sched_m2.c revision 1.6.4.8 1 /* $NetBSD: sched_m2.c,v 1.6.4.8 2008/03/17 09:15:34 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * TODO:
31 * - Implementation of fair share queue;
32 * - Support for NUMA;
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.6.4.8 2008/03/17 09:15:34 yamt Exp $");
37
38 #include <sys/param.h>
39
40 #include <sys/bitops.h>
41 #include <sys/cpu.h>
42 #include <sys/callout.h>
43 #include <sys/errno.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/lwp.h>
47 #include <sys/mutex.h>
48 #include <sys/pool.h>
49 #include <sys/proc.h>
50 #include <sys/pset.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/syscallargs.h>
55 #include <sys/sysctl.h>
56 #include <sys/types.h>
57
58 /*
59 * Priority related defintions.
60 */
61 #define PRI_TS_COUNT (NPRI_USER)
62 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
63 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
64
65 #define PRI_HIGHEST_TS (MAXPRI_USER)
66
67 const int schedppq = 1;
68
69 /*
70 * Bits per map.
71 */
72 #define BITMAP_BITS (32)
73 #define BITMAP_SHIFT (5)
74 #define BITMAP_MSB (0x80000000U)
75 #define BITMAP_MASK (BITMAP_BITS - 1)
76
77 /*
78 * Time-slices and priorities.
79 */
80 static u_int min_ts; /* Minimal time-slice */
81 static u_int max_ts; /* Maximal time-slice */
82 static u_int rt_ts; /* Real-time time-slice */
83 static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
84 static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
85
86 /*
87 * Migration and balancing.
88 */
89 #ifdef MULTIPROCESSOR
90
91 static u_int cacheht_time; /* Cache hotness time */
92 static u_int min_catch; /* Minimal LWP count for catching */
93
94 static u_int balance_period; /* Balance period */
95 static struct callout balance_ch; /* Callout of balancer */
96
97 static struct cpu_info * volatile worker_ci;
98
99 #endif
100
101 /*
102 * Structures, runqueue.
103 */
104
105 typedef struct {
106 TAILQ_HEAD(, lwp) q_head;
107 } queue_t;
108
109 typedef struct {
110 /* Lock and bitmap */
111 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
112 /* Counters */
113 u_int r_count; /* Count of the threads */
114 pri_t r_highest_pri; /* Highest priority */
115 u_int r_avgcount; /* Average count of threads */
116 u_int r_mcount; /* Count of migratable threads */
117 /* Runqueues */
118 queue_t r_rt_queue[PRI_RT_COUNT];
119 queue_t r_ts_queue[PRI_TS_COUNT];
120 } runqueue_t;
121
122 typedef struct {
123 u_int sl_flags;
124 u_int sl_timeslice; /* Time-slice of thread */
125 u_int sl_slept; /* Saved sleep time for sleep sum */
126 u_int sl_slpsum; /* Sum of sleep time */
127 u_int sl_rtime; /* Saved start time of run */
128 u_int sl_rtsum; /* Sum of the run time */
129 u_int sl_lrtime; /* Last run time */
130 } sched_info_lwp_t;
131
132 /* Flags */
133 #define SL_BATCH 0x01
134
135 /* Pool of the scheduler-specific structures for threads */
136 static pool_cache_t sil_pool;
137
138 /*
139 * Prototypes.
140 */
141
142 static inline void * sched_getrq(runqueue_t *, const pri_t);
143 static inline void sched_newts(struct lwp *);
144 static void sched_precalcts(void);
145
146 #ifdef MULTIPROCESSOR
147 static struct lwp * sched_catchlwp(void);
148 static void sched_balance(void *);
149 #endif
150
151 /*
152 * Initialization and setup.
153 */
154
155 void
156 sched_rqinit(void)
157 {
158 struct cpu_info *ci = curcpu();
159
160 if (hz < 100) {
161 panic("sched_rqinit: value of HZ is too low\n");
162 }
163
164 /* Default timing ranges */
165 min_ts = mstohz(50); /* ~50ms */
166 max_ts = mstohz(150); /* ~150ms */
167 rt_ts = mstohz(100); /* ~100ms */
168 sched_precalcts();
169
170 #ifdef MULTIPROCESSOR
171 /* Balancing */
172 worker_ci = ci;
173 cacheht_time = mstohz(5); /* ~5 ms */
174 balance_period = mstohz(300); /* ~300ms */
175 min_catch = ~0;
176 #endif
177
178 /* Pool of the scheduler-specific structures */
179 sil_pool = pool_cache_init(sizeof(sched_info_lwp_t), CACHE_LINE_SIZE,
180 0, 0, "lwpsd", NULL, IPL_NONE, NULL, NULL, NULL);
181
182 /* Attach the primary CPU here */
183 sched_cpuattach(ci);
184
185 sched_lwp_fork(NULL, &lwp0);
186 sched_newts(&lwp0);
187 }
188
189 void
190 sched_setup(void)
191 {
192
193 #ifdef MULTIPROCESSOR
194 /* Minimal count of LWPs for catching: log2(count of CPUs) */
195 min_catch = min(ilog2(ncpu), 4);
196
197 /* Initialize balancing callout and run it */
198 callout_init(&balance_ch, CALLOUT_MPSAFE);
199 callout_setfunc(&balance_ch, sched_balance, NULL);
200 callout_schedule(&balance_ch, balance_period);
201 #endif
202 }
203
204 void
205 sched_cpuattach(struct cpu_info *ci)
206 {
207 runqueue_t *ci_rq;
208 void *rq_ptr;
209 u_int i, size;
210
211 if (ci == lwp0.l_cpu) {
212 /* Initialize the scheduler structure of the primary LWP */
213 lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
214 }
215
216 if (ci->ci_schedstate.spc_mutex != NULL) {
217 /* Already initialized. */
218 return;
219 }
220
221 /* Allocate the run queue */
222 size = roundup2(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
223 rq_ptr = kmem_zalloc(size, KM_SLEEP);
224 if (rq_ptr == NULL) {
225 panic("sched_cpuattach: could not allocate the runqueue");
226 }
227 ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), CACHE_LINE_SIZE));
228
229 /* Initialize run queues */
230 KASSERT(sizeof(kmutex_t) <= CACHE_LINE_SIZE);
231 ci->ci_schedstate.spc_mutex = kmem_alloc(CACHE_LINE_SIZE, KM_SLEEP);
232 mutex_init(ci->ci_schedstate.spc_mutex, MUTEX_DEFAULT, IPL_SCHED);
233 for (i = 0; i < PRI_RT_COUNT; i++)
234 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
235 for (i = 0; i < PRI_TS_COUNT; i++)
236 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
237 ci_rq->r_highest_pri = 0;
238
239 ci->ci_schedstate.spc_sched_info = ci_rq;
240 }
241
242 /* Pre-calculate the time-slices for the priorities */
243 static void
244 sched_precalcts(void)
245 {
246 pri_t p;
247
248 /* Time-sharing range */
249 for (p = 0; p <= PRI_HIGHEST_TS; p++) {
250 ts_map[p] = max_ts -
251 (p * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
252 high_pri[p] = (PRI_HIGHEST_TS - PRI_HTS_RANGE) +
253 ((p * PRI_HTS_RANGE) / (PRI_TS_COUNT - 1));
254 }
255
256 /* Real-time range */
257 for (p = (PRI_HIGHEST_TS + 1); p < PRI_COUNT; p++) {
258 ts_map[p] = rt_ts;
259 high_pri[p] = p;
260 }
261 }
262
263 /*
264 * Hooks.
265 */
266
267 void
268 sched_proc_fork(struct proc *parent, struct proc *child)
269 {
270 struct lwp *l;
271
272 LIST_FOREACH(l, &child->p_lwps, l_sibling) {
273 lwp_lock(l);
274 sched_newts(l);
275 lwp_unlock(l);
276 }
277 }
278
279 void
280 sched_proc_exit(struct proc *child, struct proc *parent)
281 {
282
283 /* Dummy */
284 }
285
286 void
287 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
288 {
289
290 KASSERT(l2->l_sched_info == NULL);
291 l2->l_sched_info = pool_cache_get(sil_pool, PR_WAITOK);
292 memset(l2->l_sched_info, 0, sizeof(sched_info_lwp_t));
293 }
294
295 void
296 sched_lwp_exit(struct lwp *l)
297 {
298
299 KASSERT(l->l_sched_info != NULL);
300 pool_cache_put(sil_pool, l->l_sched_info);
301 l->l_sched_info = NULL;
302 }
303
304 void
305 sched_lwp_collect(struct lwp *l)
306 {
307
308 }
309
310 void
311 sched_setrunnable(struct lwp *l)
312 {
313
314 /* Dummy */
315 }
316
317 void
318 sched_schedclock(struct lwp *l)
319 {
320
321 /* Dummy */
322 }
323
324 /*
325 * Priorities and time-slice.
326 */
327
328 void
329 sched_nice(struct proc *p, int prio)
330 {
331
332 /* TODO: implement as SCHED_IA */
333 }
334
335 /* Recalculate the time-slice */
336 static inline void
337 sched_newts(struct lwp *l)
338 {
339 sched_info_lwp_t *sil = l->l_sched_info;
340
341 sil->sl_timeslice = ts_map[lwp_eprio(l)];
342 }
343
344 /*
345 * Control of the runqueue.
346 */
347
348 static inline void *
349 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
350 {
351
352 KASSERT(prio < PRI_COUNT);
353 return (prio <= PRI_HIGHEST_TS) ?
354 &ci_rq->r_ts_queue[prio].q_head :
355 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
356 }
357
358 void
359 sched_enqueue(struct lwp *l, bool swtch)
360 {
361 runqueue_t *ci_rq;
362 sched_info_lwp_t *sil = l->l_sched_info;
363 TAILQ_HEAD(, lwp) *q_head;
364 const pri_t eprio = lwp_eprio(l);
365
366 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
367 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
368
369 /* Update the last run time on switch */
370 if (__predict_true(swtch == true)) {
371 sil->sl_lrtime = hardclock_ticks;
372 sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
373 } else if (sil->sl_lrtime == 0)
374 sil->sl_lrtime = hardclock_ticks;
375
376 /* Enqueue the thread */
377 q_head = sched_getrq(ci_rq, eprio);
378 if (TAILQ_EMPTY(q_head)) {
379 u_int i;
380 uint32_t q;
381
382 /* Mark bit */
383 i = eprio >> BITMAP_SHIFT;
384 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
385 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
386 ci_rq->r_bitmap[i] |= q;
387 }
388 TAILQ_INSERT_TAIL(q_head, l, l_runq);
389 ci_rq->r_count++;
390 if ((l->l_flag & LW_BOUND) == 0)
391 ci_rq->r_mcount++;
392
393 /*
394 * Update the value of highest priority in the runqueue,
395 * if priority of this thread is higher.
396 */
397 if (eprio > ci_rq->r_highest_pri)
398 ci_rq->r_highest_pri = eprio;
399
400 sched_newts(l);
401 }
402
403 void
404 sched_dequeue(struct lwp *l)
405 {
406 runqueue_t *ci_rq;
407 TAILQ_HEAD(, lwp) *q_head;
408 const pri_t eprio = lwp_eprio(l);
409
410 ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
411 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
412
413 KASSERT(eprio <= ci_rq->r_highest_pri);
414 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
415 KASSERT(ci_rq->r_count > 0);
416
417 ci_rq->r_count--;
418 if ((l->l_flag & LW_BOUND) == 0)
419 ci_rq->r_mcount--;
420
421 q_head = sched_getrq(ci_rq, eprio);
422 TAILQ_REMOVE(q_head, l, l_runq);
423 if (TAILQ_EMPTY(q_head)) {
424 u_int i;
425 uint32_t q;
426
427 /* Unmark bit */
428 i = eprio >> BITMAP_SHIFT;
429 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
430 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
431 ci_rq->r_bitmap[i] &= ~q;
432
433 /*
434 * Update the value of highest priority in the runqueue, in a
435 * case it was a last thread in the queue of highest priority.
436 */
437 if (eprio != ci_rq->r_highest_pri)
438 return;
439
440 do {
441 q = ffs(ci_rq->r_bitmap[i]);
442 if (q) {
443 ci_rq->r_highest_pri =
444 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
445 return;
446 }
447 } while (i--);
448
449 /* If not found - set the lowest value */
450 ci_rq->r_highest_pri = 0;
451 }
452 }
453
454 void
455 sched_slept(struct lwp *l)
456 {
457 sched_info_lwp_t *sil = l->l_sched_info;
458
459 /* Save the time when thread has slept */
460 sil->sl_slept = hardclock_ticks;
461
462 /*
463 * If thread is in time-sharing queue and batch flag is not marked,
464 * increase the the priority, and run with the lower time-quantum.
465 */
466 if (l->l_priority < PRI_HIGHEST_TS &&
467 (sil->sl_flags & SL_BATCH) == 0) {
468 KASSERT(l->l_class == SCHED_OTHER);
469 l->l_priority++;
470 }
471 }
472
473 void
474 sched_wakeup(struct lwp *l)
475 {
476 sched_info_lwp_t *sil = l->l_sched_info;
477 const u_int slptime = hardclock_ticks - sil->sl_slept;
478
479 /* Update sleep time delta */
480 sil->sl_slpsum += (l->l_slptime == 0) ? slptime : hz;
481
482 /* If thread was sleeping a second or more - set a high priority */
483 if (l->l_slptime > 1 || slptime >= hz)
484 l->l_priority = high_pri[l->l_priority];
485
486 /* Also, consider looking for a better CPU to wake up */
487 l->l_cpu = sched_takecpu(l);
488 }
489
490 void
491 sched_pstats_hook(struct lwp *l)
492 {
493 sched_info_lwp_t *sil = l->l_sched_info;
494 pri_t prio;
495 bool batch;
496
497 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
498 l->l_stat == LSSUSPENDED)
499 l->l_slptime++;
500
501 /*
502 * Set that thread is more CPU-bound, if sum of run time exceeds the
503 * sum of sleep time. Check if thread is CPU-bound a first time.
504 */
505 batch = (sil->sl_rtsum > sil->sl_slpsum);
506 if (batch) {
507 if ((sil->sl_flags & SL_BATCH) == 0)
508 batch = false;
509 sil->sl_flags |= SL_BATCH;
510 } else
511 sil->sl_flags &= ~SL_BATCH;
512
513 /*
514 * If thread is CPU-bound and never sleeps, it would occupy the CPU.
515 * In such case reset the value of last sleep, and check it later, if
516 * it is still zero - perform the migration, unmark the batch flag.
517 */
518 if (batch && (l->l_slptime + sil->sl_slpsum) == 0) {
519 if (l->l_stat != LSONPROC && sil->sl_slept == 0) {
520 struct cpu_info *ci = sched_takecpu(l);
521
522 if (l->l_cpu != ci)
523 l->l_target_cpu = ci;
524 sil->sl_flags &= ~SL_BATCH;
525 } else {
526 sil->sl_slept = 0;
527 }
528 }
529
530 /* Reset the time sums */
531 sil->sl_slpsum = 0;
532 sil->sl_rtsum = 0;
533
534 /*
535 * Estimate threads on time-sharing queue only, however,
536 * exclude the highest priority for performance purposes.
537 */
538 if (l->l_priority >= PRI_HIGHEST_TS)
539 return;
540 KASSERT(l->l_class == SCHED_OTHER);
541
542 /* If it is CPU-bound not a first time - decrease the priority */
543 prio = l->l_priority;
544 if (batch && prio != 0)
545 prio--;
546
547 /* If thread was not ran a second or more - set a high priority */
548 if (l->l_stat == LSRUN) {
549 if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
550 prio = high_pri[prio];
551 /* Re-enqueue the thread if priority has changed */
552 if (prio != l->l_priority)
553 lwp_changepri(l, prio);
554 } else {
555 /* In other states, change the priority directly */
556 l->l_priority = prio;
557 }
558 }
559
560 /*
561 * Migration and balancing.
562 */
563
564 #ifdef MULTIPROCESSOR
565
566 /* Estimate if LWP is cache-hot */
567 static inline bool
568 lwp_cache_hot(const struct lwp *l)
569 {
570 const sched_info_lwp_t *sil = l->l_sched_info;
571
572 if (l->l_slptime || sil->sl_lrtime == 0)
573 return false;
574
575 return (hardclock_ticks - sil->sl_lrtime <= cacheht_time);
576 }
577
578 /* Check if LWP can migrate to the chosen CPU */
579 static inline bool
580 sched_migratable(const struct lwp *l, struct cpu_info *ci)
581 {
582 const struct schedstate_percpu *spc = &ci->ci_schedstate;
583
584 /* CPU is offline */
585 if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
586 return false;
587
588 /* Affinity bind */
589 if (__predict_false(l->l_flag & LW_AFFINITY))
590 return CPU_ISSET(cpu_index(ci), &l->l_affinity);
591
592 /* Processor-set */
593 return (spc->spc_psid == l->l_psid);
594 }
595
596 /*
597 * Estimate the migration of LWP to the other CPU.
598 * Take and return the CPU, if migration is needed.
599 */
600 struct cpu_info *
601 sched_takecpu(struct lwp *l)
602 {
603 struct cpu_info *ci, *tci;
604 struct schedstate_percpu *spc;
605 runqueue_t *ci_rq;
606 CPU_INFO_ITERATOR cii;
607 pri_t eprio, lpri;
608
609 KASSERT(lwp_locked(l, NULL));
610
611 ci = l->l_cpu;
612 spc = &ci->ci_schedstate;
613 ci_rq = spc->spc_sched_info;
614
615 /* If thread is strictly bound, do not estimate other CPUs */
616 if (l->l_flag & LW_BOUND)
617 return ci;
618
619 /* CPU of this thread is idling - run there */
620 if (ci_rq->r_count == 0)
621 return ci;
622
623 eprio = lwp_eprio(l);
624
625 /* Stay if thread is cache-hot */
626 if (__predict_true(l->l_stat != LSIDL) &&
627 lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
628 return ci;
629
630 /* Run on current CPU if priority of thread is higher */
631 ci = curcpu();
632 spc = &ci->ci_schedstate;
633 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
634 return ci;
635
636 /*
637 * Look for the CPU with the lowest priority thread. In case of
638 * equal the priority - check the lower count of the threads.
639 */
640 tci = l->l_cpu;
641 lpri = PRI_COUNT;
642 for (CPU_INFO_FOREACH(cii, ci)) {
643 runqueue_t *ici_rq;
644 pri_t pri;
645
646 spc = &ci->ci_schedstate;
647 ici_rq = spc->spc_sched_info;
648 pri = max(spc->spc_curpriority, ici_rq->r_highest_pri);
649 if (pri > lpri)
650 continue;
651
652 if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
653 continue;
654
655 if (!sched_migratable(l, ci))
656 continue;
657
658 lpri = pri;
659 tci = ci;
660 ci_rq = ici_rq;
661 }
662 return tci;
663 }
664
665 /*
666 * Tries to catch an LWP from the runqueue of other CPU.
667 */
668 static struct lwp *
669 sched_catchlwp(void)
670 {
671 struct cpu_info *curci = curcpu(), *ci = worker_ci;
672 TAILQ_HEAD(, lwp) *q_head;
673 runqueue_t *ci_rq;
674 struct lwp *l;
675
676 if (curci == ci)
677 return NULL;
678
679 /* Lockless check */
680 ci_rq = ci->ci_schedstate.spc_sched_info;
681 if (ci_rq->r_mcount < min_catch)
682 return NULL;
683
684 /*
685 * Double-lock the runqueues.
686 */
687 if (curci < ci) {
688 spc_lock(ci);
689 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
690 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
691
692 spc_unlock(curci);
693 spc_lock(ci);
694 spc_lock(curci);
695
696 if (cur_rq->r_count) {
697 spc_unlock(ci);
698 return NULL;
699 }
700 }
701
702 if (ci_rq->r_mcount < min_catch) {
703 spc_unlock(ci);
704 return NULL;
705 }
706
707 /* Take the highest priority thread */
708 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
709 l = TAILQ_FIRST(q_head);
710
711 for (;;) {
712 /* Check the first and next result from the queue */
713 if (l == NULL)
714 break;
715 KASSERT(l->l_stat == LSRUN);
716 KASSERT(l->l_flag & LW_INMEM);
717
718 /* Look for threads, whose are allowed to migrate */
719 if ((l->l_flag & LW_BOUND) || lwp_cache_hot(l) ||
720 !sched_migratable(l, curci)) {
721 l = TAILQ_NEXT(l, l_runq);
722 continue;
723 }
724
725 /* Grab the thread, and move to the local run queue */
726 sched_dequeue(l);
727 l->l_cpu = curci;
728 lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
729 sched_enqueue(l, false);
730 return l;
731 }
732 spc_unlock(ci);
733
734 return l;
735 }
736
737 /*
738 * Periodical calculations for balancing.
739 */
740 static void
741 sched_balance(void *nocallout)
742 {
743 struct cpu_info *ci, *hci;
744 runqueue_t *ci_rq;
745 CPU_INFO_ITERATOR cii;
746 u_int highest;
747
748 hci = curcpu();
749 highest = 0;
750
751 /* Make lockless countings */
752 for (CPU_INFO_FOREACH(cii, ci)) {
753 ci_rq = ci->ci_schedstate.spc_sched_info;
754
755 /* Average count of the threads */
756 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
757
758 /* Look for CPU with the highest average */
759 if (ci_rq->r_avgcount > highest) {
760 hci = ci;
761 highest = ci_rq->r_avgcount;
762 }
763 }
764
765 /* Update the worker */
766 worker_ci = hci;
767
768 if (nocallout == NULL)
769 callout_schedule(&balance_ch, balance_period);
770 }
771
772 #else
773
774 struct cpu_info *
775 sched_takecpu(struct lwp *l)
776 {
777
778 return l->l_cpu;
779 }
780
781 #endif /* MULTIPROCESSOR */
782
783 /*
784 * Scheduler mill.
785 */
786 struct lwp *
787 sched_nextlwp(void)
788 {
789 struct cpu_info *ci = curcpu();
790 struct schedstate_percpu *spc;
791 TAILQ_HEAD(, lwp) *q_head;
792 sched_info_lwp_t *sil;
793 runqueue_t *ci_rq;
794 struct lwp *l;
795
796 spc = &ci->ci_schedstate;
797 ci_rq = ci->ci_schedstate.spc_sched_info;
798
799 #ifdef MULTIPROCESSOR
800 /* If runqueue is empty, try to catch some thread from other CPU */
801 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
802 if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
803 return NULL;
804 } else if (ci_rq->r_count == 0) {
805 /* Reset the counter, and call the balancer */
806 ci_rq->r_avgcount = 0;
807 sched_balance(ci);
808
809 /* The re-locking will be done inside */
810 return sched_catchlwp();
811 }
812 #else
813 if (ci_rq->r_count == 0)
814 return NULL;
815 #endif
816
817 /* Take the highest priority thread */
818 KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
819 q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
820 l = TAILQ_FIRST(q_head);
821 KASSERT(l != NULL);
822
823 /* Update the counters */
824 sil = l->l_sched_info;
825 KASSERT(sil->sl_timeslice >= min_ts);
826 KASSERT(sil->sl_timeslice <= max_ts);
827 spc->spc_ticks = sil->sl_timeslice;
828 sil->sl_rtime = hardclock_ticks;
829
830 return l;
831 }
832
833 bool
834 sched_curcpu_runnable_p(void)
835 {
836 const struct cpu_info *ci = curcpu();
837 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
838
839 #ifndef __HAVE_FAST_SOFTINTS
840 if (ci->ci_data.cpu_softints)
841 return true;
842 #endif
843
844 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
845 return (ci_rq->r_count - ci_rq->r_mcount);
846
847 return ci_rq->r_count;
848 }
849
850 /*
851 * Time-driven events.
852 */
853
854 /*
855 * Called once per time-quantum. This routine is CPU-local and runs at
856 * IPL_SCHED, thus the locking is not needed.
857 */
858 void
859 sched_tick(struct cpu_info *ci)
860 {
861 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
862 struct schedstate_percpu *spc = &ci->ci_schedstate;
863 struct lwp *l = curlwp;
864 const sched_info_lwp_t *sil = l->l_sched_info;
865
866 if (CURCPU_IDLE_P())
867 return;
868
869 switch (l->l_class) {
870 case SCHED_FIFO:
871 /*
872 * Update the time-quantum, and continue running,
873 * if thread runs on FIFO real-time policy.
874 */
875 KASSERT(l->l_priority > PRI_HIGHEST_TS);
876 spc->spc_ticks = sil->sl_timeslice;
877 return;
878 case SCHED_OTHER:
879 /*
880 * If thread is in time-sharing queue, decrease the priority,
881 * and run with a higher time-quantum.
882 */
883 KASSERT(l->l_priority <= PRI_HIGHEST_TS);
884 if (l->l_priority != 0)
885 l->l_priority--;
886 break;
887 }
888
889 /*
890 * If there are higher priority threads or threads in the same queue,
891 * mark that thread should yield, otherwise, continue running.
892 */
893 if (lwp_eprio(l) <= ci_rq->r_highest_pri || l->l_target_cpu) {
894 spc->spc_flags |= SPCF_SHOULDYIELD;
895 cpu_need_resched(ci, 0);
896 } else
897 spc->spc_ticks = sil->sl_timeslice;
898 }
899
900 /*
901 * Sysctl nodes and initialization.
902 */
903
904 static int
905 sysctl_sched_rtts(SYSCTLFN_ARGS)
906 {
907 struct sysctlnode node;
908 int rttsms = hztoms(rt_ts);
909
910 node = *rnode;
911 node.sysctl_data = &rttsms;
912 return sysctl_lookup(SYSCTLFN_CALL(&node));
913 }
914
915 static int
916 sysctl_sched_mints(SYSCTLFN_ARGS)
917 {
918 struct sysctlnode node;
919 struct cpu_info *ci;
920 int error, newsize;
921 CPU_INFO_ITERATOR cii;
922
923 node = *rnode;
924 node.sysctl_data = &newsize;
925
926 newsize = hztoms(min_ts);
927 error = sysctl_lookup(SYSCTLFN_CALL(&node));
928 if (error || newp == NULL)
929 return error;
930
931 newsize = mstohz(newsize);
932 if (newsize < 1 || newsize > hz || newsize >= max_ts)
933 return EINVAL;
934
935 /* It is safe to do this in such order */
936 for (CPU_INFO_FOREACH(cii, ci))
937 spc_lock(ci);
938
939 min_ts = newsize;
940 sched_precalcts();
941
942 for (CPU_INFO_FOREACH(cii, ci))
943 spc_unlock(ci);
944
945 return 0;
946 }
947
948 static int
949 sysctl_sched_maxts(SYSCTLFN_ARGS)
950 {
951 struct sysctlnode node;
952 struct cpu_info *ci;
953 int error, newsize;
954 CPU_INFO_ITERATOR cii;
955
956 node = *rnode;
957 node.sysctl_data = &newsize;
958
959 newsize = hztoms(max_ts);
960 error = sysctl_lookup(SYSCTLFN_CALL(&node));
961 if (error || newp == NULL)
962 return error;
963
964 newsize = mstohz(newsize);
965 if (newsize < 10 || newsize > hz || newsize <= min_ts)
966 return EINVAL;
967
968 /* It is safe to do this in such order */
969 for (CPU_INFO_FOREACH(cii, ci))
970 spc_lock(ci);
971
972 max_ts = newsize;
973 sched_precalcts();
974
975 for (CPU_INFO_FOREACH(cii, ci))
976 spc_unlock(ci);
977
978 return 0;
979 }
980
981 SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
982 {
983 const struct sysctlnode *node = NULL;
984
985 sysctl_createv(clog, 0, NULL, NULL,
986 CTLFLAG_PERMANENT,
987 CTLTYPE_NODE, "kern", NULL,
988 NULL, 0, NULL, 0,
989 CTL_KERN, CTL_EOL);
990 sysctl_createv(clog, 0, NULL, &node,
991 CTLFLAG_PERMANENT,
992 CTLTYPE_NODE, "sched",
993 SYSCTL_DESCR("Scheduler options"),
994 NULL, 0, NULL, 0,
995 CTL_KERN, CTL_CREATE, CTL_EOL);
996
997 if (node == NULL)
998 return;
999
1000 sysctl_createv(clog, 0, &node, NULL,
1001 CTLFLAG_PERMANENT,
1002 CTLTYPE_STRING, "name", NULL,
1003 NULL, 0, __UNCONST("M2"), 0,
1004 CTL_CREATE, CTL_EOL);
1005 sysctl_createv(clog, 0, &node, NULL,
1006 CTLFLAG_PERMANENT,
1007 CTLTYPE_INT, "rtts",
1008 SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
1009 sysctl_sched_rtts, 0, NULL, 0,
1010 CTL_CREATE, CTL_EOL);
1011 sysctl_createv(clog, 0, &node, NULL,
1012 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1013 CTLTYPE_INT, "maxts",
1014 SYSCTL_DESCR("Maximal time quantum (in miliseconds)"),
1015 sysctl_sched_maxts, 0, &max_ts, 0,
1016 CTL_CREATE, CTL_EOL);
1017 sysctl_createv(clog, 0, &node, NULL,
1018 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1019 CTLTYPE_INT, "mints",
1020 SYSCTL_DESCR("Minimal time quantum (in miliseconds)"),
1021 sysctl_sched_mints, 0, &min_ts, 0,
1022 CTL_CREATE, CTL_EOL);
1023
1024 #ifdef MULTIPROCESSOR
1025 sysctl_createv(clog, 0, &node, NULL,
1026 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1027 CTLTYPE_INT, "cacheht_time",
1028 SYSCTL_DESCR("Cache hotness time (in ticks)"),
1029 NULL, 0, &cacheht_time, 0,
1030 CTL_CREATE, CTL_EOL);
1031 sysctl_createv(clog, 0, &node, NULL,
1032 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1033 CTLTYPE_INT, "balance_period",
1034 SYSCTL_DESCR("Balance period (in ticks)"),
1035 NULL, 0, &balance_period, 0,
1036 CTL_CREATE, CTL_EOL);
1037 sysctl_createv(clog, 0, &node, NULL,
1038 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1039 CTLTYPE_INT, "min_catch",
1040 SYSCTL_DESCR("Minimal count of the threads for catching"),
1041 NULL, 0, &min_catch, 0,
1042 CTL_CREATE, CTL_EOL);
1043 #endif
1044 }
1045
1046 /*
1047 * Debugging.
1048 */
1049
1050 #ifdef DDB
1051
1052 void
1053 sched_print_runqueue(void (*pr)(const char *, ...))
1054 {
1055 runqueue_t *ci_rq;
1056 sched_info_lwp_t *sil;
1057 struct lwp *l;
1058 struct proc *p;
1059 int i;
1060
1061 struct cpu_info *ci;
1062 CPU_INFO_ITERATOR cii;
1063
1064 for (CPU_INFO_FOREACH(cii, ci)) {
1065 ci_rq = ci->ci_schedstate.spc_sched_info;
1066
1067 (*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
1068 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1069 "avgcount = %u, highest pri = %d\n",
1070 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1071 ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
1072 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1073 do {
1074 uint32_t q;
1075 q = ci_rq->r_bitmap[i];
1076 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1077 } while (i--);
1078 }
1079
1080 (*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
1081 "LID", "PRI", "EPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
1082
1083 PROCLIST_FOREACH(p, &allproc) {
1084 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1085 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1086 sil = l->l_sched_info;
1087 ci = l->l_cpu;
1088 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3u "
1089 "%u ST=%d RT=%d %d\n",
1090 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1091 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1092 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1093 sil->sl_timeslice, l, ci->ci_index,
1094 (u_int)(hardclock_ticks - sil->sl_lrtime),
1095 sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
1096 }
1097 }
1098 }
1099
1100 #endif
1101