info;
579
580 /* Stay if thread is cache-hot */
581 if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
582 CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
583 return ci;
584
585 /* Run on current CPU if priority of thread is higher */
586 ci = curcpu();
587 spc = &ci->ci_schedstate;
588 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
589 return ci;
590
591 /*
592 * Look for the CPU with the lowest priority thread. In case of
593 * equal the priority - check the lower count of the threads.
594 */
595 lpri = PRI_COUNT;
596 for (CPU_INFO_FOREACH(cii, ci)) {
597 runqueue_t *ici_rq;
598 pri_t pri;
599
600 spc = &ci->ci_schedstate;
601 ici_rq = spc->spc_sched_info;
602 pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
603 if (pri > lpri)
604 continue;
605
606 if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
607 continue;
608
609 if (sched_migratable(l, ci) == false)
610 continue;
611
612 lpri = pri;
613 tci = ci;
614 ci_rq = ici_rq;
615 }
616
617 KASSERT(tci != NULL);
618 return tci;
619 }
620
621 /*
622 * Tries to catch an LWP from the runqueue of other CPU.
623 */
624 static struct lwp *
625 sched_catchlwp(void)
626 {
627 struct cpu_info *curci = curcpu(), *ci = worker_ci;
628 TAILQ_HEAD(, lwp) *q_head;
629 runqueue_t *ci_rq;
630 struct lwp *l;
631
632 if (curci == ci)
633 return NULL;
634
635 /* Lockless check */
636 ci_rq = ci->ci_schedstate.spc_sched_info;
637 if (ci_rq->r_count < min_catch)
638 return NULL;
639
640 /*
641 * Double-lock the runqueues.
642 */
643 if (curci < ci) {
644 spc_lock(ci);
645 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
646 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
647
648 spc_unlock(curci);
649 spc_lock(ci);
650 spc_lock(curci);
651
652 if (cur_rq->r_count) {
653 spc_unlock(ci);
654 return NULL;
655 }
656 }
657
658 if (ci_rq->r_count < min_catch) {
659 spc_unlock(ci);
660 return NULL;
661 }
662
663 /* Take the highest priority thread */
664 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
665 l = TAILQ_FIRST(q_head);
666
667 for (;;) {
668 sched_info_lwp_t *sil;
669
670 /* Check the first and next result from the queue */
671 if (l == NULL)
672 break;
673
674 /* Look for threads, whose are allowed to migrate */
675 sil = l->l_sched_info;
676 if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
677 sched_migratable(l, curci) == false) {
678 l = TAILQ_NEXT(l, l_runq);
679 continue;
680 }
681 /* Recheck if chosen thread is still on the runqueue */
682 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
683 sched_dequeue(l);
684 l->l_cpu = curci;
685 lwp_setlock(l, curci->ci_schedstate.spc_mutex);
686 sched_enqueue(l, false);
687 break;
688 }
689 l = TAILQ_NEXT(l, l_runq);
690 }
691 spc_unlock(ci);
692
693 return l;
694 }
695
696 /*
697 * Periodical calculations for balancing.
698 */
699 static void
700 sched_balance(void *nocallout)
701 {
702 struct cpu_info *ci, *hci;
703 runqueue_t *ci_rq;
704 CPU_INFO_ITERATOR cii;
705 u_int highest;
706
707 hci = curcpu();
708 highest = 0;
709
710 /* Make lockless countings */
711 for (CPU_INFO_FOREACH(cii, ci)) {
712 ci_rq = ci->ci_schedstate.spc_sched_info;
713
714 /* Average count of the threads */
715 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
716
717 /* Look for CPU with the highest average */
718 if (ci_rq->r_avgcount > highest) {
719 hci = ci;
720 highest = ci_rq->r_avgcount;
721 }
722 }
723
724 /* Update the worker */
725 worker_ci = hci;
726
727 if (nocallout == NULL)
728 callout_schedule(&balance_ch, balance_period);
729 }
730
731 #else
732
733 struct cpu_info *
734 sched_takecpu(struct lwp *l)
735 {
736
737 return l->l_cpu;
738 }
739
740 #endif /* MULTIPROCESSOR */
741
742 /*
743 * Scheduler mill.
744 */
745 struct lwp *
746 sched_nextlwp(void)
747 {
748 struct cpu_info *ci = curcpu();
749 struct schedstate_percpu *spc;
750 TAILQ_HEAD(, lwp) *q_head;
751 sched_info_lwp_t *sil;
752 runqueue_t *ci_rq;
753 struct lwp *l;
754
755 spc = &ci->ci_schedstate;
756 ci_rq = ci->ci_schedstate.spc_sched_info;
757
758 #ifdef MULTIPROCESSOR
759 /* If runqueue is empty, try to catch some thread from other CPU */
760 if (spc->spc_flags & SPCF_OFFLINE) {
761 if (ci_rq->r_mcount == 0)
762 return NULL;
763 } else if (ci_rq->r_count == 0) {
764 /* Reset the counter, and call the balancer */
765 ci_rq->r_avgcount = 0;
766 sched_balance(ci);
767
768 /* The re-locking will be done inside */
769 return sched_catchlwp();
770 }
771 #else
772 if (ci_rq->r_count == 0)
773 return NULL;
774 #endif
775
776 /* Take the highest priority thread */
777 KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
778 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
779 l = TAILQ_FIRST(q_head);
780 KASSERT(l != NULL);
781
782 /* Update the counters */
783 sil = l->l_sched_info;
784 KASSERT(sil->sl_timeslice >= min_ts);
785 KASSERT(sil->sl_timeslice <= max_ts);
786 spc->spc_ticks = sil->sl_timeslice;
787 sil->sl_rtime = hardclock_ticks;
788
789 return l;
790 }
791
792 bool
793 sched_curcpu_runnable_p(void)
794 {
795 const struct cpu_info *ci = curcpu();
796 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
797
798 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
799 return ci_rq->r_mcount;
800
801 return ci_rq->r_count;
802 }
803
804 /*
805 * Time-driven events.
806 */
807
808 /*
809 * Called once per time-quantum. This routine is CPU-local and runs at
810 * IPL_SCHED, thus the locking is not needed.
811 */
812 void
813 sched_tick(struct cpu_info *ci)
814 {
815 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
816 struct schedstate_percpu *spc = &ci->ci_schedstate;
817 struct lwp *l = curlwp;
818 sched_info_lwp_t *sil = l->l_sched_info;
819
820 if (CURCPU_IDLE_P())
821 return;
822
823 switch (l->l_policy) {
824 case SCHED_FIFO:
825 /*
826 * Update the time-quantum, and continue running,
827 * if thread runs on FIFO real-time policy.
828 */
829 spc->spc_ticks = sil->sl_timeslice;
830 return;
831 case SCHED_OTHER:
832 /*
833 * If thread is in time-sharing queue, decrease the priority,
834 * and run with a higher time-quantum.
835 */
836 if (l->l_priority > PRI_HIGHEST_TS)
837 break;
838 if (l->l_priority != 0)
839 l->l_priority--;
840 break;
841 }
842
843 /*
844 * If there are higher priority threads or threads in the same queue,
845 * mark that thread should yield, otherwise, continue running.
846 */
847 if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
848 spc->spc_flags |= SPCF_SHOULDYIELD;
849 cpu_need_resched(ci, 0);
850 } else
851 spc->spc_ticks = sil->sl_timeslice;
852 }
853
854 /*
855 * Sysctl nodes and initialization.
856 */
857
858 static int
859 sysctl_sched_mints(SYSCTLFN_ARGS)
860 {
861 struct sysctlnode node;
862 struct cpu_info *ci;
863 int error, newsize;
864 CPU_INFO_ITERATOR cii;
865
866 node = *rnode;
867 node.sysctl_data = &newsize;
868
869 newsize = hztoms(min_ts);
870 error = sysctl_lookup(SYSCTLFN_CALL(&node));
871 if (error || newp == NULL)
872 return error;
873
874 if (newsize < 1 || newsize > hz || newsize >= max_ts)
875 return EINVAL;
876
877 /* It is safe to do this in such order */
878 for (CPU_INFO_FOREACH(cii, ci))
879 spc_lock(ci);
880
881 min_ts = mstohz(newsize);
882 sched_precalcts();
883
884 for (CPU_INFO_FOREACH(cii, ci))
885 spc_unlock(ci);
886
887 return 0;
888 }
889
890 static int
891 sysctl_sched_maxts(SYSCTLFN_ARGS)
892 {
893 struct sysctlnode node;
894 struct cpu_info *ci;
895 int error, newsize;
896 CPU_INFO_ITERATOR cii;
897
898 node = *rnode;
899 node.sysctl_data = &newsize;
900
901 newsize = hztoms(max_ts);
902 error = sysctl_lookup(SYSCTLFN_CALL(&node));
903 if (error || newp == NULL)
904 return error;
905
906 if (newsize < 10 || newsize > hz || newsize <= min_ts)
907 return EINVAL;
908
909 /* It is safe to do this in such order */
910 for (CPU_INFO_FOREACH(cii, ci))
911 spc_lock(ci);
912
913 max_ts = mstohz(newsize);
914 sched_precalcts();
915
916 for (CPU_INFO_FOREACH(cii, ci))
917 spc_unlock(ci);
918
919 return 0;
920 }
921
922 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
923 {
924 const struct sysctlnode *node = NULL;
925
926 sysctl_createv(clog, 0, NULL, NULL,
927 CTLFLAG_PERMANENT,
928 CTLTYPE_NODE, "kern", NULL,
929 NULL, 0, NULL, 0,
930 CTL_KERN, CTL_EOL);
931 sysctl_createv(clog, 0, NULL, &node,
932 CTLFLAG_PERMANENT,
933 CTLTYPE_NODE, "sched",
934 SYSCTL_DESCR("Scheduler options"),
935 NULL, 0, NULL, 0,
936 CTL_KERN, CTL_CREATE, CTL_EOL);
937
938 if (node == NULL)
939 return;
940
941 sysctl_createv(clog, 0, &node, NULL,
942 CTLFLAG_PERMANENT,
943 CTLTYPE_STRING, "name", NULL,
944 NULL, 0, __UNCONST("M2"), 0,
945 CTL_CREATE, CTL_EOL);
946 sysctl_createv(clog, 0, &node, NULL,
947 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
948 CTLTYPE_INT, "maxts",
949 SYSCTL_DESCR("Maximal time quantum (in microseconds)"),
950 sysctl_sched_maxts, 0, &max_ts, 0,
951 CTL_CREATE, CTL_EOL);
952 sysctl_createv(clog, 0, &node, NULL,
953 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
954 CTLTYPE_INT, "mints",
955 SYSCTL_DESCR("Minimal time quantum (in microseconds)"),
956 sysctl_sched_mints, 0, &min_ts, 0,
957 CTL_CREATE, CTL_EOL);
958
959 #ifdef MULTIPROCESSOR
960 sysctl_createv(clog, 0, &node, NULL,
961 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
962 CTLTYPE_INT, "cacheht_time",
963 SYSCTL_DESCR("Cache hotness time"),
964 NULL, 0, &cacheht_time, 0,
965 CTL_CREATE, CTL_EOL);
966 sysctl_createv(clog, 0, &node, NULL,
967 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
968 CTLTYPE_INT, "balance_period",
969 SYSCTL_DESCR("Balance period"),
970 NULL, 0, &balance_period, 0,
971 CTL_CREATE, CTL_EOL);
972 sysctl_createv(clog, 0, &node, NULL,
973 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
974 CTLTYPE_INT, "min_catch",
975 SYSCTL_DESCR("Minimal count of threads for catching"),
976 NULL, 0, &min_catch, 0,
977 CTL_CREATE, CTL_EOL);
978 #endif
979 }
980
981 /*
982 * Debugging.
983 */
984
985 #ifdef DDB
986
987 void
988 sched_print_runqueue(void (*pr)(const char *, ...))
989 {
990 runqueue_t *ci_rq;
991 sched_info_lwp_t *sil;
992 struct lwp *l;
993 struct proc *p;
994 int i;
995
996 struct cpu_info *ci;
997 CPU_INFO_ITERATOR cii;
998
999 for (CPU_INFO_FOREACH(cii, ci)) {
1000 ci_rq = ci->ci_schedstate.spc_sched_info;
1001
1002 (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1003 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1004 "avgcount = %u, highest pri = %d\n",
1005 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1006 ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1007 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1008 do {
1009 uint32_t q;
1010 q = ci_rq->r_bitmap[i];
1011 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1012 } while (i--);
1013 }
1014
1015 (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1016 "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1017
1018 PROCLIST_FOREACH(p, &allproc) {
1019 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1020 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1021 sil = l->l_sched_info;
1022 ci = l->l_cpu;
1023 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1024 "%u ST=%d RT=%d %d\n",
1025 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1026 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1027 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1028 sil->sl_timeslice, l, ci->ci_cpuid,
1029 (u_int)(hardclock_ticks - sil->sl_lrtime),
1030 sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1031 }
1032 }
1033 }
1034
1035 #endif /* defined(DDB) */
1036