Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.136
      1 /* $NetBSD: subr_autoconf.c,v 1.136 2008/03/05 07:09:18 dyoung Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.136 2008/03/05 07:09:18 dyoung Exp $");
     81 
     82 #include "opt_multiprocessor.h"
     83 #include "opt_ddb.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/systm.h>
     92 #include <sys/kernel.h>
     93 #include <sys/errno.h>
     94 #include <sys/proc.h>
     95 #include <sys/reboot.h>
     96 
     97 #include <sys/buf.h>
     98 #include <sys/dirent.h>
     99 #include <sys/vnode.h>
    100 #include <sys/mount.h>
    101 #include <sys/namei.h>
    102 #include <sys/unistd.h>
    103 #include <sys/fcntl.h>
    104 #include <sys/lockf.h>
    105 #include <sys/callout.h>
    106 #include <sys/mutex.h>
    107 #include <sys/condvar.h>
    108 
    109 #include <sys/disk.h>
    110 
    111 #include <machine/limits.h>
    112 
    113 #include "opt_userconf.h"
    114 #ifdef USERCONF
    115 #include <sys/userconf.h>
    116 #endif
    117 
    118 #ifdef __i386__
    119 #include "opt_splash.h"
    120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    121 #include <dev/splash/splash.h>
    122 extern struct splash_progress *splash_progress_state;
    123 #endif
    124 #endif
    125 
    126 /*
    127  * Autoconfiguration subroutines.
    128  */
    129 
    130 /*
    131  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    132  * devices and drivers are found via these tables.
    133  */
    134 extern struct cfdata cfdata[];
    135 extern const short cfroots[];
    136 
    137 /*
    138  * List of all cfdriver structures.  We use this to detect duplicates
    139  * when other cfdrivers are loaded.
    140  */
    141 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    142 extern struct cfdriver * const cfdriver_list_initial[];
    143 
    144 /*
    145  * Initial list of cfattach's.
    146  */
    147 extern const struct cfattachinit cfattachinit[];
    148 
    149 /*
    150  * List of cfdata tables.  We always have one such list -- the one
    151  * built statically when the kernel was configured.
    152  */
    153 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    154 static struct cftable initcftable;
    155 
    156 #define	ROOT ((device_t)NULL)
    157 
    158 struct matchinfo {
    159 	cfsubmatch_t fn;
    160 	struct	device *parent;
    161 	const int *locs;
    162 	void	*aux;
    163 	struct	cfdata *match;
    164 	int	pri;
    165 };
    166 
    167 static char *number(char *, int);
    168 static void mapply(struct matchinfo *, cfdata_t);
    169 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    170 static void config_devdealloc(device_t);
    171 static void config_makeroom(int, struct cfdriver *);
    172 static void config_devlink(device_t);
    173 static void config_devunlink(device_t);
    174 
    175 static device_t deviter_next1(deviter_t *);
    176 static void deviter_reinit(deviter_t *);
    177 
    178 struct deferred_config {
    179 	TAILQ_ENTRY(deferred_config) dc_queue;
    180 	device_t dc_dev;
    181 	void (*dc_func)(device_t);
    182 };
    183 
    184 TAILQ_HEAD(deferred_config_head, deferred_config);
    185 
    186 struct deferred_config_head deferred_config_queue =
    187 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    188 struct deferred_config_head interrupt_config_queue =
    189 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    190 
    191 static void config_process_deferred(struct deferred_config_head *, device_t);
    192 
    193 /* Hooks to finalize configuration once all real devices have been found. */
    194 struct finalize_hook {
    195 	TAILQ_ENTRY(finalize_hook) f_list;
    196 	int (*f_func)(device_t);
    197 	device_t f_dev;
    198 };
    199 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    200 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    201 static int config_finalize_done;
    202 
    203 /* list of all devices */
    204 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    205 kcondvar_t alldevs_cv;
    206 kmutex_t alldevs_mtx;
    207 static int alldevs_nread = 0;
    208 static int alldevs_nwrite = 0;
    209 static lwp_t *alldevs_writer = NULL;
    210 
    211 volatile int config_pending;		/* semaphore for mountroot */
    212 
    213 #define	STREQ(s1, s2)			\
    214 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    215 
    216 static int config_initialized;		/* config_init() has been called. */
    217 
    218 static int config_do_twiddle;
    219 
    220 struct vnode *
    221 opendisk(struct device *dv)
    222 {
    223 	int bmajor, bminor;
    224 	struct vnode *tmpvn;
    225 	int error;
    226 	dev_t dev;
    227 
    228 	/*
    229 	 * Lookup major number for disk block device.
    230 	 */
    231 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    232 	if (bmajor == -1)
    233 		return NULL;
    234 
    235 	bminor = minor(device_unit(dv));
    236 	/*
    237 	 * Fake a temporary vnode for the disk, open it, and read
    238 	 * and hash the sectors.
    239 	 */
    240 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    241 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    242 	if (bdevvp(dev, &tmpvn))
    243 		panic("%s: can't alloc vnode for %s", __func__,
    244 		    device_xname(dv));
    245 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    246 	if (error) {
    247 #ifndef DEBUG
    248 		/*
    249 		 * Ignore errors caused by missing device, partition,
    250 		 * or medium.
    251 		 */
    252 		if (error != ENXIO && error != ENODEV)
    253 #endif
    254 			printf("%s: can't open dev %s (%d)\n",
    255 			    __func__, device_xname(dv), error);
    256 		vput(tmpvn);
    257 		return NULL;
    258 	}
    259 
    260 	return tmpvn;
    261 }
    262 
    263 int
    264 config_handle_wedges(struct device *dv, int par)
    265 {
    266 	struct dkwedge_list wl;
    267 	struct dkwedge_info *wi;
    268 	struct vnode *vn;
    269 	char diskname[16];
    270 	int i, error;
    271 
    272 	if ((vn = opendisk(dv)) == NULL)
    273 		return -1;
    274 
    275 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    276 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    277 
    278 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    279 	VOP_CLOSE(vn, FREAD, NOCRED);
    280 	vput(vn);
    281 	if (error) {
    282 #ifdef DEBUG_WEDGE
    283 		printf("%s: List wedges returned %d\n",
    284 		    device_xname(dv), error);
    285 #endif
    286 		free(wi, M_TEMP);
    287 		return -1;
    288 	}
    289 
    290 #ifdef DEBUG_WEDGE
    291 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    292 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    293 #endif
    294 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    295 	    par + 'a');
    296 
    297 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    298 #ifdef DEBUG_WEDGE
    299 		printf("%s: Looking for %s in %s\n",
    300 		    device_xname(dv), diskname, wi[i].dkw_wname);
    301 #endif
    302 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    303 			break;
    304 	}
    305 
    306 	if (i == wl.dkwl_ncopied) {
    307 #ifdef DEBUG_WEDGE
    308 		printf("%s: Cannot find wedge with parent %s\n",
    309 		    device_xname(dv), diskname);
    310 #endif
    311 		free(wi, M_TEMP);
    312 		return -1;
    313 	}
    314 
    315 #ifdef DEBUG_WEDGE
    316 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    317 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    318 		(unsigned long long)wi[i].dkw_offset,
    319 		(unsigned long long)wi[i].dkw_size);
    320 #endif
    321 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    322 	free(wi, M_TEMP);
    323 	return 0;
    324 }
    325 
    326 /*
    327  * Initialize the autoconfiguration data structures.  Normally this
    328  * is done by configure(), but some platforms need to do this very
    329  * early (to e.g. initialize the console).
    330  */
    331 void
    332 config_init(void)
    333 {
    334 	const struct cfattachinit *cfai;
    335 	int i, j;
    336 
    337 	if (config_initialized)
    338 		return;
    339 
    340 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    341 	cv_init(&alldevs_cv, "alldevs");
    342 
    343 	/* allcfdrivers is statically initialized. */
    344 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    345 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    346 			panic("configure: duplicate `%s' drivers",
    347 			    cfdriver_list_initial[i]->cd_name);
    348 	}
    349 
    350 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    351 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    352 			if (config_cfattach_attach(cfai->cfai_name,
    353 						   cfai->cfai_list[j]) != 0)
    354 				panic("configure: duplicate `%s' attachment "
    355 				    "of `%s' driver",
    356 				    cfai->cfai_list[j]->ca_name,
    357 				    cfai->cfai_name);
    358 		}
    359 	}
    360 
    361 	initcftable.ct_cfdata = cfdata;
    362 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    363 
    364 	config_initialized = 1;
    365 }
    366 
    367 void
    368 config_deferred(device_t dev)
    369 {
    370 	config_process_deferred(&deferred_config_queue, dev);
    371 	config_process_deferred(&interrupt_config_queue, dev);
    372 }
    373 
    374 /*
    375  * Configure the system's hardware.
    376  */
    377 void
    378 configure(void)
    379 {
    380 	int errcnt;
    381 
    382 	/* Initialize data structures. */
    383 	config_init();
    384 	pmf_init();
    385 
    386 #ifdef USERCONF
    387 	if (boothowto & RB_USERCONF)
    388 		user_config();
    389 #endif
    390 
    391 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    392 		config_do_twiddle = 1;
    393 		printf_nolog("Detecting hardware...");
    394 	}
    395 
    396 	/*
    397 	 * Do the machine-dependent portion of autoconfiguration.  This
    398 	 * sets the configuration machinery here in motion by "finding"
    399 	 * the root bus.  When this function returns, we expect interrupts
    400 	 * to be enabled.
    401 	 */
    402 	cpu_configure();
    403 
    404 	/* Initialize callouts, part 2. */
    405 	callout_startup2();
    406 
    407 	/*
    408 	 * Now that we've found all the hardware, start the real time
    409 	 * and statistics clocks.
    410 	 */
    411 	initclocks();
    412 
    413 	cold = 0;	/* clocks are running, we're warm now! */
    414 
    415 	/* Boot the secondary processors. */
    416 	mp_online = true;
    417 #if defined(MULTIPROCESSOR)
    418 	cpu_boot_secondary_processors();
    419 #endif
    420 
    421 	/*
    422 	 * Now callback to finish configuration for devices which want
    423 	 * to do this once interrupts are enabled.
    424 	 */
    425 	config_process_deferred(&interrupt_config_queue, NULL);
    426 
    427 	errcnt = aprint_get_error_count();
    428 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
    429 	    (boothowto & AB_VERBOSE) == 0) {
    430 		if (config_do_twiddle) {
    431 			config_do_twiddle = 0;
    432 			printf_nolog("done.\n");
    433 		}
    434 		if (errcnt != 0) {
    435 			printf("WARNING: %d error%s while detecting hardware; "
    436 			    "check system log.\n", errcnt,
    437 			    errcnt == 1 ? "" : "s");
    438 		}
    439 	}
    440 }
    441 
    442 /*
    443  * Add a cfdriver to the system.
    444  */
    445 int
    446 config_cfdriver_attach(struct cfdriver *cd)
    447 {
    448 	struct cfdriver *lcd;
    449 
    450 	/* Make sure this driver isn't already in the system. */
    451 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    452 		if (STREQ(lcd->cd_name, cd->cd_name))
    453 			return (EEXIST);
    454 	}
    455 
    456 	LIST_INIT(&cd->cd_attach);
    457 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    458 
    459 	return (0);
    460 }
    461 
    462 /*
    463  * Remove a cfdriver from the system.
    464  */
    465 int
    466 config_cfdriver_detach(struct cfdriver *cd)
    467 {
    468 	int i;
    469 
    470 	/* Make sure there are no active instances. */
    471 	for (i = 0; i < cd->cd_ndevs; i++) {
    472 		if (cd->cd_devs[i] != NULL)
    473 			return (EBUSY);
    474 	}
    475 
    476 	/* ...and no attachments loaded. */
    477 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    478 		return (EBUSY);
    479 
    480 	LIST_REMOVE(cd, cd_list);
    481 
    482 	KASSERT(cd->cd_devs == NULL);
    483 
    484 	return (0);
    485 }
    486 
    487 /*
    488  * Look up a cfdriver by name.
    489  */
    490 struct cfdriver *
    491 config_cfdriver_lookup(const char *name)
    492 {
    493 	struct cfdriver *cd;
    494 
    495 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    496 		if (STREQ(cd->cd_name, name))
    497 			return (cd);
    498 	}
    499 
    500 	return (NULL);
    501 }
    502 
    503 /*
    504  * Add a cfattach to the specified driver.
    505  */
    506 int
    507 config_cfattach_attach(const char *driver, struct cfattach *ca)
    508 {
    509 	struct cfattach *lca;
    510 	struct cfdriver *cd;
    511 
    512 	cd = config_cfdriver_lookup(driver);
    513 	if (cd == NULL)
    514 		return (ESRCH);
    515 
    516 	/* Make sure this attachment isn't already on this driver. */
    517 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    518 		if (STREQ(lca->ca_name, ca->ca_name))
    519 			return (EEXIST);
    520 	}
    521 
    522 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    523 
    524 	return (0);
    525 }
    526 
    527 /*
    528  * Remove a cfattach from the specified driver.
    529  */
    530 int
    531 config_cfattach_detach(const char *driver, struct cfattach *ca)
    532 {
    533 	struct cfdriver *cd;
    534 	device_t dev;
    535 	int i;
    536 
    537 	cd = config_cfdriver_lookup(driver);
    538 	if (cd == NULL)
    539 		return (ESRCH);
    540 
    541 	/* Make sure there are no active instances. */
    542 	for (i = 0; i < cd->cd_ndevs; i++) {
    543 		if ((dev = cd->cd_devs[i]) == NULL)
    544 			continue;
    545 		if (dev->dv_cfattach == ca)
    546 			return (EBUSY);
    547 	}
    548 
    549 	LIST_REMOVE(ca, ca_list);
    550 
    551 	return (0);
    552 }
    553 
    554 /*
    555  * Look up a cfattach by name.
    556  */
    557 static struct cfattach *
    558 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    559 {
    560 	struct cfattach *ca;
    561 
    562 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    563 		if (STREQ(ca->ca_name, atname))
    564 			return (ca);
    565 	}
    566 
    567 	return (NULL);
    568 }
    569 
    570 /*
    571  * Look up a cfattach by driver/attachment name.
    572  */
    573 struct cfattach *
    574 config_cfattach_lookup(const char *name, const char *atname)
    575 {
    576 	struct cfdriver *cd;
    577 
    578 	cd = config_cfdriver_lookup(name);
    579 	if (cd == NULL)
    580 		return (NULL);
    581 
    582 	return (config_cfattach_lookup_cd(cd, atname));
    583 }
    584 
    585 /*
    586  * Apply the matching function and choose the best.  This is used
    587  * a few times and we want to keep the code small.
    588  */
    589 static void
    590 mapply(struct matchinfo *m, cfdata_t cf)
    591 {
    592 	int pri;
    593 
    594 	if (m->fn != NULL) {
    595 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    596 	} else {
    597 		pri = config_match(m->parent, cf, m->aux);
    598 	}
    599 	if (pri > m->pri) {
    600 		m->match = cf;
    601 		m->pri = pri;
    602 	}
    603 }
    604 
    605 int
    606 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    607 {
    608 	const struct cfiattrdata *ci;
    609 	const struct cflocdesc *cl;
    610 	int nlocs, i;
    611 
    612 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    613 	KASSERT(ci);
    614 	nlocs = ci->ci_loclen;
    615 	for (i = 0; i < nlocs; i++) {
    616 		cl = &ci->ci_locdesc[i];
    617 		/* !cld_defaultstr means no default value */
    618 		if ((!(cl->cld_defaultstr)
    619 		     || (cf->cf_loc[i] != cl->cld_default))
    620 		    && cf->cf_loc[i] != locs[i])
    621 			return (0);
    622 	}
    623 
    624 	return (config_match(parent, cf, aux));
    625 }
    626 
    627 /*
    628  * Helper function: check whether the driver supports the interface attribute
    629  * and return its descriptor structure.
    630  */
    631 static const struct cfiattrdata *
    632 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    633 {
    634 	const struct cfiattrdata * const *cpp;
    635 
    636 	if (cd->cd_attrs == NULL)
    637 		return (0);
    638 
    639 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    640 		if (STREQ((*cpp)->ci_name, ia)) {
    641 			/* Match. */
    642 			return (*cpp);
    643 		}
    644 	}
    645 	return (0);
    646 }
    647 
    648 /*
    649  * Lookup an interface attribute description by name.
    650  * If the driver is given, consider only its supported attributes.
    651  */
    652 const struct cfiattrdata *
    653 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    654 {
    655 	const struct cfdriver *d;
    656 	const struct cfiattrdata *ia;
    657 
    658 	if (cd)
    659 		return (cfdriver_get_iattr(cd, name));
    660 
    661 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    662 		ia = cfdriver_get_iattr(d, name);
    663 		if (ia)
    664 			return (ia);
    665 	}
    666 	return (0);
    667 }
    668 
    669 /*
    670  * Determine if `parent' is a potential parent for a device spec based
    671  * on `cfp'.
    672  */
    673 static int
    674 cfparent_match(const device_t parent, const struct cfparent *cfp)
    675 {
    676 	struct cfdriver *pcd;
    677 
    678 	/* We don't match root nodes here. */
    679 	if (cfp == NULL)
    680 		return (0);
    681 
    682 	pcd = parent->dv_cfdriver;
    683 	KASSERT(pcd != NULL);
    684 
    685 	/*
    686 	 * First, ensure this parent has the correct interface
    687 	 * attribute.
    688 	 */
    689 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    690 		return (0);
    691 
    692 	/*
    693 	 * If no specific parent device instance was specified (i.e.
    694 	 * we're attaching to the attribute only), we're done!
    695 	 */
    696 	if (cfp->cfp_parent == NULL)
    697 		return (1);
    698 
    699 	/*
    700 	 * Check the parent device's name.
    701 	 */
    702 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    703 		return (0);	/* not the same parent */
    704 
    705 	/*
    706 	 * Make sure the unit number matches.
    707 	 */
    708 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    709 	    cfp->cfp_unit == parent->dv_unit)
    710 		return (1);
    711 
    712 	/* Unit numbers don't match. */
    713 	return (0);
    714 }
    715 
    716 /*
    717  * Helper for config_cfdata_attach(): check all devices whether it could be
    718  * parent any attachment in the config data table passed, and rescan.
    719  */
    720 static void
    721 rescan_with_cfdata(const struct cfdata *cf)
    722 {
    723 	device_t d;
    724 	const struct cfdata *cf1;
    725 	deviter_t di;
    726 
    727 
    728 	/*
    729 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
    730 	 * the outer loop.
    731 	 */
    732 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    733 
    734 		if (!(d->dv_cfattach->ca_rescan))
    735 			continue;
    736 
    737 		for (cf1 = cf; cf1->cf_name; cf1++) {
    738 
    739 			if (!cfparent_match(d, cf1->cf_pspec))
    740 				continue;
    741 
    742 			(*d->dv_cfattach->ca_rescan)(d,
    743 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    744 		}
    745 	}
    746 	deviter_release(&di);
    747 }
    748 
    749 /*
    750  * Attach a supplemental config data table and rescan potential
    751  * parent devices if required.
    752  */
    753 int
    754 config_cfdata_attach(cfdata_t cf, int scannow)
    755 {
    756 	struct cftable *ct;
    757 
    758 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
    759 	ct->ct_cfdata = cf;
    760 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    761 
    762 	if (scannow)
    763 		rescan_with_cfdata(cf);
    764 
    765 	return (0);
    766 }
    767 
    768 /*
    769  * Helper for config_cfdata_detach: check whether a device is
    770  * found through any attachment in the config data table.
    771  */
    772 static int
    773 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    774 {
    775 	const struct cfdata *cf1;
    776 
    777 	for (cf1 = cf; cf1->cf_name; cf1++)
    778 		if (d->dv_cfdata == cf1)
    779 			return (1);
    780 
    781 	return (0);
    782 }
    783 
    784 /*
    785  * Detach a supplemental config data table. Detach all devices found
    786  * through that table (and thus keeping references to it) before.
    787  */
    788 int
    789 config_cfdata_detach(cfdata_t cf)
    790 {
    791 	device_t d;
    792 	int error = 0;
    793 	struct cftable *ct;
    794 	deviter_t di;
    795 
    796 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    797 	     d = deviter_next(&di)) {
    798 		if (!dev_in_cfdata(d, cf))
    799 			continue;
    800 		if ((error = config_detach(d, 0)) != 0)
    801 			break;
    802 	}
    803 	deviter_release(&di);
    804 	if (error) {
    805 		aprint_error_dev(d, "unable to detach instance\n");
    806 		return error;
    807 	}
    808 
    809 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    810 		if (ct->ct_cfdata == cf) {
    811 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    812 			free(ct, M_DEVBUF);
    813 			return (0);
    814 		}
    815 	}
    816 
    817 	/* not found -- shouldn't happen */
    818 	return (EINVAL);
    819 }
    820 
    821 /*
    822  * Invoke the "match" routine for a cfdata entry on behalf of
    823  * an external caller, usually a "submatch" routine.
    824  */
    825 int
    826 config_match(device_t parent, cfdata_t cf, void *aux)
    827 {
    828 	struct cfattach *ca;
    829 
    830 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    831 	if (ca == NULL) {
    832 		/* No attachment for this entry, oh well. */
    833 		return (0);
    834 	}
    835 
    836 	return ((*ca->ca_match)(parent, cf, aux));
    837 }
    838 
    839 /*
    840  * Iterate over all potential children of some device, calling the given
    841  * function (default being the child's match function) for each one.
    842  * Nonzero returns are matches; the highest value returned is considered
    843  * the best match.  Return the `found child' if we got a match, or NULL
    844  * otherwise.  The `aux' pointer is simply passed on through.
    845  *
    846  * Note that this function is designed so that it can be used to apply
    847  * an arbitrary function to all potential children (its return value
    848  * can be ignored).
    849  */
    850 cfdata_t
    851 config_search_loc(cfsubmatch_t fn, device_t parent,
    852 		  const char *ifattr, const int *locs, void *aux)
    853 {
    854 	struct cftable *ct;
    855 	cfdata_t cf;
    856 	struct matchinfo m;
    857 
    858 	KASSERT(config_initialized);
    859 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    860 
    861 	m.fn = fn;
    862 	m.parent = parent;
    863 	m.locs = locs;
    864 	m.aux = aux;
    865 	m.match = NULL;
    866 	m.pri = 0;
    867 
    868 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    869 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    870 
    871 			/* We don't match root nodes here. */
    872 			if (!cf->cf_pspec)
    873 				continue;
    874 
    875 			/*
    876 			 * Skip cf if no longer eligible, otherwise scan
    877 			 * through parents for one matching `parent', and
    878 			 * try match function.
    879 			 */
    880 			if (cf->cf_fstate == FSTATE_FOUND)
    881 				continue;
    882 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    883 			    cf->cf_fstate == FSTATE_DSTAR)
    884 				continue;
    885 
    886 			/*
    887 			 * If an interface attribute was specified,
    888 			 * consider only children which attach to
    889 			 * that attribute.
    890 			 */
    891 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    892 				continue;
    893 
    894 			if (cfparent_match(parent, cf->cf_pspec))
    895 				mapply(&m, cf);
    896 		}
    897 	}
    898 	return (m.match);
    899 }
    900 
    901 cfdata_t
    902 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    903     void *aux)
    904 {
    905 
    906 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
    907 }
    908 
    909 /*
    910  * Find the given root device.
    911  * This is much like config_search, but there is no parent.
    912  * Don't bother with multiple cfdata tables; the root node
    913  * must always be in the initial table.
    914  */
    915 cfdata_t
    916 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    917 {
    918 	cfdata_t cf;
    919 	const short *p;
    920 	struct matchinfo m;
    921 
    922 	m.fn = fn;
    923 	m.parent = ROOT;
    924 	m.aux = aux;
    925 	m.match = NULL;
    926 	m.pri = 0;
    927 	m.locs = 0;
    928 	/*
    929 	 * Look at root entries for matching name.  We do not bother
    930 	 * with found-state here since only one root should ever be
    931 	 * searched (and it must be done first).
    932 	 */
    933 	for (p = cfroots; *p >= 0; p++) {
    934 		cf = &cfdata[*p];
    935 		if (strcmp(cf->cf_name, rootname) == 0)
    936 			mapply(&m, cf);
    937 	}
    938 	return (m.match);
    939 }
    940 
    941 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    942 
    943 /*
    944  * The given `aux' argument describes a device that has been found
    945  * on the given parent, but not necessarily configured.  Locate the
    946  * configuration data for that device (using the submatch function
    947  * provided, or using candidates' cd_match configuration driver
    948  * functions) and attach it, and return true.  If the device was
    949  * not configured, call the given `print' function and return 0.
    950  */
    951 device_t
    952 config_found_sm_loc(device_t parent,
    953 		const char *ifattr, const int *locs, void *aux,
    954 		cfprint_t print, cfsubmatch_t submatch)
    955 {
    956 	cfdata_t cf;
    957 
    958 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    959 	if (splash_progress_state)
    960 		splash_progress_update(splash_progress_state);
    961 #endif
    962 
    963 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    964 		return(config_attach_loc(parent, cf, locs, aux, print));
    965 	if (print) {
    966 		if (config_do_twiddle)
    967 			twiddle();
    968 		aprint_normal("%s", msgs[(*print)(aux, parent->dv_xname)]);
    969 	}
    970 
    971 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    972 	if (splash_progress_state)
    973 		splash_progress_update(splash_progress_state);
    974 #endif
    975 
    976 	return (NULL);
    977 }
    978 
    979 device_t
    980 config_found_ia(device_t parent, const char *ifattr, void *aux,
    981     cfprint_t print)
    982 {
    983 
    984 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
    985 }
    986 
    987 device_t
    988 config_found(device_t parent, void *aux, cfprint_t print)
    989 {
    990 
    991 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
    992 }
    993 
    994 /*
    995  * As above, but for root devices.
    996  */
    997 device_t
    998 config_rootfound(const char *rootname, void *aux)
    999 {
   1000 	cfdata_t cf;
   1001 
   1002 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1003 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
   1004 	aprint_error("root device %s not configured\n", rootname);
   1005 	return (NULL);
   1006 }
   1007 
   1008 /* just like sprintf(buf, "%d") except that it works from the end */
   1009 static char *
   1010 number(char *ep, int n)
   1011 {
   1012 
   1013 	*--ep = 0;
   1014 	while (n >= 10) {
   1015 		*--ep = (n % 10) + '0';
   1016 		n /= 10;
   1017 	}
   1018 	*--ep = n + '0';
   1019 	return (ep);
   1020 }
   1021 
   1022 /*
   1023  * Expand the size of the cd_devs array if necessary.
   1024  */
   1025 static void
   1026 config_makeroom(int n, struct cfdriver *cd)
   1027 {
   1028 	int old, new;
   1029 	void **nsp;
   1030 
   1031 	if (n < cd->cd_ndevs)
   1032 		return;
   1033 
   1034 	/*
   1035 	 * Need to expand the array.
   1036 	 */
   1037 	old = cd->cd_ndevs;
   1038 	if (old == 0)
   1039 		new = 4;
   1040 	else
   1041 		new = old * 2;
   1042 	while (new <= n)
   1043 		new *= 2;
   1044 	cd->cd_ndevs = new;
   1045 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
   1046 	    cold ? M_NOWAIT : M_WAITOK);
   1047 	if (nsp == NULL)
   1048 		panic("config_attach: %sing dev array",
   1049 		    old != 0 ? "expand" : "creat");
   1050 	memset(nsp + old, 0, (new - old) * sizeof(void *));
   1051 	if (old != 0) {
   1052 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
   1053 		free(cd->cd_devs, M_DEVBUF);
   1054 	}
   1055 	cd->cd_devs = nsp;
   1056 }
   1057 
   1058 static void
   1059 config_devlink(device_t dev)
   1060 {
   1061 	struct cfdriver *cd = dev->dv_cfdriver;
   1062 
   1063 	/* put this device in the devices array */
   1064 	config_makeroom(dev->dv_unit, cd);
   1065 	if (cd->cd_devs[dev->dv_unit])
   1066 		panic("config_attach: duplicate %s", dev->dv_xname);
   1067 	cd->cd_devs[dev->dv_unit] = dev;
   1068 
   1069 	/* It is safe to add a device to the tail of the list while
   1070 	 * readers are in the list, but not while a writer is in
   1071 	 * the list.  Wait for any writer to complete.
   1072 	 */
   1073 	mutex_enter(&alldevs_mtx);
   1074 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1075 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1076 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1077 	cv_signal(&alldevs_cv);
   1078 	mutex_exit(&alldevs_mtx);
   1079 }
   1080 
   1081 static void
   1082 config_devunlink(device_t dev)
   1083 {
   1084 	struct cfdriver *cd = dev->dv_cfdriver;
   1085 	int i;
   1086 
   1087 	/* Unlink from device list. */
   1088 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1089 
   1090 	/* Remove from cfdriver's array. */
   1091 	cd->cd_devs[dev->dv_unit] = NULL;
   1092 
   1093 	/*
   1094 	 * If the device now has no units in use, deallocate its softc array.
   1095 	 */
   1096 	for (i = 0; i < cd->cd_ndevs; i++)
   1097 		if (cd->cd_devs[i] != NULL)
   1098 			break;
   1099 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
   1100 		free(cd->cd_devs, M_DEVBUF);
   1101 		cd->cd_devs = NULL;
   1102 		cd->cd_ndevs = 0;
   1103 	}
   1104 }
   1105 
   1106 static device_t
   1107 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1108 {
   1109 	struct cfdriver *cd;
   1110 	struct cfattach *ca;
   1111 	size_t lname, lunit;
   1112 	const char *xunit;
   1113 	int myunit;
   1114 	char num[10];
   1115 	device_t dev;
   1116 	void *dev_private;
   1117 	const struct cfiattrdata *ia;
   1118 
   1119 	cd = config_cfdriver_lookup(cf->cf_name);
   1120 	if (cd == NULL)
   1121 		return (NULL);
   1122 
   1123 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1124 	if (ca == NULL)
   1125 		return (NULL);
   1126 
   1127 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1128 	    ca->ca_devsize < sizeof(struct device))
   1129 		panic("config_devalloc");
   1130 
   1131 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1132 	if (cf->cf_fstate == FSTATE_STAR) {
   1133 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1134 			if (cd->cd_devs[myunit] == NULL)
   1135 				break;
   1136 		/*
   1137 		 * myunit is now the unit of the first NULL device pointer,
   1138 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1139 		 */
   1140 	} else {
   1141 		myunit = cf->cf_unit;
   1142 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1143 			return (NULL);
   1144 	}
   1145 #else
   1146 	myunit = cf->cf_unit;
   1147 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1148 
   1149 	/* compute length of name and decimal expansion of unit number */
   1150 	lname = strlen(cd->cd_name);
   1151 	xunit = number(&num[sizeof(num)], myunit);
   1152 	lunit = &num[sizeof(num)] - xunit;
   1153 	if (lname + lunit > sizeof(dev->dv_xname))
   1154 		panic("config_devalloc: device name too long");
   1155 
   1156 	/* get memory for all device vars */
   1157 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1158 	if (ca->ca_devsize > 0) {
   1159 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
   1160 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1161 		if (dev_private == NULL)
   1162 			panic("config_devalloc: memory allocation for device softc failed");
   1163 	} else {
   1164 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1165 		dev_private = NULL;
   1166 	}
   1167 
   1168 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1169 		dev = malloc(sizeof(struct device), M_DEVBUF,
   1170 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1171 	} else {
   1172 		dev = dev_private;
   1173 	}
   1174 	if (dev == NULL)
   1175 		panic("config_devalloc: memory allocation for device_t failed");
   1176 
   1177 	dev->dv_class = cd->cd_class;
   1178 	dev->dv_cfdata = cf;
   1179 	dev->dv_cfdriver = cd;
   1180 	dev->dv_cfattach = ca;
   1181 	dev->dv_unit = myunit;
   1182 	dev->dv_activity_count = 0;
   1183 	dev->dv_activity_handlers = NULL;
   1184 	dev->dv_private = dev_private;
   1185 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1186 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1187 	dev->dv_parent = parent;
   1188 	if (parent != NULL)
   1189 		dev->dv_depth = parent->dv_depth + 1;
   1190 	else
   1191 		dev->dv_depth = 0;
   1192 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1193 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1194 	if (locs) {
   1195 		KASSERT(parent); /* no locators at root */
   1196 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1197 				    parent->dv_cfdriver);
   1198 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
   1199 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1200 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
   1201 	}
   1202 	dev->dv_properties = prop_dictionary_create();
   1203 	KASSERT(dev->dv_properties != NULL);
   1204 
   1205 	return (dev);
   1206 }
   1207 
   1208 static void
   1209 config_devdealloc(device_t dev)
   1210 {
   1211 
   1212 	KASSERT(dev->dv_properties != NULL);
   1213 	prop_object_release(dev->dv_properties);
   1214 
   1215 	if (dev->dv_activity_handlers)
   1216 		panic("config_devdealloc with registered handlers");
   1217 
   1218 	if (dev->dv_locators)
   1219 		free(dev->dv_locators, M_DEVBUF);
   1220 
   1221 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0)
   1222 		free(dev->dv_private, M_DEVBUF);
   1223 
   1224 	free(dev, M_DEVBUF);
   1225 }
   1226 
   1227 /*
   1228  * Attach a found device.
   1229  */
   1230 device_t
   1231 config_attach_loc(device_t parent, cfdata_t cf,
   1232 	const int *locs, void *aux, cfprint_t print)
   1233 {
   1234 	device_t dev;
   1235 	struct cftable *ct;
   1236 	const char *drvname;
   1237 
   1238 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1239 	if (splash_progress_state)
   1240 		splash_progress_update(splash_progress_state);
   1241 #endif
   1242 
   1243 	dev = config_devalloc(parent, cf, locs);
   1244 	if (!dev)
   1245 		panic("config_attach: allocation of device softc failed");
   1246 
   1247 	/* XXX redundant - see below? */
   1248 	if (cf->cf_fstate != FSTATE_STAR) {
   1249 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1250 		cf->cf_fstate = FSTATE_FOUND;
   1251 	}
   1252 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1253 	  else
   1254 		cf->cf_unit++;
   1255 #endif
   1256 
   1257 	config_devlink(dev);
   1258 
   1259 	if (config_do_twiddle)
   1260 		twiddle();
   1261 	else
   1262 		aprint_naive("Found ");
   1263 	/*
   1264 	 * We want the next two printfs for normal, verbose, and quiet,
   1265 	 * but not silent (in which case, we're twiddling, instead).
   1266 	 */
   1267 	if (parent == ROOT) {
   1268 		aprint_naive("%s (root)", dev->dv_xname);
   1269 		aprint_normal("%s (root)", dev->dv_xname);
   1270 	} else {
   1271 		aprint_naive("%s at %s", dev->dv_xname, parent->dv_xname);
   1272 		aprint_normal("%s at %s", dev->dv_xname, parent->dv_xname);
   1273 		if (print)
   1274 			(void) (*print)(aux, NULL);
   1275 	}
   1276 
   1277 	/*
   1278 	 * Before attaching, clobber any unfound devices that are
   1279 	 * otherwise identical.
   1280 	 * XXX code above is redundant?
   1281 	 */
   1282 	drvname = dev->dv_cfdriver->cd_name;
   1283 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1284 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1285 			if (STREQ(cf->cf_name, drvname) &&
   1286 			    cf->cf_unit == dev->dv_unit) {
   1287 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1288 					cf->cf_fstate = FSTATE_FOUND;
   1289 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1290 				/*
   1291 				 * Bump the unit number on all starred cfdata
   1292 				 * entries for this device.
   1293 				 */
   1294 				if (cf->cf_fstate == FSTATE_STAR)
   1295 					cf->cf_unit++;
   1296 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1297 			}
   1298 		}
   1299 	}
   1300 #ifdef __HAVE_DEVICE_REGISTER
   1301 	device_register(dev, aux);
   1302 #endif
   1303 
   1304 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1305 	if (splash_progress_state)
   1306 		splash_progress_update(splash_progress_state);
   1307 #endif
   1308 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1309 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1310 	if (splash_progress_state)
   1311 		splash_progress_update(splash_progress_state);
   1312 #endif
   1313 
   1314 	if (!device_pmf_is_registered(dev))
   1315 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1316 
   1317 	config_process_deferred(&deferred_config_queue, dev);
   1318 	return (dev);
   1319 }
   1320 
   1321 device_t
   1322 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1323 {
   1324 
   1325 	return (config_attach_loc(parent, cf, NULL, aux, print));
   1326 }
   1327 
   1328 /*
   1329  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1330  * way are silently inserted into the device tree, and their children
   1331  * attached.
   1332  *
   1333  * Note that because pseudo-devices are attached silently, any information
   1334  * the attach routine wishes to print should be prefixed with the device
   1335  * name by the attach routine.
   1336  */
   1337 device_t
   1338 config_attach_pseudo(cfdata_t cf)
   1339 {
   1340 	device_t dev;
   1341 
   1342 	dev = config_devalloc(ROOT, cf, NULL);
   1343 	if (!dev)
   1344 		return (NULL);
   1345 
   1346 	/* XXX mark busy in cfdata */
   1347 
   1348 	config_devlink(dev);
   1349 
   1350 #if 0	/* XXXJRT not yet */
   1351 #ifdef __HAVE_DEVICE_REGISTER
   1352 	device_register(dev, NULL);	/* like a root node */
   1353 #endif
   1354 #endif
   1355 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1356 	config_process_deferred(&deferred_config_queue, dev);
   1357 	return (dev);
   1358 }
   1359 
   1360 /*
   1361  * Detach a device.  Optionally forced (e.g. because of hardware
   1362  * removal) and quiet.  Returns zero if successful, non-zero
   1363  * (an error code) otherwise.
   1364  *
   1365  * Note that this code wants to be run from a process context, so
   1366  * that the detach can sleep to allow processes which have a device
   1367  * open to run and unwind their stacks.
   1368  */
   1369 int
   1370 config_detach(device_t dev, int flags)
   1371 {
   1372 	struct cftable *ct;
   1373 	cfdata_t cf;
   1374 	const struct cfattach *ca;
   1375 	struct cfdriver *cd;
   1376 #ifdef DIAGNOSTIC
   1377 	device_t d;
   1378 #endif
   1379 	int rv = 0;
   1380 
   1381 #ifdef DIAGNOSTIC
   1382 	if (dev->dv_cfdata != NULL &&
   1383 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
   1384 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
   1385 		panic("config_detach: bad device fstate");
   1386 #endif
   1387 	cd = dev->dv_cfdriver;
   1388 	KASSERT(cd != NULL);
   1389 
   1390 	ca = dev->dv_cfattach;
   1391 	KASSERT(ca != NULL);
   1392 
   1393 	KASSERT(curlwp != NULL);
   1394 	mutex_enter(&alldevs_mtx);
   1395 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1396 		;
   1397 	else while (alldevs_nread != 0 ||
   1398 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1399 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1400 	if (alldevs_nwrite++ == 0)
   1401 		alldevs_writer = curlwp;
   1402 	mutex_exit(&alldevs_mtx);
   1403 
   1404 	/*
   1405 	 * Ensure the device is deactivated.  If the device doesn't
   1406 	 * have an activation entry point, we allow DVF_ACTIVE to
   1407 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1408 	 * device is busy, and the detach fails.
   1409 	 */
   1410 	if (ca->ca_activate != NULL)
   1411 		rv = config_deactivate(dev);
   1412 
   1413 	/*
   1414 	 * Try to detach the device.  If that's not possible, then
   1415 	 * we either panic() (for the forced but failed case), or
   1416 	 * return an error.
   1417 	 */
   1418 	if (rv == 0) {
   1419 		if (ca->ca_detach != NULL)
   1420 			rv = (*ca->ca_detach)(dev, flags);
   1421 		else
   1422 			rv = EOPNOTSUPP;
   1423 	}
   1424 	if (rv != 0) {
   1425 		if ((flags & DETACH_FORCE) == 0)
   1426 			goto out;
   1427 		else
   1428 			panic("config_detach: forced detach of %s failed (%d)",
   1429 			    dev->dv_xname, rv);
   1430 	}
   1431 
   1432 	/*
   1433 	 * The device has now been successfully detached.
   1434 	 */
   1435 
   1436 #ifdef DIAGNOSTIC
   1437 	/*
   1438 	 * Sanity: If you're successfully detached, you should have no
   1439 	 * children.  (Note that because children must be attached
   1440 	 * after parents, we only need to search the latter part of
   1441 	 * the list.)
   1442 	 */
   1443 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1444 	    d = TAILQ_NEXT(d, dv_list)) {
   1445 		if (d->dv_parent == dev) {
   1446 			printf("config_detach: detached device %s"
   1447 			    " has children %s\n", dev->dv_xname, d->dv_xname);
   1448 			panic("config_detach");
   1449 		}
   1450 	}
   1451 #endif
   1452 
   1453 	/* notify the parent that the child is gone */
   1454 	if (dev->dv_parent) {
   1455 		device_t p = dev->dv_parent;
   1456 		if (p->dv_cfattach->ca_childdetached)
   1457 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1458 	}
   1459 
   1460 	/*
   1461 	 * Mark cfdata to show that the unit can be reused, if possible.
   1462 	 */
   1463 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1464 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1465 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1466 				if (cf->cf_fstate == FSTATE_FOUND &&
   1467 				    cf->cf_unit == dev->dv_unit)
   1468 					cf->cf_fstate = FSTATE_NOTFOUND;
   1469 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1470 				/*
   1471 				 * Note that we can only re-use a starred
   1472 				 * unit number if the unit being detached
   1473 				 * had the last assigned unit number.
   1474 				 */
   1475 				if (cf->cf_fstate == FSTATE_STAR &&
   1476 				    cf->cf_unit == dev->dv_unit + 1)
   1477 					cf->cf_unit--;
   1478 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1479 			}
   1480 		}
   1481 	}
   1482 
   1483 	config_devunlink(dev);
   1484 
   1485 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1486 		aprint_normal_dev(dev, "detached\n");
   1487 
   1488 	config_devdealloc(dev);
   1489 
   1490 out:
   1491 	mutex_enter(&alldevs_mtx);
   1492 	if (--alldevs_nwrite == 0)
   1493 		alldevs_writer = NULL;
   1494 	cv_signal(&alldevs_cv);
   1495 	mutex_exit(&alldevs_mtx);
   1496 	return rv;
   1497 }
   1498 
   1499 int
   1500 config_detach_children(device_t parent, int flags)
   1501 {
   1502 	device_t dv;
   1503 	deviter_t di;
   1504 	int error = 0;
   1505 
   1506 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1507 	     dv = deviter_next(&di)) {
   1508 		if (device_parent(dv) != parent)
   1509 			continue;
   1510 		if ((error = config_detach(dv, flags)) != 0)
   1511 			break;
   1512 	}
   1513 	deviter_release(&di);
   1514 	return error;
   1515 }
   1516 
   1517 int
   1518 config_activate(device_t dev)
   1519 {
   1520 	const struct cfattach *ca = dev->dv_cfattach;
   1521 	int rv = 0, oflags = dev->dv_flags;
   1522 
   1523 	if (ca->ca_activate == NULL)
   1524 		return (EOPNOTSUPP);
   1525 
   1526 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1527 		dev->dv_flags |= DVF_ACTIVE;
   1528 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1529 		if (rv)
   1530 			dev->dv_flags = oflags;
   1531 	}
   1532 	return (rv);
   1533 }
   1534 
   1535 int
   1536 config_deactivate(device_t dev)
   1537 {
   1538 	const struct cfattach *ca = dev->dv_cfattach;
   1539 	int rv = 0, oflags = dev->dv_flags;
   1540 
   1541 	if (ca->ca_activate == NULL)
   1542 		return (EOPNOTSUPP);
   1543 
   1544 	if (dev->dv_flags & DVF_ACTIVE) {
   1545 		dev->dv_flags &= ~DVF_ACTIVE;
   1546 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1547 		if (rv)
   1548 			dev->dv_flags = oflags;
   1549 	}
   1550 	return (rv);
   1551 }
   1552 
   1553 /*
   1554  * Defer the configuration of the specified device until all
   1555  * of its parent's devices have been attached.
   1556  */
   1557 void
   1558 config_defer(device_t dev, void (*func)(device_t))
   1559 {
   1560 	struct deferred_config *dc;
   1561 
   1562 	if (dev->dv_parent == NULL)
   1563 		panic("config_defer: can't defer config of a root device");
   1564 
   1565 #ifdef DIAGNOSTIC
   1566 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1567 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1568 		if (dc->dc_dev == dev)
   1569 			panic("config_defer: deferred twice");
   1570 	}
   1571 #endif
   1572 
   1573 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1574 	if (dc == NULL)
   1575 		panic("config_defer: unable to allocate callback");
   1576 
   1577 	dc->dc_dev = dev;
   1578 	dc->dc_func = func;
   1579 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1580 	config_pending_incr();
   1581 }
   1582 
   1583 /*
   1584  * Defer some autoconfiguration for a device until after interrupts
   1585  * are enabled.
   1586  */
   1587 void
   1588 config_interrupts(device_t dev, void (*func)(device_t))
   1589 {
   1590 	struct deferred_config *dc;
   1591 
   1592 	/*
   1593 	 * If interrupts are enabled, callback now.
   1594 	 */
   1595 	if (cold == 0) {
   1596 		(*func)(dev);
   1597 		return;
   1598 	}
   1599 
   1600 #ifdef DIAGNOSTIC
   1601 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1602 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1603 		if (dc->dc_dev == dev)
   1604 			panic("config_interrupts: deferred twice");
   1605 	}
   1606 #endif
   1607 
   1608 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1609 	if (dc == NULL)
   1610 		panic("config_interrupts: unable to allocate callback");
   1611 
   1612 	dc->dc_dev = dev;
   1613 	dc->dc_func = func;
   1614 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1615 	config_pending_incr();
   1616 }
   1617 
   1618 /*
   1619  * Process a deferred configuration queue.
   1620  */
   1621 static void
   1622 config_process_deferred(struct deferred_config_head *queue,
   1623     device_t parent)
   1624 {
   1625 	struct deferred_config *dc, *ndc;
   1626 
   1627 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1628 		ndc = TAILQ_NEXT(dc, dc_queue);
   1629 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1630 			TAILQ_REMOVE(queue, dc, dc_queue);
   1631 			(*dc->dc_func)(dc->dc_dev);
   1632 			free(dc, M_DEVBUF);
   1633 			config_pending_decr();
   1634 		}
   1635 	}
   1636 }
   1637 
   1638 /*
   1639  * Manipulate the config_pending semaphore.
   1640  */
   1641 void
   1642 config_pending_incr(void)
   1643 {
   1644 
   1645 	config_pending++;
   1646 }
   1647 
   1648 void
   1649 config_pending_decr(void)
   1650 {
   1651 
   1652 #ifdef DIAGNOSTIC
   1653 	if (config_pending == 0)
   1654 		panic("config_pending_decr: config_pending == 0");
   1655 #endif
   1656 	config_pending--;
   1657 	if (config_pending == 0)
   1658 		wakeup(&config_pending);
   1659 }
   1660 
   1661 /*
   1662  * Register a "finalization" routine.  Finalization routines are
   1663  * called iteratively once all real devices have been found during
   1664  * autoconfiguration, for as long as any one finalizer has done
   1665  * any work.
   1666  */
   1667 int
   1668 config_finalize_register(device_t dev, int (*fn)(device_t))
   1669 {
   1670 	struct finalize_hook *f;
   1671 
   1672 	/*
   1673 	 * If finalization has already been done, invoke the
   1674 	 * callback function now.
   1675 	 */
   1676 	if (config_finalize_done) {
   1677 		while ((*fn)(dev) != 0)
   1678 			/* loop */ ;
   1679 	}
   1680 
   1681 	/* Ensure this isn't already on the list. */
   1682 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1683 		if (f->f_func == fn && f->f_dev == dev)
   1684 			return (EEXIST);
   1685 	}
   1686 
   1687 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
   1688 	f->f_func = fn;
   1689 	f->f_dev = dev;
   1690 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1691 
   1692 	return (0);
   1693 }
   1694 
   1695 void
   1696 config_finalize(void)
   1697 {
   1698 	struct finalize_hook *f;
   1699 	int rv;
   1700 
   1701 	/* Run the hooks until none of them does any work. */
   1702 	do {
   1703 		rv = 0;
   1704 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1705 			rv |= (*f->f_func)(f->f_dev);
   1706 	} while (rv != 0);
   1707 
   1708 	config_finalize_done = 1;
   1709 
   1710 	/* Now free all the hooks. */
   1711 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1712 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1713 		free(f, M_TEMP);
   1714 	}
   1715 }
   1716 
   1717 /*
   1718  * device_lookup:
   1719  *
   1720  *	Look up a device instance for a given driver.
   1721  */
   1722 void *
   1723 device_lookup(cfdriver_t cd, int unit)
   1724 {
   1725 
   1726 	if (unit < 0 || unit >= cd->cd_ndevs)
   1727 		return (NULL);
   1728 
   1729 	return (cd->cd_devs[unit]);
   1730 }
   1731 
   1732 /*
   1733  * Accessor functions for the device_t type.
   1734  */
   1735 devclass_t
   1736 device_class(device_t dev)
   1737 {
   1738 
   1739 	return (dev->dv_class);
   1740 }
   1741 
   1742 cfdata_t
   1743 device_cfdata(device_t dev)
   1744 {
   1745 
   1746 	return (dev->dv_cfdata);
   1747 }
   1748 
   1749 cfdriver_t
   1750 device_cfdriver(device_t dev)
   1751 {
   1752 
   1753 	return (dev->dv_cfdriver);
   1754 }
   1755 
   1756 cfattach_t
   1757 device_cfattach(device_t dev)
   1758 {
   1759 
   1760 	return (dev->dv_cfattach);
   1761 }
   1762 
   1763 int
   1764 device_unit(device_t dev)
   1765 {
   1766 
   1767 	return (dev->dv_unit);
   1768 }
   1769 
   1770 const char *
   1771 device_xname(device_t dev)
   1772 {
   1773 
   1774 	return (dev->dv_xname);
   1775 }
   1776 
   1777 device_t
   1778 device_parent(device_t dev)
   1779 {
   1780 
   1781 	return (dev->dv_parent);
   1782 }
   1783 
   1784 bool
   1785 device_is_active(device_t dev)
   1786 {
   1787 	int active_flags;
   1788 
   1789 	active_flags = DVF_ACTIVE;
   1790 	active_flags |= DVF_CLASS_SUSPENDED;
   1791 	active_flags |= DVF_DRIVER_SUSPENDED;
   1792 	active_flags |= DVF_BUS_SUSPENDED;
   1793 
   1794 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1795 }
   1796 
   1797 bool
   1798 device_is_enabled(device_t dev)
   1799 {
   1800 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1801 }
   1802 
   1803 bool
   1804 device_has_power(device_t dev)
   1805 {
   1806 	int active_flags;
   1807 
   1808 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1809 
   1810 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1811 }
   1812 
   1813 int
   1814 device_locator(device_t dev, u_int locnum)
   1815 {
   1816 
   1817 	KASSERT(dev->dv_locators != NULL);
   1818 	return (dev->dv_locators[locnum]);
   1819 }
   1820 
   1821 void *
   1822 device_private(device_t dev)
   1823 {
   1824 
   1825 	/*
   1826 	 * The reason why device_private(NULL) is allowed is to simplify the
   1827 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1828 	 * handlers) which grab cfdriver_t->cd_units[n].
   1829 	 * It avoids having them test for it to be NULL and only then calling
   1830 	 * device_private.
   1831 	 */
   1832 	return dev == NULL ? NULL : dev->dv_private;
   1833 }
   1834 
   1835 prop_dictionary_t
   1836 device_properties(device_t dev)
   1837 {
   1838 
   1839 	return (dev->dv_properties);
   1840 }
   1841 
   1842 /*
   1843  * device_is_a:
   1844  *
   1845  *	Returns true if the device is an instance of the specified
   1846  *	driver.
   1847  */
   1848 bool
   1849 device_is_a(device_t dev, const char *dname)
   1850 {
   1851 
   1852 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
   1853 }
   1854 
   1855 /*
   1856  * device_find_by_xname:
   1857  *
   1858  *	Returns the device of the given name or NULL if it doesn't exist.
   1859  */
   1860 device_t
   1861 device_find_by_xname(const char *name)
   1862 {
   1863 	device_t dv;
   1864 	deviter_t di;
   1865 
   1866 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   1867 		if (strcmp(device_xname(dv), name) == 0)
   1868 			break;
   1869 	}
   1870 	deviter_release(&di);
   1871 
   1872 	return dv;
   1873 }
   1874 
   1875 /*
   1876  * device_find_by_driver_unit:
   1877  *
   1878  *	Returns the device of the given driver name and unit or
   1879  *	NULL if it doesn't exist.
   1880  */
   1881 device_t
   1882 device_find_by_driver_unit(const char *name, int unit)
   1883 {
   1884 	struct cfdriver *cd;
   1885 
   1886 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   1887 		return NULL;
   1888 	return device_lookup(cd, unit);
   1889 }
   1890 
   1891 /*
   1892  * Power management related functions.
   1893  */
   1894 
   1895 bool
   1896 device_pmf_is_registered(device_t dev)
   1897 {
   1898 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   1899 }
   1900 
   1901 bool
   1902 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   1903 {
   1904 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   1905 		return true;
   1906 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   1907 		return false;
   1908 	if (*dev->dv_driver_suspend != NULL &&
   1909 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   1910 		return false;
   1911 
   1912 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   1913 	return true;
   1914 }
   1915 
   1916 bool
   1917 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   1918 {
   1919 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   1920 		return true;
   1921 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   1922 		return false;
   1923 	if (*dev->dv_driver_resume != NULL &&
   1924 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   1925 		return false;
   1926 
   1927 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   1928 	return true;
   1929 }
   1930 
   1931 bool
   1932 device_pmf_driver_shutdown(device_t dev, int how)
   1933 {
   1934 
   1935 	if (*dev->dv_driver_shutdown != NULL &&
   1936 	    !(*dev->dv_driver_shutdown)(dev, how))
   1937 		return false;
   1938 	return true;
   1939 }
   1940 
   1941 bool
   1942 device_pmf_driver_register(device_t dev,
   1943     bool (*suspend)(device_t PMF_FN_PROTO),
   1944     bool (*resume)(device_t PMF_FN_PROTO),
   1945     bool (*shutdown)(device_t, int))
   1946 {
   1947 	dev->dv_driver_suspend = suspend;
   1948 	dev->dv_driver_resume = resume;
   1949 	dev->dv_driver_shutdown = shutdown;
   1950 	dev->dv_flags |= DVF_POWER_HANDLERS;
   1951 	return true;
   1952 }
   1953 
   1954 void
   1955 device_pmf_driver_deregister(device_t dev)
   1956 {
   1957 	dev->dv_driver_suspend = NULL;
   1958 	dev->dv_driver_resume = NULL;
   1959 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   1960 }
   1961 
   1962 bool
   1963 device_pmf_driver_child_register(device_t dev)
   1964 {
   1965 	device_t parent = device_parent(dev);
   1966 
   1967 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   1968 		return true;
   1969 	return (*parent->dv_driver_child_register)(dev);
   1970 }
   1971 
   1972 void
   1973 device_pmf_driver_set_child_register(device_t dev,
   1974     bool (*child_register)(device_t))
   1975 {
   1976 	dev->dv_driver_child_register = child_register;
   1977 }
   1978 
   1979 void *
   1980 device_pmf_bus_private(device_t dev)
   1981 {
   1982 	return dev->dv_bus_private;
   1983 }
   1984 
   1985 bool
   1986 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   1987 {
   1988 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   1989 		return true;
   1990 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   1991 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   1992 		return false;
   1993 	if (*dev->dv_bus_suspend != NULL &&
   1994 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   1995 		return false;
   1996 
   1997 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   1998 	return true;
   1999 }
   2000 
   2001 bool
   2002 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2003 {
   2004 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2005 		return true;
   2006 	if (*dev->dv_bus_resume != NULL &&
   2007 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2008 		return false;
   2009 
   2010 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2011 	return true;
   2012 }
   2013 
   2014 bool
   2015 device_pmf_bus_shutdown(device_t dev, int how)
   2016 {
   2017 
   2018 	if (*dev->dv_bus_shutdown != NULL &&
   2019 	    !(*dev->dv_bus_shutdown)(dev, how))
   2020 		return false;
   2021 	return true;
   2022 }
   2023 
   2024 void
   2025 device_pmf_bus_register(device_t dev, void *priv,
   2026     bool (*suspend)(device_t PMF_FN_PROTO),
   2027     bool (*resume)(device_t PMF_FN_PROTO),
   2028     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2029 {
   2030 	dev->dv_bus_private = priv;
   2031 	dev->dv_bus_resume = resume;
   2032 	dev->dv_bus_suspend = suspend;
   2033 	dev->dv_bus_shutdown = shutdown;
   2034 	dev->dv_bus_deregister = deregister;
   2035 }
   2036 
   2037 void
   2038 device_pmf_bus_deregister(device_t dev)
   2039 {
   2040 	if (dev->dv_bus_deregister == NULL)
   2041 		return;
   2042 	(*dev->dv_bus_deregister)(dev);
   2043 	dev->dv_bus_private = NULL;
   2044 	dev->dv_bus_suspend = NULL;
   2045 	dev->dv_bus_resume = NULL;
   2046 	dev->dv_bus_deregister = NULL;
   2047 }
   2048 
   2049 void *
   2050 device_pmf_class_private(device_t dev)
   2051 {
   2052 	return dev->dv_class_private;
   2053 }
   2054 
   2055 bool
   2056 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2057 {
   2058 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2059 		return true;
   2060 	if (*dev->dv_class_suspend != NULL &&
   2061 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2062 		return false;
   2063 
   2064 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2065 	return true;
   2066 }
   2067 
   2068 bool
   2069 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2070 {
   2071 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2072 		return true;
   2073 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2074 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2075 		return false;
   2076 	if (*dev->dv_class_resume != NULL &&
   2077 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2078 		return false;
   2079 
   2080 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2081 	return true;
   2082 }
   2083 
   2084 void
   2085 device_pmf_class_register(device_t dev, void *priv,
   2086     bool (*suspend)(device_t PMF_FN_PROTO),
   2087     bool (*resume)(device_t PMF_FN_PROTO),
   2088     void (*deregister)(device_t))
   2089 {
   2090 	dev->dv_class_private = priv;
   2091 	dev->dv_class_suspend = suspend;
   2092 	dev->dv_class_resume = resume;
   2093 	dev->dv_class_deregister = deregister;
   2094 }
   2095 
   2096 void
   2097 device_pmf_class_deregister(device_t dev)
   2098 {
   2099 	if (dev->dv_class_deregister == NULL)
   2100 		return;
   2101 	(*dev->dv_class_deregister)(dev);
   2102 	dev->dv_class_private = NULL;
   2103 	dev->dv_class_suspend = NULL;
   2104 	dev->dv_class_resume = NULL;
   2105 	dev->dv_class_deregister = NULL;
   2106 }
   2107 
   2108 bool
   2109 device_active(device_t dev, devactive_t type)
   2110 {
   2111 	size_t i;
   2112 
   2113 	if (dev->dv_activity_count == 0)
   2114 		return false;
   2115 
   2116 	for (i = 0; i < dev->dv_activity_count; ++i)
   2117 		(*dev->dv_activity_handlers[i])(dev, type);
   2118 
   2119 	return true;
   2120 }
   2121 
   2122 bool
   2123 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2124 {
   2125 	void (**new_handlers)(device_t, devactive_t);
   2126 	void (**old_handlers)(device_t, devactive_t);
   2127 	size_t i, new_size;
   2128 	int s;
   2129 
   2130 	old_handlers = dev->dv_activity_handlers;
   2131 
   2132 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2133 		if (old_handlers[i] == handler)
   2134 			panic("Double registering of idle handlers");
   2135 	}
   2136 
   2137 	new_size = dev->dv_activity_count + 1;
   2138 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
   2139 
   2140 	memcpy(new_handlers, old_handlers,
   2141 	    sizeof(void *) * dev->dv_activity_count);
   2142 	new_handlers[new_size - 1] = handler;
   2143 
   2144 	s = splhigh();
   2145 	dev->dv_activity_count = new_size;
   2146 	dev->dv_activity_handlers = new_handlers;
   2147 	splx(s);
   2148 
   2149 	if (old_handlers != NULL)
   2150 		free(old_handlers, M_DEVBUF);
   2151 
   2152 	return true;
   2153 }
   2154 
   2155 void
   2156 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2157 {
   2158 	void (**new_handlers)(device_t, devactive_t);
   2159 	void (**old_handlers)(device_t, devactive_t);
   2160 	size_t i, new_size;
   2161 	int s;
   2162 
   2163 	old_handlers = dev->dv_activity_handlers;
   2164 
   2165 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2166 		if (old_handlers[i] == handler)
   2167 			break;
   2168 	}
   2169 
   2170 	if (i == dev->dv_activity_count)
   2171 		return; /* XXX panic? */
   2172 
   2173 	new_size = dev->dv_activity_count - 1;
   2174 
   2175 	if (new_size == 0) {
   2176 		new_handlers = NULL;
   2177 	} else {
   2178 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
   2179 		    M_WAITOK);
   2180 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
   2181 		memcpy(new_handlers + i, old_handlers + i + 1,
   2182 		    sizeof(void *) * (new_size - i));
   2183 	}
   2184 
   2185 	s = splhigh();
   2186 	dev->dv_activity_count = new_size;
   2187 	dev->dv_activity_handlers = new_handlers;
   2188 	splx(s);
   2189 
   2190 	free(old_handlers, M_DEVBUF);
   2191 }
   2192 
   2193 /*
   2194  * Device Iteration
   2195  *
   2196  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2197  *     each device_t's in the device tree.
   2198  *
   2199  * deviter_init(di, flags): initialize the device iterator `di'
   2200  *     to "walk" the device tree.  deviter_next(di) will return
   2201  *     the first device_t in the device tree, or NULL if there are
   2202  *     no devices.
   2203  *
   2204  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2205  *     caller intends to modify the device tree by calling
   2206  *     config_detach(9) on devices in the order that the iterator
   2207  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2208  *     nearest the "root" of the device tree to be returned, first;
   2209  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2210  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2211  *     indicating both that deviter_init() should not respect any
   2212  *     locks on the device tree, and that deviter_next(di) may run
   2213  *     in more than one LWP before the walk has finished.
   2214  *
   2215  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2216  *     once.
   2217  *
   2218  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2219  *
   2220  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2221  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2222  *
   2223  * deviter_first(di, flags): initialize the device iterator `di'
   2224  *     and return the first device_t in the device tree, or NULL
   2225  *     if there are no devices.  The statement
   2226  *
   2227  *         dv = deviter_first(di);
   2228  *
   2229  *     is shorthand for
   2230  *
   2231  *         deviter_init(di);
   2232  *         dv = deviter_next(di);
   2233  *
   2234  * deviter_next(di): return the next device_t in the device tree,
   2235  *     or NULL if there are no more devices.  deviter_next(di)
   2236  *     is undefined if `di' was not initialized with deviter_init() or
   2237  *     deviter_first().
   2238  *
   2239  * deviter_release(di): stops iteration (subsequent calls to
   2240  *     deviter_next() will return NULL), releases any locks and
   2241  *     resources held by the device iterator.
   2242  *
   2243  * Device iteration does not return device_t's in any particular
   2244  * order.  An iterator will never return the same device_t twice.
   2245  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2246  * is called repeatedly on the same `di', it will eventually return
   2247  * NULL.  It is ok to attach/detach devices during device iteration.
   2248  */
   2249 void
   2250 deviter_init(deviter_t *di, deviter_flags_t flags)
   2251 {
   2252 	device_t dv;
   2253 	bool rw;
   2254 
   2255 	KASSERT(!rw || curlwp != NULL);
   2256 
   2257 	mutex_enter(&alldevs_mtx);
   2258 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2259 		flags |= DEVITER_F_RW;
   2260 		alldevs_nwrite++;
   2261 		alldevs_writer = NULL;
   2262 		alldevs_nread = 0;
   2263 	} else {
   2264 		rw = (flags & DEVITER_F_RW) != 0;
   2265 
   2266 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2267 			;
   2268 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2269 		       (rw && alldevs_nread != 0))
   2270 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2271 
   2272 		if (rw) {
   2273 			if (alldevs_nwrite++ == 0)
   2274 				alldevs_writer = curlwp;
   2275 		} else
   2276 			alldevs_nread++;
   2277 	}
   2278 	mutex_exit(&alldevs_mtx);
   2279 
   2280 	memset(di, 0, sizeof(*di));
   2281 
   2282 	di->di_flags = flags;
   2283 
   2284 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2285 	case DEVITER_F_LEAVES_FIRST:
   2286 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2287 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2288 		break;
   2289 	case DEVITER_F_ROOT_FIRST:
   2290 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2291 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2292 		break;
   2293 	default:
   2294 		break;
   2295 	}
   2296 
   2297 	deviter_reinit(di);
   2298 }
   2299 
   2300 static void
   2301 deviter_reinit(deviter_t *di)
   2302 {
   2303 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2304 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2305 	else
   2306 		di->di_prev = TAILQ_FIRST(&alldevs);
   2307 }
   2308 
   2309 device_t
   2310 deviter_first(deviter_t *di, deviter_flags_t flags)
   2311 {
   2312 	deviter_init(di, flags);
   2313 	return deviter_next(di);
   2314 }
   2315 
   2316 static device_t
   2317 deviter_next1(deviter_t *di)
   2318 {
   2319 	device_t dv;
   2320 
   2321 	dv = di->di_prev;
   2322 
   2323 	if (dv == NULL)
   2324 		;
   2325 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2326 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2327 	else
   2328 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2329 
   2330 	return dv;
   2331 }
   2332 
   2333 device_t
   2334 deviter_next(deviter_t *di)
   2335 {
   2336 	device_t dv = NULL;
   2337 
   2338 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2339 	case 0:
   2340 		return deviter_next1(di);
   2341 	case DEVITER_F_LEAVES_FIRST:
   2342 		while (di->di_curdepth >= 0) {
   2343 			if ((dv = deviter_next1(di)) == NULL) {
   2344 				di->di_curdepth--;
   2345 				deviter_reinit(di);
   2346 			} else if (dv->dv_depth == di->di_curdepth)
   2347 				break;
   2348 		}
   2349 		return dv;
   2350 	case DEVITER_F_ROOT_FIRST:
   2351 		while (di->di_curdepth <= di->di_maxdepth) {
   2352 			if ((dv = deviter_next1(di)) == NULL) {
   2353 				di->di_curdepth++;
   2354 				deviter_reinit(di);
   2355 			} else if (dv->dv_depth == di->di_curdepth)
   2356 				break;
   2357 		}
   2358 		return dv;
   2359 	default:
   2360 		return NULL;
   2361 	}
   2362 }
   2363 
   2364 void
   2365 deviter_release(deviter_t *di)
   2366 {
   2367 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2368 
   2369 	KASSERT(!rw || alldevs_nwrite > 0);
   2370 
   2371 	mutex_enter(&alldevs_mtx);
   2372 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2373 		--alldevs_nwrite;
   2374 	else {
   2375 
   2376 		if (rw) {
   2377 			if (--alldevs_nwrite == 0)
   2378 				alldevs_writer = NULL;
   2379 		} else
   2380 			--alldevs_nread;
   2381 
   2382 		cv_signal(&alldevs_cv);
   2383 	}
   2384 	mutex_exit(&alldevs_mtx);
   2385 }
   2386