sched_m2.c revision 1.3.2.7 1 /* $NetBSD: sched_m2.c,v 1.3.2.7 2007/11/05 15:04:43 ad Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
19 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * TODO:
30 * - Implementation of fair share queue;
31 * - Support for NUMA;
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.3.2.7 2007/11/05 15:04:43 ad Exp $");
36
37 #include <sys/param.h>
38
39 #include <sys/cpu.h>
40 #include <sys/callout.h>
41 #include <sys/errno.h>
42 #include <sys/kernel.h>
43 #include <sys/kmem.h>
44 #include <sys/lwp.h>
45 #include <sys/mutex.h>
46 #include <sys/pool.h>
47 #include <sys/proc.h>
48 #include <sys/resource.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/syscallargs.h>
52 #include <sys/sysctl.h>
53 #include <sys/types.h>
54
55 /*
56 * Priority related defintions.
57 */
58 #define PRI_TS_COUNT (NPRI_USER)
59 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
60 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
61
62 #define PRI_HIGHEST_TS (PRI_KERNEL - 1)
63 #define PRI_DEFAULT (NPRI_USER >> 1)
64
65 const int schedppq = 1;
66
67 /*
68 * Bits per map.
69 */
70 #define BITMAP_BITS (32)
71 #define BITMAP_SHIFT (5)
72 #define BITMAP_MSB (0x80000000)
73 #define BITMAP_MASK (BITMAP_BITS - 1)
74
75 /*
76 * Time-slices and priorities.
77 */
78 static u_int min_ts; /* Minimal time-slice */
79 static u_int max_ts; /* Maximal time-slice */
80 static u_int rt_ts; /* Real-time time-slice */
81 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
82 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
83
84 /*
85 * Migration and balancing.
86 */
87 #ifdef MULTIPROCESSOR
88 static u_int cacheht_time; /* Cache hotness time */
89 static u_int min_catch; /* Minimal LWP count for catching */
90
91 static u_int balance_period; /* Balance period */
92 static struct callout balance_ch; /* Callout of balancer */
93
94 static struct cpu_info * volatile worker_ci;
95
96 #define CACHE_HOT(sil) (sil->sl_lrtime && \
97 (hardclock_ticks - sil->sl_lrtime < cacheht_time))
98
99 #endif
100
101 /*
102 * Structures, runqueue.
103 */
104
105 typedef struct {
106 TAILQ_HEAD(, lwp) q_head;
107 } queue_t;
108
109 typedef struct {
110 /* Lock and bitmap */
111 kmutex_t r_rq_mutex;
112 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
113 /* Counters */
114 u_int r_count; /* Count of the threads */
115 pri_t r_highest_pri; /* Highest priority */
116 u_int r_avgcount; /* Average count of threads */
117 u_int r_mcount; /* Count of migratable threads */
118 /* Runqueues */
119 queue_t r_rt_queue[PRI_RT_COUNT];
120 queue_t r_ts_queue[PRI_TS_COUNT];
121 } runqueue_t;
122
123 typedef struct {
124 u_int sl_flags;
125 u_int sl_timeslice; /* Time-slice of thread */
126 u_int sl_slept; /* Saved sleep time for sleep sum */
127 u_int sl_slpsum; /* Sum of sleep time */
128 u_int sl_rtime; /* Saved start time of run */
129 u_int sl_rtsum; /* Sum of the run time */
130 u_int sl_lrtime; /* Last run time */
131 } sched_info_lwp_t;
132
133 /* Flags */
134 #define SL_BATCH 0x01
135
136 /* Pool of the scheduler-specific structures for threads */
137 static struct pool sil_pool;
138
139 /*
140 * Prototypes.
141 */
142
143 static inline void * sched_getrq(runqueue_t *, const pri_t);
144 static inline void sched_newts(struct lwp *);
145 static void sched_precalcts(void);
146
147 #ifdef MULTIPROCESSOR
148 static struct lwp * sched_catchlwp(void);
149 static void sched_balance(void *);
150 #endif
151
152 /*
153 * Initialization and setup.
154 */
155
156 void
157 sched_rqinit(void)
158 {
159 struct cpu_info *ci = curcpu();
160
161 if (hz < 100) {
162 panic("sched_rqinit: value of HZ is too low\n");
163 }
164
165 /* Default timing ranges */
166 min_ts = mstohz(50); /* ~50ms */
167 max_ts = mstohz(150); /* ~150ms */
168 rt_ts = mstohz(100); /* ~100ms */
169 sched_precalcts();
170
171 #ifdef MULTIPROCESSOR
172 /* Balancing */
173 worker_ci = ci;
174 cacheht_time = mstohz(5); /* ~5 ms */
175 balance_period = mstohz(300); /* ~300ms */
176 min_catch = ~0;
177 #endif
178
179 /* Pool of the scheduler-specific structures */
180 pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
181 "lwpsd", &pool_allocator_nointr, IPL_NONE);
182
183 /* Attach the primary CPU here */
184 sched_cpuattach(ci);
185
186 /* Initialize the scheduler structure of the primary LWP */
187 lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
188 sched_lwp_fork(NULL, &lwp0);
189 sched_newts(&lwp0);
190 }
191
192 void
193 sched_setup(void)
194 {
195
196 #ifdef MULTIPROCESSOR
197 /* Minimal count of LWPs for catching: log2(count of CPUs) */
198 min_catch = min(ffs(ncpu) - 1, 4);
199
200 /* Initialize balancing callout and run it */
201 callout_init(&balance_ch, CALLOUT_MPSAFE);
202 callout_setfunc(&balance_ch, sched_balance, NULL);
203 callout_schedule(&balance_ch, balance_period);
204 #endif
205 }
206
207 void
208 sched_cpuattach(struct cpu_info *ci)
209 {
210 runqueue_t *ci_rq;
211 void *rq_ptr;
212 u_int i, size;
213
214 /*
215 * Allocate the run queue.
216 * XXX: Estimate cache behaviour more..
217 */
218 size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
219 rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
220 if (rq_ptr == NULL) {
221 panic("scheduler: could not allocate the runqueue");
222 }
223 /* XXX: Save the original pointer for future.. */
224 ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
225
226 /* Initialize run queues */
227 mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
228 for (i = 0; i < PRI_RT_COUNT; i++)
229 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
230 for (i = 0; i < PRI_TS_COUNT; i++)
231 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
232 ci_rq->r_highest_pri = 0;
233
234 ci->ci_schedstate.spc_sched_info = ci_rq;
235 ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
236 }
237
238 /* Pre-calculate the time-slices for the priorities */
239 static void
240 sched_precalcts(void)
241 {
242 pri_t p;
243
244 /* Time-sharing range */
245 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
246 ts_map[p] = max_ts -
247 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
248 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
249 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
250 }
251
252 /* Real-time range */
253 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
254 ts_map[p] = rt_ts;
255 high_pri[p] = p;
256 }
257 }
258
259 /*
260 * Hooks.
261 */
262
263 void
264 sched_proc_fork(struct proc *parent, struct proc *child)
265 {
266 struct lwp *l;
267
268 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
269 lwp_lock(l);
270 sched_newts(l);
271 lwp_unlock(l);
272 }
273 }
274
275 void
276 sched_proc_exit(struct proc *child, struct proc *parent)
277 {
278
279 /* Dummy */
280 }
281
282 void
283 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
284 {
285
286 KASSERT(l2->l_sched_info == NULL);
287 l2->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
288 memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
289 if (l2->l_priority <= PRI_HIGHEST_TS) /* XXX: For now only.. */
290 l2->l_priority = PRI_DEFAULT;
291 }
292
293 void
294 sched_lwp_exit(struct lwp *l)
295 {
296
297 KASSERT(l->l_sched_info != NULL);
298 pool_put(&sil_pool, l->l_sched_info);
299 l->l_sched_info = NULL;
300 }
301
302 void
303 sched_lwp_collect(struct lwp *l)
304 {
305
306 }
307
308 void
309 sched_setrunnable(struct lwp *l)
310 {
311
312 /* Dummy */
313 }
314
315 void
316 sched_schedclock(struct lwp *l)
317 {
318
319 /* Dummy */
320 }
321
322 /*
323 * Priorities and time-slice.
324 */
325
326 void
327 sched_nice(struct proc *p, int prio)
328 {
329 int nprio;
330 struct lwp *l;
331
332 KASSERT(mutex_owned(&p->p_smutex));
333
334 p->p_nice = prio;
335 nprio = max(min(PRI_DEFAULT + p->p_nice, PRI_HIGHEST_TS), 0);
336
337 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
338 lwp_lock(l);
339 lwp_changepri(l, nprio);
340 lwp_unlock(l);
341 }
342 }
343
344 /* Recalculate the time-slice */
345 static inline void
346 sched_newts(struct lwp *l)
347 {
348 sched_info_lwp_t *sil = l->l_sched_info;
349
350 sil->sl_timeslice = ts_map[lwp_eprio(l)];
351 }
352
353 /*
354 * Control of the runqueue.
355 */
356
357 static inline void *
358 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
359 {
360
361 KASSERT(prio < PRI_COUNT);
362 return (prio <= PRI_HIGHEST_TS) ?
363 &ci_rq->r_ts_queue[prio].q_head :
364 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
365 }
366
367 void
368 sched_enqueue(struct lwp *l, bool swtch)
369 {
370 runqueue_t *ci_rq;
371 sched_info_lwp_t *sil = l->l_sched_info;
372 TAILQ_HEAD(, lwp) *q_head;
373 const pri_t eprio = lwp_eprio(l);
374
375 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
376 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
377
378 /* Update the last run time on switch */
379 if (swtch == true) {
380 sil->sl_lrtime = hardclock_ticks;
381 sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
382 } else
383 sil->sl_lrtime = 0;
384
385 /* Enqueue the thread */
386 q_head = sched_getrq(ci_rq, eprio);
387 if (TAILQ_EMPTY(q_head)) {
388 u_int i;
389 uint32_t q;
390
391 /* Mark bit */
392 i = eprio >> BITMAP_SHIFT;
393 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
394 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
395 ci_rq->r_bitmap[i] |= q;
396 }
397 TAILQ_INSERT_TAIL(q_head, l, l_runq);
398 ci_rq->r_count++;
399 if ((l->l_flag & LW_BOUND) == 0)
400 ci_rq->r_mcount++;
401
402 /*
403 * Update the value of highest priority in the runqueue,
404 * if priority of this thread is higher.
405 */
406 if (eprio > ci_rq->r_highest_pri)
407 ci_rq->r_highest_pri = eprio;
408
409 sched_newts(l);
410 }
411
412 void
413 sched_dequeue(struct lwp *l)
414 {
415 runqueue_t *ci_rq;
416 TAILQ_HEAD(, lwp) *q_head;
417 const pri_t eprio = lwp_eprio(l);
418
419 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
420 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
421 KASSERT(eprio <= ci_rq->r_highest_pri);
422 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
423 KASSERT(ci_rq->r_count > 0);
424
425 ci_rq->r_count--;
426 if ((l->l_flag & LW_BOUND) == 0)
427 ci_rq->r_mcount--;
428
429 q_head = sched_getrq(ci_rq, eprio);
430 TAILQ_REMOVE(q_head, l, l_runq);
431 if (TAILQ_EMPTY(q_head)) {
432 u_int i;
433 uint32_t q;
434
435 /* Unmark bit */
436 i = eprio >> BITMAP_SHIFT;
437 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
438 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
439 ci_rq->r_bitmap[i] &= ~q;
440
441 /*
442 * Update the value of highest priority in the runqueue, in a
443 * case it was a last thread in the queue of highest priority.
444 */
445 if (eprio != ci_rq->r_highest_pri)
446 return;
447
448 do {
449 q = ffs(ci_rq->r_bitmap[i]);
450 if (q) {
451 ci_rq->r_highest_pri =
452 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
453 return;
454 }
455 } while (i--);
456
457 /* If not found - set the lowest value */
458 ci_rq->r_highest_pri = 0;
459 }
460 }
461
462 void
463 sched_slept(struct lwp *l)
464 {
465 sched_info_lwp_t *sil = l->l_sched_info;
466
467 /* Save the time when thread has slept */
468 sil->sl_slept = hardclock_ticks;
469
470 /*
471 * If thread is in time-sharing queue and batch flag is not marked,
472 * increase the the priority, and run with the lower time-quantum.
473 */
474 if (l->l_priority < PRI_HIGHEST_TS && (sil->sl_flags & SL_BATCH) == 0) {
475 KASSERT(l->l_class == SCHED_OTHER);
476 l->l_priority++;
477 }
478 }
479
480 void
481 sched_wakeup(struct lwp *l)
482 {
483 sched_info_lwp_t *sil = l->l_sched_info;
484
485 /* Update sleep time delta */
486 sil->sl_slpsum += (l->l_slptime == 0) ?
487 (hardclock_ticks - sil->sl_slept) : hz;
488
489 /* If thread was sleeping a second or more - set a high priority */
490 if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
491 l->l_priority = high_pri[l->l_priority];
492
493 /* Also, consider looking for a better CPU to wake up */
494 if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
495 l->l_cpu = sched_takecpu(l);
496 }
497
498 void
499 sched_pstats_hook(struct lwp *l)
500 {
501 sched_info_lwp_t *sil = l->l_sched_info;
502 bool batch;
503
504 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
505 l->l_stat == LSSUSPENDED)
506 l->l_slptime++;
507
508 /*
509 * Set that thread is more CPU-bound, if sum of run time exceeds the
510 * sum of sleep time. Check if thread is CPU-bound a first time.
511 */
512 batch = (sil->sl_rtsum > sil->sl_slpsum);
513 if (batch) {
514 if ((sil->sl_flags & SL_BATCH) == 0)
515 batch = false;
516 sil->sl_flags |= SL_BATCH;
517 } else
518 sil->sl_flags &= ~SL_BATCH;
519
520 /* Reset the time sums */
521 sil->sl_slpsum = 0;
522 sil->sl_rtsum = 0;
523
524 /* Estimate threads on time-sharing queue only */
525 if (l->l_priority >= PRI_HIGHEST_TS)
526 return;
527
528 /* If it is CPU-bound not a first time - decrease the priority */
529 if (batch && l->l_priority != 0)
530 l->l_priority--;
531
532 /* If thread was not ran a second or more - set a high priority */
533 if (l->l_stat == LSRUN && sil->sl_lrtime &&
534 (hardclock_ticks - sil->sl_lrtime >= hz))
535 lwp_changepri(l, high_pri[l->l_priority]);
536 }
537
538 /*
539 * Migration and balancing.
540 */
541
542 #ifdef MULTIPROCESSOR
543
544 /* Check if LWP can migrate to the chosen CPU */
545 static inline bool
546 sched_migratable(const struct lwp *l, const struct cpu_info *ci)
547 {
548
549 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
550 return false;
551
552 if ((l->l_flag & LW_BOUND) == 0)
553 return true;
554 #if 0
555 return cpu_in_pset(ci, l->l_psid);
556 #else
557 return false;
558 #endif
559 }
560
561 /*
562 * Estimate the migration of LWP to the other CPU.
563 * Take and return the CPU, if migration is needed.
564 */
565 struct cpu_info *
566 sched_takecpu(struct lwp *l)
567 {
568 struct cpu_info *ci, *tci = NULL;
569 struct schedstate_percpu *spc;
570 runqueue_t *ci_rq;
571 sched_info_lwp_t *sil;
572 CPU_INFO_ITERATOR cii;
573 pri_t eprio, lpri;
574
575 ci = l->l_cpu;
576 spc = &ci->ci_schedstate;
577 ci_rq = spc->spc_sched_info;
578
579 /* CPU of this thread is idling - run there */
580 if (ci_rq->r_count == 0)
581 return ci;
582
583 eprio = lwp_eprio(l);
584 sil = l->l_sched_info;
585
586 /* Stay if thread is cache-hot */
587 if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
588 CACHE_HOT(sil) && eprio >= spc->spc_curpriority)
589 return ci;
590
591 /* Run on current CPU if priority of thread is higher */
592 ci = curcpu();
593 spc = &ci->ci_schedstate;
594 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
595 return ci;
596
597 /*
598 * Look for the CPU with the lowest priority thread. In case of
599 * equal the priority - check the lower count of the threads.
600 */
601 lpri = PRI_COUNT;
602 for (CPU_INFO_FOREACH(cii, ci)) {
603 runqueue_t *ici_rq;
604 pri_t pri;
605
606 spc = &ci->ci_schedstate;
607 ici_rq = spc->spc_sched_info;
608 pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
609 if (pri > lpri)
610 continue;
611
612 if (pri == lpri && tci && ci_rq->r_count < ici_rq->r_count)
613 continue;
614
615 if (sched_migratable(l, ci) == false)
616 continue;
617
618 lpri = pri;
619 tci = ci;
620 ci_rq = ici_rq;
621 }
622
623 KASSERT(tci != NULL);
624 return tci;
625 }
626
627 /*
628 * Tries to catch an LWP from the runqueue of other CPU.
629 */
630 static struct lwp *
631 sched_catchlwp(void)
632 {
633 struct cpu_info *curci = curcpu(), *ci = worker_ci;
634 TAILQ_HEAD(, lwp) *q_head;
635 runqueue_t *ci_rq;
636 struct lwp *l;
637
638 if (curci == ci)
639 return NULL;
640
641 /* Lockless check */
642 ci_rq = ci->ci_schedstate.spc_sched_info;
643 if (ci_rq->r_count < min_catch)
644 return NULL;
645
646 /*
647 * Double-lock the runqueues.
648 */
649 if (curci < ci) {
650 spc_lock(ci);
651 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
652 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
653
654 spc_unlock(curci);
655 spc_lock(ci);
656 spc_lock(curci);
657
658 if (cur_rq->r_count) {
659 spc_unlock(ci);
660 return NULL;
661 }
662 }
663
664 if (ci_rq->r_count < min_catch) {
665 spc_unlock(ci);
666 return NULL;
667 }
668
669 /* Take the highest priority thread */
670 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
671 l = TAILQ_FIRST(q_head);
672
673 for (;;) {
674 sched_info_lwp_t *sil;
675
676 /* Check the first and next result from the queue */
677 if (l == NULL)
678 break;
679
680 /* Look for threads, whose are allowed to migrate */
681 sil = l->l_sched_info;
682 if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
683 sched_migratable(l, curci) == false) {
684 l = TAILQ_NEXT(l, l_runq);
685 continue;
686 }
687 /* Recheck if chosen thread is still on the runqueue */
688 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
689 sched_dequeue(l);
690 l->l_cpu = curci;
691 lwp_setlock(l, curci->ci_schedstate.spc_mutex);
692 sched_enqueue(l, false);
693 break;
694 }
695 l = TAILQ_NEXT(l, l_runq);
696 }
697 spc_unlock(ci);
698
699 return l;
700 }
701
702 /*
703 * Periodical calculations for balancing.
704 */
705 static void
706 sched_balance(void *nocallout)
707 {
708 struct cpu_info *ci, *hci;
709 runqueue_t *ci_rq;
710 CPU_INFO_ITERATOR cii;
711 u_int highest;
712
713 hci = curcpu();
714 highest = 0;
715
716 /* Make lockless countings */
717 for (CPU_INFO_FOREACH(cii, ci)) {
718 ci_rq = ci->ci_schedstate.spc_sched_info;
719
720 /* Average count of the threads */
721 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
722
723 /* Look for CPU with the highest average */
724 if (ci_rq->r_avgcount > highest) {
725 hci = ci;
726 highest = ci_rq->r_avgcount;
727 }
728 }
729
730 /* Update the worker */
731 worker_ci = hci;
732
733 if (nocallout == NULL)
734 callout_schedule(&balance_ch, balance_period);
735 }
736
737 #else
738
739 struct cpu_info *
740 sched_takecpu(struct lwp *l)
741 {
742
743 return l->l_cpu;
744 }
745
746 #endif /* MULTIPROCESSOR */
747
748 /*
749 * Scheduler mill.
750 */
751 struct lwp *
752 sched_nextlwp(void)
753 {
754 struct cpu_info *ci = curcpu();
755 struct schedstate_percpu *spc;
756 TAILQ_HEAD(, lwp) *q_head;
757 sched_info_lwp_t *sil;
758 runqueue_t *ci_rq;
759 struct lwp *l;
760
761 spc = &ci->ci_schedstate;
762 ci_rq = ci->ci_schedstate.spc_sched_info;
763
764 #ifdef MULTIPROCESSOR
765 /* If runqueue is empty, try to catch some thread from other CPU */
766 if (spc->spc_flags & SPCF_OFFLINE) {
767 if (ci_rq->r_mcount == 0)
768 return NULL;
769 } else if (ci_rq->r_count == 0) {
770 /* Reset the counter, and call the balancer */
771 ci_rq->r_avgcount = 0;
772 sched_balance(ci);
773
774 /* The re-locking will be done inside */
775 return sched_catchlwp();
776 }
777 #else
778 if (ci_rq->r_count == 0)
779 return NULL;
780 #endif
781
782 /* Take the highest priority thread */
783 KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
784 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
785 l = TAILQ_FIRST(q_head);
786 KASSERT(l != NULL);
787
788 /* Update the counters */
789 sil = l->l_sched_info;
790 KASSERT(sil->sl_timeslice >= min_ts);
791 KASSERT(sil->sl_timeslice <= max_ts);
792 spc->spc_ticks = sil->sl_timeslice;
793 sil->sl_rtime = hardclock_ticks;
794
795 return l;
796 }
797
798 bool
799 sched_curcpu_runnable_p(void)
800 {
801 const struct cpu_info *ci = curcpu();
802 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
803
804 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
805 return ci_rq->r_mcount;
806
807 return ci_rq->r_count;
808 }
809
810 /*
811 * Time-driven events.
812 */
813
814 /*
815 * Called once per time-quantum. This routine is CPU-local and runs at
816 * IPL_SCHED, thus the locking is not needed.
817 */
818 void
819 sched_tick(struct cpu_info *ci)
820 {
821 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
822 struct schedstate_percpu *spc = &ci->ci_schedstate;
823 struct lwp *l = curlwp;
824 sched_info_lwp_t *sil = l->l_sched_info;
825
826 if (CURCPU_IDLE_P())
827 return;
828
829 switch (l->l_class) {
830 case SCHED_FIFO:
831 /*
832 * Update the time-quantum, and continue running,
833 * if thread runs on FIFO real-time policy.
834 */
835 spc->spc_ticks = sil->sl_timeslice;
836 return;
837 case SCHED_OTHER:
838 /*
839 * If thread is in time-sharing queue, decrease the priority,
840 * and run with a higher time-quantum.
841 */
842 if (l->l_priority > PRI_HIGHEST_TS)
843 break;
844 if (l->l_priority != 0)
845 l->l_priority--;
846 break;
847 }
848
849 /*
850 * If there are higher priority threads or threads in the same queue,
851 * mark that thread should yield, otherwise, continue running.
852 */
853 if (lwp_eprio(l) <= ci_rq->r_highest_pri) {
854 spc->spc_flags |= SPCF_SHOULDYIELD;
855 cpu_need_resched(ci, 0);
856 } else
857 spc->spc_ticks = sil->sl_timeslice;
858 }
859
860 /*
861 * Sysctl nodes and initialization.
862 */
863
864 static int
865 sysctl_sched_mints(SYSCTLFN_ARGS)
866 {
867 struct sysctlnode node;
868 struct cpu_info *ci;
869 int error, newsize;
870 CPU_INFO_ITERATOR cii;
871
872 node = *rnode;
873 node.sysctl_data = &newsize;
874
875 newsize = hztoms(min_ts);
876 error = sysctl_lookup(SYSCTLFN_CALL(&node));
877 if (error || newp == NULL)
878 return error;
879
880 if (newsize < 1 || newsize > hz || newsize >= max_ts)
881 return EINVAL;
882
883 /* It is safe to do this in such order */
884 for (CPU_INFO_FOREACH(cii, ci))
885 spc_lock(ci);
886
887 min_ts = mstohz(newsize);
888 sched_precalcts();
889
890 for (CPU_INFO_FOREACH(cii, ci))
891 spc_unlock(ci);
892
893 return 0;
894 }
895
896 static int
897 sysctl_sched_maxts(SYSCTLFN_ARGS)
898 {
899 struct sysctlnode node;
900 struct cpu_info *ci;
901 int error, newsize;
902 CPU_INFO_ITERATOR cii;
903
904 node = *rnode;
905 node.sysctl_data = &newsize;
906
907 newsize = hztoms(max_ts);
908 error = sysctl_lookup(SYSCTLFN_CALL(&node));
909 if (error || newp == NULL)
910 return error;
911
912 if (newsize < 10 || newsize > hz || newsize <= min_ts)
913 return EINVAL;
914
915 /* It is safe to do this in such order */
916 for (CPU_INFO_FOREACH(cii, ci))
917 spc_lock(ci);
918
919 max_ts = mstohz(newsize);
920 sched_precalcts();
921
922 for (CPU_INFO_FOREACH(cii, ci))
923 spc_unlock(ci);
924
925 return 0;
926 }
927
928 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
929 {
930 const struct sysctlnode *node = NULL;
931
932 sysctl_createv(clog, 0, NULL, NULL,
933 CTLFLAG_PERMANENT,
934 CTLTYPE_NODE, "kern", NULL,
935 NULL, 0, NULL, 0,
936 CTL_KERN, CTL_EOL);
937 sysctl_createv(clog, 0, NULL, &node,
938 CTLFLAG_PERMANENT,
939 CTLTYPE_NODE, "sched",
940 SYSCTL_DESCR("Scheduler options"),
941 NULL, 0, NULL, 0,
942 CTL_KERN, CTL_CREATE, CTL_EOL);
943
944 if (node == NULL)
945 return;
946
947 sysctl_createv(clog, 0, &node, NULL,
948 CTLFLAG_PERMANENT,
949 CTLTYPE_STRING, "name", NULL,
950 NULL, 0, __UNCONST("M2"), 0,
951 CTL_CREATE, CTL_EOL);
952 sysctl_createv(clog, 0, &node, NULL,
953 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
954 CTLTYPE_INT, "maxts",
955 SYSCTL_DESCR("Maximal time quantum (in microseconds)"),
956 sysctl_sched_maxts, 0, &max_ts, 0,
957 CTL_CREATE, CTL_EOL);
958 sysctl_createv(clog, 0, &node, NULL,
959 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
960 CTLTYPE_INT, "mints",
961 SYSCTL_DESCR("Minimal time quantum (in microseconds)"),
962 sysctl_sched_mints, 0, &min_ts, 0,
963 CTL_CREATE, CTL_EOL);
964
965 #ifdef MULTIPROCESSOR
966 sysctl_createv(clog, 0, &node, NULL,
967 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
968 CTLTYPE_INT, "cacheht_time",
969 SYSCTL_DESCR("Cache hotness time"),
970 NULL, 0, &cacheht_time, 0,
971 CTL_CREATE, CTL_EOL);
972 sysctl_createv(clog, 0, &node, NULL,
973 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
974 CTLTYPE_INT, "balance_period",
975 SYSCTL_DESCR("Balance period"),
976 NULL, 0, &balance_period, 0,
977 CTL_CREATE, CTL_EOL);
978 sysctl_createv(clog, 0, &node, NULL,
979 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
980 CTLTYPE_INT, "min_catch",
981 SYSCTL_DESCR("Minimal count of threads for catching"),
982 NULL, 0, &min_catch, 0,
983 CTL_CREATE, CTL_EOL);
984 #endif
985 }
986
987 /*
988 * Debugging.
989 */
990
991 #ifdef DDB
992
993 void
994 sched_print_runqueue(void (*pr)(const char *, ...))
995 {
996 runqueue_t *ci_rq;
997 sched_info_lwp_t *sil;
998 struct lwp *l;
999 struct proc *p;
1000 int i;
1001
1002 struct cpu_info *ci;
1003 CPU_INFO_ITERATOR cii;
1004
1005 for (CPU_INFO_FOREACH(cii, ci)) {
1006 ci_rq = ci->ci_schedstate.spc_sched_info;
1007
1008 (*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
1009 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1010 "avgcount = %u, highest pri = %d\n",
1011 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1012 ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1013 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1014 do {
1015 uint32_t q;
1016 q = ci_rq->r_bitmap[i];
1017 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1018 } while (i--);
1019 }
1020
1021 (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1022 "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1023
1024 PROCLIST_FOREACH(p, &allproc) {
1025 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1026 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1027 sil = l->l_sched_info;
1028 ci = l->l_cpu;
1029 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
1030 "%u ST=%d RT=%d %d\n",
1031 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1032 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1033 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1034 sil->sl_timeslice, l, ci->ci_cpuid,
1035 (u_int)(hardclock_ticks - sil->sl_lrtime),
1036 sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1037 }
1038 }
1039 }
1040
1041 #endif /* defined(DDB) */
1042