Home | History | Annotate | Line # | Download | only in kern
sched_m2.c revision 1.32
      1 /*	$NetBSD: sched_m2.c,v 1.32 2014/06/24 10:08:45 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * TODO:
     31  *  - Implementation of fair share queue;
     32  *  - Support for NUMA;
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.32 2014/06/24 10:08:45 maxv Exp $");
     37 
     38 #include <sys/param.h>
     39 
     40 #include <sys/cpu.h>
     41 #include <sys/callout.h>
     42 #include <sys/errno.h>
     43 #include <sys/kernel.h>
     44 #include <sys/kmem.h>
     45 #include <sys/lwp.h>
     46 #include <sys/mutex.h>
     47 #include <sys/pool.h>
     48 #include <sys/proc.h>
     49 #include <sys/pset.h>
     50 #include <sys/resource.h>
     51 #include <sys/resourcevar.h>
     52 #include <sys/sched.h>
     53 #include <sys/syscallargs.h>
     54 #include <sys/sysctl.h>
     55 #include <sys/types.h>
     56 
     57 /*
     58  * Priority related definitions.
     59  */
     60 #define	PRI_TS_COUNT	(NPRI_USER)
     61 #define	PRI_RT_COUNT	(PRI_COUNT - PRI_TS_COUNT)
     62 #define	PRI_HTS_RANGE	(PRI_TS_COUNT / 10)
     63 
     64 #define	PRI_HIGHEST_TS	(MAXPRI_USER)
     65 
     66 /*
     67  * Time-slices and priorities.
     68  */
     69 static u_int	min_ts;			/* Minimal time-slice */
     70 static u_int	max_ts;			/* Maximal time-slice */
     71 static u_int	rt_ts;			/* Real-time time-slice */
     72 static u_int	ts_map[PRI_COUNT];	/* Map of time-slices */
     73 static pri_t	high_pri[PRI_COUNT];	/* Map for priority increase */
     74 
     75 static void	sched_precalcts(void);
     76 
     77 /*
     78  * Initialization and setup.
     79  */
     80 
     81 void
     82 sched_rqinit(void)
     83 {
     84 	if (hz < 100) {
     85 		panic("sched_rqinit: value of HZ is too low\n");
     86 	}
     87 
     88 	/* Default timing ranges */
     89 	min_ts = mstohz(20);			/*  ~20 ms */
     90 	max_ts = mstohz(150);			/* ~150 ms */
     91 	rt_ts = mstohz(100);			/* ~100 ms */
     92 	sched_precalcts();
     93 
     94 #ifdef notdef
     95 	/* Need to set the name etc. This does not belong here */
     96 	/* Attach the primary CPU here */
     97 	sched_cpuattach(curcpu());
     98 #endif
     99 
    100 	sched_lwp_fork(NULL, &lwp0);
    101 	sched_newts(&lwp0);
    102 }
    103 
    104 /* Pre-calculate the time-slices for the priorities */
    105 static void
    106 sched_precalcts(void)
    107 {
    108 	pri_t p;
    109 
    110 	/* Time-sharing range */
    111 	for (p = 0; p <= PRI_HIGHEST_TS; p++) {
    112 		ts_map[p] = max_ts -
    113 		    (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
    114 		high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
    115 		    ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
    116 	}
    117 
    118 	/* Real-time range */
    119 	for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
    120 		ts_map[p] = rt_ts;
    121 		high_pri[p] = p;
    122 	}
    123 }
    124 
    125 /*
    126  * Hooks.
    127  */
    128 
    129 void
    130 sched_proc_fork(struct proc *parent, struct proc *child)
    131 {
    132 	struct lwp *l;
    133 
    134 	LIST_FOREACH(l, &child->p_lwps, l_sibling) {
    135 		lwp_lock(l);
    136 		sched_newts(l);
    137 		lwp_unlock(l);
    138 	}
    139 }
    140 
    141 void
    142 sched_proc_exit(struct proc *child, struct proc *parent)
    143 {
    144 
    145 }
    146 
    147 void
    148 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    149 {
    150 
    151 }
    152 
    153 void
    154 sched_lwp_collect(struct lwp *l)
    155 {
    156 
    157 }
    158 
    159 void
    160 sched_setrunnable(struct lwp *l)
    161 {
    162 
    163 }
    164 
    165 void
    166 sched_schedclock(struct lwp *l)
    167 {
    168 
    169 }
    170 
    171 /*
    172  * Priorities and time-slice.
    173  */
    174 
    175 void
    176 sched_nice(struct proc *p, int prio)
    177 {
    178 	struct lwp *l;
    179 	int n;
    180 
    181 	KASSERT(mutex_owned(p->p_lock));
    182 
    183 	p->p_nice = prio;
    184 	n = (prio - NZERO) >> 2;
    185 	if (n == 0)
    186 		return;
    187 
    188 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    189 		lwp_lock(l);
    190 		if (l->l_class == SCHED_OTHER) {
    191 			pri_t pri = l->l_priority - n;
    192 			pri = (n < 0) ? min(pri, PRI_HIGHEST_TS) : imax(pri, 0);
    193 			lwp_changepri(l, pri);
    194 		}
    195 		lwp_unlock(l);
    196 	}
    197 }
    198 
    199 /* Recalculate the time-slice */
    200 void
    201 sched_newts(struct lwp *l)
    202 {
    203 
    204 	l->l_sched.timeslice = ts_map[lwp_eprio(l)];
    205 }
    206 
    207 void
    208 sched_slept(struct lwp *l)
    209 {
    210 
    211 	/*
    212 	 * If thread is in time-sharing queue and batch flag is not marked,
    213 	 * increase the priority, and run with the lower time-quantum.
    214 	 */
    215 	if (l->l_priority < PRI_HIGHEST_TS && (l->l_flag & LW_BATCH) == 0) {
    216 		struct proc *p = l->l_proc;
    217 
    218 		KASSERT(l->l_class == SCHED_OTHER);
    219 		if (__predict_false(p->p_nice < NZERO)) {
    220 			const int n = max((NZERO - p->p_nice) >> 2, 1);
    221 			l->l_priority = min(l->l_priority + n, PRI_HIGHEST_TS);
    222 		} else {
    223 			l->l_priority++;
    224 		}
    225 	}
    226 }
    227 
    228 void
    229 sched_wakeup(struct lwp *l)
    230 {
    231 
    232 	/* If thread was sleeping a second or more - set a high priority */
    233 	if (l->l_slptime >= 1)
    234 		l->l_priority = high_pri[l->l_priority];
    235 }
    236 
    237 void
    238 sched_pstats_hook(struct lwp *l, int batch)
    239 {
    240 	pri_t prio;
    241 
    242 	/*
    243 	 * Estimate threads on time-sharing queue only, however,
    244 	 * exclude the highest priority for performance purposes.
    245 	 */
    246 	KASSERT(lwp_locked(l, NULL));
    247 	if (l->l_priority >= PRI_HIGHEST_TS)
    248 		return;
    249 	KASSERT(l->l_class == SCHED_OTHER);
    250 
    251 	/* If it is CPU-bound not a first time - decrease the priority */
    252 	prio = l->l_priority;
    253 	if (batch && prio != 0)
    254 		prio--;
    255 
    256 	/* If thread was not ran a second or more - set a high priority */
    257 	if (l->l_stat == LSRUN) {
    258 		if (l->l_rticks && (hardclock_ticks - l->l_rticks >= hz))
    259 			prio = high_pri[prio];
    260 		/* Re-enqueue the thread if priority has changed */
    261 		if (prio != l->l_priority)
    262 			lwp_changepri(l, prio);
    263 	} else {
    264 		/* In other states, change the priority directly */
    265 		l->l_priority = prio;
    266 	}
    267 }
    268 
    269 void
    270 sched_oncpu(lwp_t *l)
    271 {
    272 	struct schedstate_percpu *spc = &l->l_cpu->ci_schedstate;
    273 
    274 	/* Update the counters */
    275 	KASSERT(l->l_sched.timeslice >= min_ts);
    276 	KASSERT(l->l_sched.timeslice <= max_ts);
    277 	spc->spc_ticks = l->l_sched.timeslice;
    278 }
    279 
    280 /*
    281  * Time-driven events.
    282  */
    283 
    284 /*
    285  * Called once per time-quantum.  This routine is CPU-local and runs at
    286  * IPL_SCHED, thus the locking is not needed.
    287  */
    288 void
    289 sched_tick(struct cpu_info *ci)
    290 {
    291 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    292 	struct lwp *l = curlwp;
    293 	struct proc *p;
    294 
    295 	if (__predict_false(CURCPU_IDLE_P()))
    296 		return;
    297 
    298 	switch (l->l_class) {
    299 	case SCHED_FIFO:
    300 		/*
    301 		 * Update the time-quantum, and continue running,
    302 		 * if thread runs on FIFO real-time policy.
    303 		 */
    304 		KASSERT(l->l_priority > PRI_HIGHEST_TS);
    305 		spc->spc_ticks = l->l_sched.timeslice;
    306 		return;
    307 	case SCHED_OTHER:
    308 		/*
    309 		 * If thread is in time-sharing queue, decrease the priority,
    310 		 * and run with a higher time-quantum.
    311 		 */
    312 		KASSERT(l->l_priority <= PRI_HIGHEST_TS);
    313 		if (l->l_priority == 0)
    314 			break;
    315 
    316 		p = l->l_proc;
    317 		if (__predict_false(p->p_nice > NZERO)) {
    318 			const int n = max((p->p_nice - NZERO) >> 2, 1);
    319 			l->l_priority = imax(l->l_priority - n, 0);
    320 		} else
    321 			l->l_priority--;
    322 		break;
    323 	}
    324 
    325 	/*
    326 	 * If there are higher priority threads or threads in the same queue,
    327 	 * mark that thread should yield, otherwise, continue running.
    328 	 */
    329 	if (lwp_eprio(l) <= spc->spc_maxpriority || l->l_target_cpu) {
    330 		spc->spc_flags |= SPCF_SHOULDYIELD;
    331 		cpu_need_resched(ci, 0);
    332 	} else
    333 		spc->spc_ticks = l->l_sched.timeslice;
    334 }
    335 
    336 /*
    337  * Sysctl nodes and initialization.
    338  */
    339 
    340 static int
    341 sysctl_sched_rtts(SYSCTLFN_ARGS)
    342 {
    343 	struct sysctlnode node;
    344 	int rttsms = hztoms(rt_ts);
    345 
    346 	node = *rnode;
    347 	node.sysctl_data = &rttsms;
    348 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    349 }
    350 
    351 static int
    352 sysctl_sched_mints(SYSCTLFN_ARGS)
    353 {
    354 	struct sysctlnode node;
    355 	struct cpu_info *ci;
    356 	int error, newsize;
    357 	CPU_INFO_ITERATOR cii;
    358 
    359 	node = *rnode;
    360 	node.sysctl_data = &newsize;
    361 
    362 	newsize = hztoms(min_ts);
    363 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    364 	if (error || newp == NULL)
    365 		return error;
    366 
    367 	newsize = mstohz(newsize);
    368 	if (newsize < 1 || newsize > hz || newsize >= max_ts)
    369 		return EINVAL;
    370 
    371 	/* It is safe to do this in such order */
    372 	for (CPU_INFO_FOREACH(cii, ci))
    373 		spc_lock(ci);
    374 
    375 	min_ts = newsize;
    376 	sched_precalcts();
    377 
    378 	for (CPU_INFO_FOREACH(cii, ci))
    379 		spc_unlock(ci);
    380 
    381 	return 0;
    382 }
    383 
    384 static int
    385 sysctl_sched_maxts(SYSCTLFN_ARGS)
    386 {
    387 	struct sysctlnode node;
    388 	struct cpu_info *ci;
    389 	int error, newsize;
    390 	CPU_INFO_ITERATOR cii;
    391 
    392 	node = *rnode;
    393 	node.sysctl_data = &newsize;
    394 
    395 	newsize = hztoms(max_ts);
    396 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    397 	if (error || newp == NULL)
    398 		return error;
    399 
    400 	newsize = mstohz(newsize);
    401 	if (newsize < 10 || newsize > hz || newsize <= min_ts)
    402 		return EINVAL;
    403 
    404 	/* It is safe to do this in such order */
    405 	for (CPU_INFO_FOREACH(cii, ci))
    406 		spc_lock(ci);
    407 
    408 	max_ts = newsize;
    409 	sched_precalcts();
    410 
    411 	for (CPU_INFO_FOREACH(cii, ci))
    412 		spc_unlock(ci);
    413 
    414 	return 0;
    415 }
    416 
    417 SYSCTL_SETUP(sysctl_sched_m2_setup, "sysctl sched setup")
    418 {
    419 	const struct sysctlnode *node = NULL;
    420 
    421 	sysctl_createv(clog, 0, NULL, &node,
    422 		CTLFLAG_PERMANENT,
    423 		CTLTYPE_NODE, "sched",
    424 		SYSCTL_DESCR("Scheduler options"),
    425 		NULL, 0, NULL, 0,
    426 		CTL_KERN, CTL_CREATE, CTL_EOL);
    427 
    428 	if (node == NULL)
    429 		return;
    430 
    431 	sysctl_createv(NULL, 0, &node, NULL,
    432 		CTLFLAG_PERMANENT,
    433 		CTLTYPE_STRING, "name", NULL,
    434 		NULL, 0, __UNCONST("M2"), 0,
    435 		CTL_CREATE, CTL_EOL);
    436 	sysctl_createv(NULL, 0, &node, NULL,
    437 		CTLFLAG_PERMANENT,
    438 		CTLTYPE_INT, "rtts",
    439 		SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
    440 		sysctl_sched_rtts, 0, NULL, 0,
    441 		CTL_CREATE, CTL_EOL);
    442 	sysctl_createv(NULL, 0, &node, NULL,
    443 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    444 		CTLTYPE_INT, "maxts",
    445 		SYSCTL_DESCR("Maximal time quantum (in milliseconds)"),
    446 		sysctl_sched_maxts, 0, &max_ts, 0,
    447 		CTL_CREATE, CTL_EOL);
    448 	sysctl_createv(NULL, 0, &node, NULL,
    449 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    450 		CTLTYPE_INT, "mints",
    451 		SYSCTL_DESCR("Minimal time quantum (in milliseconds)"),
    452 		sysctl_sched_mints, 0, &min_ts, 0,
    453 		CTL_CREATE, CTL_EOL);
    454 }
    455