subr_autoconf.c revision 1.136 1 /* $NetBSD: subr_autoconf.c,v 1.136 2008/03/05 07:09:18 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.136 2008/03/05 07:09:18 dyoung Exp $");
81
82 #include "opt_multiprocessor.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/systm.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/proc.h>
95 #include <sys/reboot.h>
96
97 #include <sys/buf.h>
98 #include <sys/dirent.h>
99 #include <sys/vnode.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/mutex.h>
107 #include <sys/condvar.h>
108
109 #include <sys/disk.h>
110
111 #include <machine/limits.h>
112
113 #include "opt_userconf.h"
114 #ifdef USERCONF
115 #include <sys/userconf.h>
116 #endif
117
118 #ifdef __i386__
119 #include "opt_splash.h"
120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
121 #include <dev/splash/splash.h>
122 extern struct splash_progress *splash_progress_state;
123 #endif
124 #endif
125
126 /*
127 * Autoconfiguration subroutines.
128 */
129
130 /*
131 * ioconf.c exports exactly two names: cfdata and cfroots. All system
132 * devices and drivers are found via these tables.
133 */
134 extern struct cfdata cfdata[];
135 extern const short cfroots[];
136
137 /*
138 * List of all cfdriver structures. We use this to detect duplicates
139 * when other cfdrivers are loaded.
140 */
141 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
142 extern struct cfdriver * const cfdriver_list_initial[];
143
144 /*
145 * Initial list of cfattach's.
146 */
147 extern const struct cfattachinit cfattachinit[];
148
149 /*
150 * List of cfdata tables. We always have one such list -- the one
151 * built statically when the kernel was configured.
152 */
153 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
154 static struct cftable initcftable;
155
156 #define ROOT ((device_t)NULL)
157
158 struct matchinfo {
159 cfsubmatch_t fn;
160 struct device *parent;
161 const int *locs;
162 void *aux;
163 struct cfdata *match;
164 int pri;
165 };
166
167 static char *number(char *, int);
168 static void mapply(struct matchinfo *, cfdata_t);
169 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
170 static void config_devdealloc(device_t);
171 static void config_makeroom(int, struct cfdriver *);
172 static void config_devlink(device_t);
173 static void config_devunlink(device_t);
174
175 static device_t deviter_next1(deviter_t *);
176 static void deviter_reinit(deviter_t *);
177
178 struct deferred_config {
179 TAILQ_ENTRY(deferred_config) dc_queue;
180 device_t dc_dev;
181 void (*dc_func)(device_t);
182 };
183
184 TAILQ_HEAD(deferred_config_head, deferred_config);
185
186 struct deferred_config_head deferred_config_queue =
187 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
188 struct deferred_config_head interrupt_config_queue =
189 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
190
191 static void config_process_deferred(struct deferred_config_head *, device_t);
192
193 /* Hooks to finalize configuration once all real devices have been found. */
194 struct finalize_hook {
195 TAILQ_ENTRY(finalize_hook) f_list;
196 int (*f_func)(device_t);
197 device_t f_dev;
198 };
199 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
200 TAILQ_HEAD_INITIALIZER(config_finalize_list);
201 static int config_finalize_done;
202
203 /* list of all devices */
204 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
205 kcondvar_t alldevs_cv;
206 kmutex_t alldevs_mtx;
207 static int alldevs_nread = 0;
208 static int alldevs_nwrite = 0;
209 static lwp_t *alldevs_writer = NULL;
210
211 volatile int config_pending; /* semaphore for mountroot */
212
213 #define STREQ(s1, s2) \
214 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
215
216 static int config_initialized; /* config_init() has been called. */
217
218 static int config_do_twiddle;
219
220 struct vnode *
221 opendisk(struct device *dv)
222 {
223 int bmajor, bminor;
224 struct vnode *tmpvn;
225 int error;
226 dev_t dev;
227
228 /*
229 * Lookup major number for disk block device.
230 */
231 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
232 if (bmajor == -1)
233 return NULL;
234
235 bminor = minor(device_unit(dv));
236 /*
237 * Fake a temporary vnode for the disk, open it, and read
238 * and hash the sectors.
239 */
240 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
241 MAKEDISKDEV(bmajor, bminor, RAW_PART);
242 if (bdevvp(dev, &tmpvn))
243 panic("%s: can't alloc vnode for %s", __func__,
244 device_xname(dv));
245 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
246 if (error) {
247 #ifndef DEBUG
248 /*
249 * Ignore errors caused by missing device, partition,
250 * or medium.
251 */
252 if (error != ENXIO && error != ENODEV)
253 #endif
254 printf("%s: can't open dev %s (%d)\n",
255 __func__, device_xname(dv), error);
256 vput(tmpvn);
257 return NULL;
258 }
259
260 return tmpvn;
261 }
262
263 int
264 config_handle_wedges(struct device *dv, int par)
265 {
266 struct dkwedge_list wl;
267 struct dkwedge_info *wi;
268 struct vnode *vn;
269 char diskname[16];
270 int i, error;
271
272 if ((vn = opendisk(dv)) == NULL)
273 return -1;
274
275 wl.dkwl_bufsize = sizeof(*wi) * 16;
276 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
277
278 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
279 VOP_CLOSE(vn, FREAD, NOCRED);
280 vput(vn);
281 if (error) {
282 #ifdef DEBUG_WEDGE
283 printf("%s: List wedges returned %d\n",
284 device_xname(dv), error);
285 #endif
286 free(wi, M_TEMP);
287 return -1;
288 }
289
290 #ifdef DEBUG_WEDGE
291 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
292 wl.dkwl_nwedges, wl.dkwl_ncopied);
293 #endif
294 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
295 par + 'a');
296
297 for (i = 0; i < wl.dkwl_ncopied; i++) {
298 #ifdef DEBUG_WEDGE
299 printf("%s: Looking for %s in %s\n",
300 device_xname(dv), diskname, wi[i].dkw_wname);
301 #endif
302 if (strcmp(wi[i].dkw_wname, diskname) == 0)
303 break;
304 }
305
306 if (i == wl.dkwl_ncopied) {
307 #ifdef DEBUG_WEDGE
308 printf("%s: Cannot find wedge with parent %s\n",
309 device_xname(dv), diskname);
310 #endif
311 free(wi, M_TEMP);
312 return -1;
313 }
314
315 #ifdef DEBUG_WEDGE
316 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
317 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
318 (unsigned long long)wi[i].dkw_offset,
319 (unsigned long long)wi[i].dkw_size);
320 #endif
321 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
322 free(wi, M_TEMP);
323 return 0;
324 }
325
326 /*
327 * Initialize the autoconfiguration data structures. Normally this
328 * is done by configure(), but some platforms need to do this very
329 * early (to e.g. initialize the console).
330 */
331 void
332 config_init(void)
333 {
334 const struct cfattachinit *cfai;
335 int i, j;
336
337 if (config_initialized)
338 return;
339
340 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
341 cv_init(&alldevs_cv, "alldevs");
342
343 /* allcfdrivers is statically initialized. */
344 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
345 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
346 panic("configure: duplicate `%s' drivers",
347 cfdriver_list_initial[i]->cd_name);
348 }
349
350 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
351 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
352 if (config_cfattach_attach(cfai->cfai_name,
353 cfai->cfai_list[j]) != 0)
354 panic("configure: duplicate `%s' attachment "
355 "of `%s' driver",
356 cfai->cfai_list[j]->ca_name,
357 cfai->cfai_name);
358 }
359 }
360
361 initcftable.ct_cfdata = cfdata;
362 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
363
364 config_initialized = 1;
365 }
366
367 void
368 config_deferred(device_t dev)
369 {
370 config_process_deferred(&deferred_config_queue, dev);
371 config_process_deferred(&interrupt_config_queue, dev);
372 }
373
374 /*
375 * Configure the system's hardware.
376 */
377 void
378 configure(void)
379 {
380 int errcnt;
381
382 /* Initialize data structures. */
383 config_init();
384 pmf_init();
385
386 #ifdef USERCONF
387 if (boothowto & RB_USERCONF)
388 user_config();
389 #endif
390
391 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
392 config_do_twiddle = 1;
393 printf_nolog("Detecting hardware...");
394 }
395
396 /*
397 * Do the machine-dependent portion of autoconfiguration. This
398 * sets the configuration machinery here in motion by "finding"
399 * the root bus. When this function returns, we expect interrupts
400 * to be enabled.
401 */
402 cpu_configure();
403
404 /* Initialize callouts, part 2. */
405 callout_startup2();
406
407 /*
408 * Now that we've found all the hardware, start the real time
409 * and statistics clocks.
410 */
411 initclocks();
412
413 cold = 0; /* clocks are running, we're warm now! */
414
415 /* Boot the secondary processors. */
416 mp_online = true;
417 #if defined(MULTIPROCESSOR)
418 cpu_boot_secondary_processors();
419 #endif
420
421 /*
422 * Now callback to finish configuration for devices which want
423 * to do this once interrupts are enabled.
424 */
425 config_process_deferred(&interrupt_config_queue, NULL);
426
427 errcnt = aprint_get_error_count();
428 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
429 (boothowto & AB_VERBOSE) == 0) {
430 if (config_do_twiddle) {
431 config_do_twiddle = 0;
432 printf_nolog("done.\n");
433 }
434 if (errcnt != 0) {
435 printf("WARNING: %d error%s while detecting hardware; "
436 "check system log.\n", errcnt,
437 errcnt == 1 ? "" : "s");
438 }
439 }
440 }
441
442 /*
443 * Add a cfdriver to the system.
444 */
445 int
446 config_cfdriver_attach(struct cfdriver *cd)
447 {
448 struct cfdriver *lcd;
449
450 /* Make sure this driver isn't already in the system. */
451 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
452 if (STREQ(lcd->cd_name, cd->cd_name))
453 return (EEXIST);
454 }
455
456 LIST_INIT(&cd->cd_attach);
457 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
458
459 return (0);
460 }
461
462 /*
463 * Remove a cfdriver from the system.
464 */
465 int
466 config_cfdriver_detach(struct cfdriver *cd)
467 {
468 int i;
469
470 /* Make sure there are no active instances. */
471 for (i = 0; i < cd->cd_ndevs; i++) {
472 if (cd->cd_devs[i] != NULL)
473 return (EBUSY);
474 }
475
476 /* ...and no attachments loaded. */
477 if (LIST_EMPTY(&cd->cd_attach) == 0)
478 return (EBUSY);
479
480 LIST_REMOVE(cd, cd_list);
481
482 KASSERT(cd->cd_devs == NULL);
483
484 return (0);
485 }
486
487 /*
488 * Look up a cfdriver by name.
489 */
490 struct cfdriver *
491 config_cfdriver_lookup(const char *name)
492 {
493 struct cfdriver *cd;
494
495 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
496 if (STREQ(cd->cd_name, name))
497 return (cd);
498 }
499
500 return (NULL);
501 }
502
503 /*
504 * Add a cfattach to the specified driver.
505 */
506 int
507 config_cfattach_attach(const char *driver, struct cfattach *ca)
508 {
509 struct cfattach *lca;
510 struct cfdriver *cd;
511
512 cd = config_cfdriver_lookup(driver);
513 if (cd == NULL)
514 return (ESRCH);
515
516 /* Make sure this attachment isn't already on this driver. */
517 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
518 if (STREQ(lca->ca_name, ca->ca_name))
519 return (EEXIST);
520 }
521
522 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
523
524 return (0);
525 }
526
527 /*
528 * Remove a cfattach from the specified driver.
529 */
530 int
531 config_cfattach_detach(const char *driver, struct cfattach *ca)
532 {
533 struct cfdriver *cd;
534 device_t dev;
535 int i;
536
537 cd = config_cfdriver_lookup(driver);
538 if (cd == NULL)
539 return (ESRCH);
540
541 /* Make sure there are no active instances. */
542 for (i = 0; i < cd->cd_ndevs; i++) {
543 if ((dev = cd->cd_devs[i]) == NULL)
544 continue;
545 if (dev->dv_cfattach == ca)
546 return (EBUSY);
547 }
548
549 LIST_REMOVE(ca, ca_list);
550
551 return (0);
552 }
553
554 /*
555 * Look up a cfattach by name.
556 */
557 static struct cfattach *
558 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
559 {
560 struct cfattach *ca;
561
562 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
563 if (STREQ(ca->ca_name, atname))
564 return (ca);
565 }
566
567 return (NULL);
568 }
569
570 /*
571 * Look up a cfattach by driver/attachment name.
572 */
573 struct cfattach *
574 config_cfattach_lookup(const char *name, const char *atname)
575 {
576 struct cfdriver *cd;
577
578 cd = config_cfdriver_lookup(name);
579 if (cd == NULL)
580 return (NULL);
581
582 return (config_cfattach_lookup_cd(cd, atname));
583 }
584
585 /*
586 * Apply the matching function and choose the best. This is used
587 * a few times and we want to keep the code small.
588 */
589 static void
590 mapply(struct matchinfo *m, cfdata_t cf)
591 {
592 int pri;
593
594 if (m->fn != NULL) {
595 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
596 } else {
597 pri = config_match(m->parent, cf, m->aux);
598 }
599 if (pri > m->pri) {
600 m->match = cf;
601 m->pri = pri;
602 }
603 }
604
605 int
606 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
607 {
608 const struct cfiattrdata *ci;
609 const struct cflocdesc *cl;
610 int nlocs, i;
611
612 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
613 KASSERT(ci);
614 nlocs = ci->ci_loclen;
615 for (i = 0; i < nlocs; i++) {
616 cl = &ci->ci_locdesc[i];
617 /* !cld_defaultstr means no default value */
618 if ((!(cl->cld_defaultstr)
619 || (cf->cf_loc[i] != cl->cld_default))
620 && cf->cf_loc[i] != locs[i])
621 return (0);
622 }
623
624 return (config_match(parent, cf, aux));
625 }
626
627 /*
628 * Helper function: check whether the driver supports the interface attribute
629 * and return its descriptor structure.
630 */
631 static const struct cfiattrdata *
632 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
633 {
634 const struct cfiattrdata * const *cpp;
635
636 if (cd->cd_attrs == NULL)
637 return (0);
638
639 for (cpp = cd->cd_attrs; *cpp; cpp++) {
640 if (STREQ((*cpp)->ci_name, ia)) {
641 /* Match. */
642 return (*cpp);
643 }
644 }
645 return (0);
646 }
647
648 /*
649 * Lookup an interface attribute description by name.
650 * If the driver is given, consider only its supported attributes.
651 */
652 const struct cfiattrdata *
653 cfiattr_lookup(const char *name, const struct cfdriver *cd)
654 {
655 const struct cfdriver *d;
656 const struct cfiattrdata *ia;
657
658 if (cd)
659 return (cfdriver_get_iattr(cd, name));
660
661 LIST_FOREACH(d, &allcfdrivers, cd_list) {
662 ia = cfdriver_get_iattr(d, name);
663 if (ia)
664 return (ia);
665 }
666 return (0);
667 }
668
669 /*
670 * Determine if `parent' is a potential parent for a device spec based
671 * on `cfp'.
672 */
673 static int
674 cfparent_match(const device_t parent, const struct cfparent *cfp)
675 {
676 struct cfdriver *pcd;
677
678 /* We don't match root nodes here. */
679 if (cfp == NULL)
680 return (0);
681
682 pcd = parent->dv_cfdriver;
683 KASSERT(pcd != NULL);
684
685 /*
686 * First, ensure this parent has the correct interface
687 * attribute.
688 */
689 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
690 return (0);
691
692 /*
693 * If no specific parent device instance was specified (i.e.
694 * we're attaching to the attribute only), we're done!
695 */
696 if (cfp->cfp_parent == NULL)
697 return (1);
698
699 /*
700 * Check the parent device's name.
701 */
702 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
703 return (0); /* not the same parent */
704
705 /*
706 * Make sure the unit number matches.
707 */
708 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
709 cfp->cfp_unit == parent->dv_unit)
710 return (1);
711
712 /* Unit numbers don't match. */
713 return (0);
714 }
715
716 /*
717 * Helper for config_cfdata_attach(): check all devices whether it could be
718 * parent any attachment in the config data table passed, and rescan.
719 */
720 static void
721 rescan_with_cfdata(const struct cfdata *cf)
722 {
723 device_t d;
724 const struct cfdata *cf1;
725 deviter_t di;
726
727
728 /*
729 * "alldevs" is likely longer than an LKM's cfdata, so make it
730 * the outer loop.
731 */
732 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
733
734 if (!(d->dv_cfattach->ca_rescan))
735 continue;
736
737 for (cf1 = cf; cf1->cf_name; cf1++) {
738
739 if (!cfparent_match(d, cf1->cf_pspec))
740 continue;
741
742 (*d->dv_cfattach->ca_rescan)(d,
743 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
744 }
745 }
746 deviter_release(&di);
747 }
748
749 /*
750 * Attach a supplemental config data table and rescan potential
751 * parent devices if required.
752 */
753 int
754 config_cfdata_attach(cfdata_t cf, int scannow)
755 {
756 struct cftable *ct;
757
758 ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
759 ct->ct_cfdata = cf;
760 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
761
762 if (scannow)
763 rescan_with_cfdata(cf);
764
765 return (0);
766 }
767
768 /*
769 * Helper for config_cfdata_detach: check whether a device is
770 * found through any attachment in the config data table.
771 */
772 static int
773 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
774 {
775 const struct cfdata *cf1;
776
777 for (cf1 = cf; cf1->cf_name; cf1++)
778 if (d->dv_cfdata == cf1)
779 return (1);
780
781 return (0);
782 }
783
784 /*
785 * Detach a supplemental config data table. Detach all devices found
786 * through that table (and thus keeping references to it) before.
787 */
788 int
789 config_cfdata_detach(cfdata_t cf)
790 {
791 device_t d;
792 int error = 0;
793 struct cftable *ct;
794 deviter_t di;
795
796 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
797 d = deviter_next(&di)) {
798 if (!dev_in_cfdata(d, cf))
799 continue;
800 if ((error = config_detach(d, 0)) != 0)
801 break;
802 }
803 deviter_release(&di);
804 if (error) {
805 aprint_error_dev(d, "unable to detach instance\n");
806 return error;
807 }
808
809 TAILQ_FOREACH(ct, &allcftables, ct_list) {
810 if (ct->ct_cfdata == cf) {
811 TAILQ_REMOVE(&allcftables, ct, ct_list);
812 free(ct, M_DEVBUF);
813 return (0);
814 }
815 }
816
817 /* not found -- shouldn't happen */
818 return (EINVAL);
819 }
820
821 /*
822 * Invoke the "match" routine for a cfdata entry on behalf of
823 * an external caller, usually a "submatch" routine.
824 */
825 int
826 config_match(device_t parent, cfdata_t cf, void *aux)
827 {
828 struct cfattach *ca;
829
830 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
831 if (ca == NULL) {
832 /* No attachment for this entry, oh well. */
833 return (0);
834 }
835
836 return ((*ca->ca_match)(parent, cf, aux));
837 }
838
839 /*
840 * Iterate over all potential children of some device, calling the given
841 * function (default being the child's match function) for each one.
842 * Nonzero returns are matches; the highest value returned is considered
843 * the best match. Return the `found child' if we got a match, or NULL
844 * otherwise. The `aux' pointer is simply passed on through.
845 *
846 * Note that this function is designed so that it can be used to apply
847 * an arbitrary function to all potential children (its return value
848 * can be ignored).
849 */
850 cfdata_t
851 config_search_loc(cfsubmatch_t fn, device_t parent,
852 const char *ifattr, const int *locs, void *aux)
853 {
854 struct cftable *ct;
855 cfdata_t cf;
856 struct matchinfo m;
857
858 KASSERT(config_initialized);
859 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
860
861 m.fn = fn;
862 m.parent = parent;
863 m.locs = locs;
864 m.aux = aux;
865 m.match = NULL;
866 m.pri = 0;
867
868 TAILQ_FOREACH(ct, &allcftables, ct_list) {
869 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
870
871 /* We don't match root nodes here. */
872 if (!cf->cf_pspec)
873 continue;
874
875 /*
876 * Skip cf if no longer eligible, otherwise scan
877 * through parents for one matching `parent', and
878 * try match function.
879 */
880 if (cf->cf_fstate == FSTATE_FOUND)
881 continue;
882 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
883 cf->cf_fstate == FSTATE_DSTAR)
884 continue;
885
886 /*
887 * If an interface attribute was specified,
888 * consider only children which attach to
889 * that attribute.
890 */
891 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
892 continue;
893
894 if (cfparent_match(parent, cf->cf_pspec))
895 mapply(&m, cf);
896 }
897 }
898 return (m.match);
899 }
900
901 cfdata_t
902 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
903 void *aux)
904 {
905
906 return (config_search_loc(fn, parent, ifattr, NULL, aux));
907 }
908
909 /*
910 * Find the given root device.
911 * This is much like config_search, but there is no parent.
912 * Don't bother with multiple cfdata tables; the root node
913 * must always be in the initial table.
914 */
915 cfdata_t
916 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
917 {
918 cfdata_t cf;
919 const short *p;
920 struct matchinfo m;
921
922 m.fn = fn;
923 m.parent = ROOT;
924 m.aux = aux;
925 m.match = NULL;
926 m.pri = 0;
927 m.locs = 0;
928 /*
929 * Look at root entries for matching name. We do not bother
930 * with found-state here since only one root should ever be
931 * searched (and it must be done first).
932 */
933 for (p = cfroots; *p >= 0; p++) {
934 cf = &cfdata[*p];
935 if (strcmp(cf->cf_name, rootname) == 0)
936 mapply(&m, cf);
937 }
938 return (m.match);
939 }
940
941 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
942
943 /*
944 * The given `aux' argument describes a device that has been found
945 * on the given parent, but not necessarily configured. Locate the
946 * configuration data for that device (using the submatch function
947 * provided, or using candidates' cd_match configuration driver
948 * functions) and attach it, and return true. If the device was
949 * not configured, call the given `print' function and return 0.
950 */
951 device_t
952 config_found_sm_loc(device_t parent,
953 const char *ifattr, const int *locs, void *aux,
954 cfprint_t print, cfsubmatch_t submatch)
955 {
956 cfdata_t cf;
957
958 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
959 if (splash_progress_state)
960 splash_progress_update(splash_progress_state);
961 #endif
962
963 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
964 return(config_attach_loc(parent, cf, locs, aux, print));
965 if (print) {
966 if (config_do_twiddle)
967 twiddle();
968 aprint_normal("%s", msgs[(*print)(aux, parent->dv_xname)]);
969 }
970
971 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
972 if (splash_progress_state)
973 splash_progress_update(splash_progress_state);
974 #endif
975
976 return (NULL);
977 }
978
979 device_t
980 config_found_ia(device_t parent, const char *ifattr, void *aux,
981 cfprint_t print)
982 {
983
984 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
985 }
986
987 device_t
988 config_found(device_t parent, void *aux, cfprint_t print)
989 {
990
991 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
992 }
993
994 /*
995 * As above, but for root devices.
996 */
997 device_t
998 config_rootfound(const char *rootname, void *aux)
999 {
1000 cfdata_t cf;
1001
1002 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1003 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1004 aprint_error("root device %s not configured\n", rootname);
1005 return (NULL);
1006 }
1007
1008 /* just like sprintf(buf, "%d") except that it works from the end */
1009 static char *
1010 number(char *ep, int n)
1011 {
1012
1013 *--ep = 0;
1014 while (n >= 10) {
1015 *--ep = (n % 10) + '0';
1016 n /= 10;
1017 }
1018 *--ep = n + '0';
1019 return (ep);
1020 }
1021
1022 /*
1023 * Expand the size of the cd_devs array if necessary.
1024 */
1025 static void
1026 config_makeroom(int n, struct cfdriver *cd)
1027 {
1028 int old, new;
1029 void **nsp;
1030
1031 if (n < cd->cd_ndevs)
1032 return;
1033
1034 /*
1035 * Need to expand the array.
1036 */
1037 old = cd->cd_ndevs;
1038 if (old == 0)
1039 new = 4;
1040 else
1041 new = old * 2;
1042 while (new <= n)
1043 new *= 2;
1044 cd->cd_ndevs = new;
1045 nsp = malloc(new * sizeof(void *), M_DEVBUF,
1046 cold ? M_NOWAIT : M_WAITOK);
1047 if (nsp == NULL)
1048 panic("config_attach: %sing dev array",
1049 old != 0 ? "expand" : "creat");
1050 memset(nsp + old, 0, (new - old) * sizeof(void *));
1051 if (old != 0) {
1052 memcpy(nsp, cd->cd_devs, old * sizeof(void *));
1053 free(cd->cd_devs, M_DEVBUF);
1054 }
1055 cd->cd_devs = nsp;
1056 }
1057
1058 static void
1059 config_devlink(device_t dev)
1060 {
1061 struct cfdriver *cd = dev->dv_cfdriver;
1062
1063 /* put this device in the devices array */
1064 config_makeroom(dev->dv_unit, cd);
1065 if (cd->cd_devs[dev->dv_unit])
1066 panic("config_attach: duplicate %s", dev->dv_xname);
1067 cd->cd_devs[dev->dv_unit] = dev;
1068
1069 /* It is safe to add a device to the tail of the list while
1070 * readers are in the list, but not while a writer is in
1071 * the list. Wait for any writer to complete.
1072 */
1073 mutex_enter(&alldevs_mtx);
1074 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1075 cv_wait(&alldevs_cv, &alldevs_mtx);
1076 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1077 cv_signal(&alldevs_cv);
1078 mutex_exit(&alldevs_mtx);
1079 }
1080
1081 static void
1082 config_devunlink(device_t dev)
1083 {
1084 struct cfdriver *cd = dev->dv_cfdriver;
1085 int i;
1086
1087 /* Unlink from device list. */
1088 TAILQ_REMOVE(&alldevs, dev, dv_list);
1089
1090 /* Remove from cfdriver's array. */
1091 cd->cd_devs[dev->dv_unit] = NULL;
1092
1093 /*
1094 * If the device now has no units in use, deallocate its softc array.
1095 */
1096 for (i = 0; i < cd->cd_ndevs; i++)
1097 if (cd->cd_devs[i] != NULL)
1098 break;
1099 if (i == cd->cd_ndevs) { /* nothing found; deallocate */
1100 free(cd->cd_devs, M_DEVBUF);
1101 cd->cd_devs = NULL;
1102 cd->cd_ndevs = 0;
1103 }
1104 }
1105
1106 static device_t
1107 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1108 {
1109 struct cfdriver *cd;
1110 struct cfattach *ca;
1111 size_t lname, lunit;
1112 const char *xunit;
1113 int myunit;
1114 char num[10];
1115 device_t dev;
1116 void *dev_private;
1117 const struct cfiattrdata *ia;
1118
1119 cd = config_cfdriver_lookup(cf->cf_name);
1120 if (cd == NULL)
1121 return (NULL);
1122
1123 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1124 if (ca == NULL)
1125 return (NULL);
1126
1127 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1128 ca->ca_devsize < sizeof(struct device))
1129 panic("config_devalloc");
1130
1131 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1132 if (cf->cf_fstate == FSTATE_STAR) {
1133 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1134 if (cd->cd_devs[myunit] == NULL)
1135 break;
1136 /*
1137 * myunit is now the unit of the first NULL device pointer,
1138 * or max(cd->cd_ndevs,cf->cf_unit).
1139 */
1140 } else {
1141 myunit = cf->cf_unit;
1142 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1143 return (NULL);
1144 }
1145 #else
1146 myunit = cf->cf_unit;
1147 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1148
1149 /* compute length of name and decimal expansion of unit number */
1150 lname = strlen(cd->cd_name);
1151 xunit = number(&num[sizeof(num)], myunit);
1152 lunit = &num[sizeof(num)] - xunit;
1153 if (lname + lunit > sizeof(dev->dv_xname))
1154 panic("config_devalloc: device name too long");
1155
1156 /* get memory for all device vars */
1157 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1158 if (ca->ca_devsize > 0) {
1159 dev_private = malloc(ca->ca_devsize, M_DEVBUF,
1160 M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1161 if (dev_private == NULL)
1162 panic("config_devalloc: memory allocation for device softc failed");
1163 } else {
1164 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1165 dev_private = NULL;
1166 }
1167
1168 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1169 dev = malloc(sizeof(struct device), M_DEVBUF,
1170 M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1171 } else {
1172 dev = dev_private;
1173 }
1174 if (dev == NULL)
1175 panic("config_devalloc: memory allocation for device_t failed");
1176
1177 dev->dv_class = cd->cd_class;
1178 dev->dv_cfdata = cf;
1179 dev->dv_cfdriver = cd;
1180 dev->dv_cfattach = ca;
1181 dev->dv_unit = myunit;
1182 dev->dv_activity_count = 0;
1183 dev->dv_activity_handlers = NULL;
1184 dev->dv_private = dev_private;
1185 memcpy(dev->dv_xname, cd->cd_name, lname);
1186 memcpy(dev->dv_xname + lname, xunit, lunit);
1187 dev->dv_parent = parent;
1188 if (parent != NULL)
1189 dev->dv_depth = parent->dv_depth + 1;
1190 else
1191 dev->dv_depth = 0;
1192 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1193 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1194 if (locs) {
1195 KASSERT(parent); /* no locators at root */
1196 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1197 parent->dv_cfdriver);
1198 dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
1199 M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1200 memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
1201 }
1202 dev->dv_properties = prop_dictionary_create();
1203 KASSERT(dev->dv_properties != NULL);
1204
1205 return (dev);
1206 }
1207
1208 static void
1209 config_devdealloc(device_t dev)
1210 {
1211
1212 KASSERT(dev->dv_properties != NULL);
1213 prop_object_release(dev->dv_properties);
1214
1215 if (dev->dv_activity_handlers)
1216 panic("config_devdealloc with registered handlers");
1217
1218 if (dev->dv_locators)
1219 free(dev->dv_locators, M_DEVBUF);
1220
1221 if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0)
1222 free(dev->dv_private, M_DEVBUF);
1223
1224 free(dev, M_DEVBUF);
1225 }
1226
1227 /*
1228 * Attach a found device.
1229 */
1230 device_t
1231 config_attach_loc(device_t parent, cfdata_t cf,
1232 const int *locs, void *aux, cfprint_t print)
1233 {
1234 device_t dev;
1235 struct cftable *ct;
1236 const char *drvname;
1237
1238 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1239 if (splash_progress_state)
1240 splash_progress_update(splash_progress_state);
1241 #endif
1242
1243 dev = config_devalloc(parent, cf, locs);
1244 if (!dev)
1245 panic("config_attach: allocation of device softc failed");
1246
1247 /* XXX redundant - see below? */
1248 if (cf->cf_fstate != FSTATE_STAR) {
1249 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1250 cf->cf_fstate = FSTATE_FOUND;
1251 }
1252 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1253 else
1254 cf->cf_unit++;
1255 #endif
1256
1257 config_devlink(dev);
1258
1259 if (config_do_twiddle)
1260 twiddle();
1261 else
1262 aprint_naive("Found ");
1263 /*
1264 * We want the next two printfs for normal, verbose, and quiet,
1265 * but not silent (in which case, we're twiddling, instead).
1266 */
1267 if (parent == ROOT) {
1268 aprint_naive("%s (root)", dev->dv_xname);
1269 aprint_normal("%s (root)", dev->dv_xname);
1270 } else {
1271 aprint_naive("%s at %s", dev->dv_xname, parent->dv_xname);
1272 aprint_normal("%s at %s", dev->dv_xname, parent->dv_xname);
1273 if (print)
1274 (void) (*print)(aux, NULL);
1275 }
1276
1277 /*
1278 * Before attaching, clobber any unfound devices that are
1279 * otherwise identical.
1280 * XXX code above is redundant?
1281 */
1282 drvname = dev->dv_cfdriver->cd_name;
1283 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1284 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1285 if (STREQ(cf->cf_name, drvname) &&
1286 cf->cf_unit == dev->dv_unit) {
1287 if (cf->cf_fstate == FSTATE_NOTFOUND)
1288 cf->cf_fstate = FSTATE_FOUND;
1289 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1290 /*
1291 * Bump the unit number on all starred cfdata
1292 * entries for this device.
1293 */
1294 if (cf->cf_fstate == FSTATE_STAR)
1295 cf->cf_unit++;
1296 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1297 }
1298 }
1299 }
1300 #ifdef __HAVE_DEVICE_REGISTER
1301 device_register(dev, aux);
1302 #endif
1303
1304 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1305 if (splash_progress_state)
1306 splash_progress_update(splash_progress_state);
1307 #endif
1308 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1309 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1310 if (splash_progress_state)
1311 splash_progress_update(splash_progress_state);
1312 #endif
1313
1314 if (!device_pmf_is_registered(dev))
1315 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1316
1317 config_process_deferred(&deferred_config_queue, dev);
1318 return (dev);
1319 }
1320
1321 device_t
1322 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1323 {
1324
1325 return (config_attach_loc(parent, cf, NULL, aux, print));
1326 }
1327
1328 /*
1329 * As above, but for pseudo-devices. Pseudo-devices attached in this
1330 * way are silently inserted into the device tree, and their children
1331 * attached.
1332 *
1333 * Note that because pseudo-devices are attached silently, any information
1334 * the attach routine wishes to print should be prefixed with the device
1335 * name by the attach routine.
1336 */
1337 device_t
1338 config_attach_pseudo(cfdata_t cf)
1339 {
1340 device_t dev;
1341
1342 dev = config_devalloc(ROOT, cf, NULL);
1343 if (!dev)
1344 return (NULL);
1345
1346 /* XXX mark busy in cfdata */
1347
1348 config_devlink(dev);
1349
1350 #if 0 /* XXXJRT not yet */
1351 #ifdef __HAVE_DEVICE_REGISTER
1352 device_register(dev, NULL); /* like a root node */
1353 #endif
1354 #endif
1355 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1356 config_process_deferred(&deferred_config_queue, dev);
1357 return (dev);
1358 }
1359
1360 /*
1361 * Detach a device. Optionally forced (e.g. because of hardware
1362 * removal) and quiet. Returns zero if successful, non-zero
1363 * (an error code) otherwise.
1364 *
1365 * Note that this code wants to be run from a process context, so
1366 * that the detach can sleep to allow processes which have a device
1367 * open to run and unwind their stacks.
1368 */
1369 int
1370 config_detach(device_t dev, int flags)
1371 {
1372 struct cftable *ct;
1373 cfdata_t cf;
1374 const struct cfattach *ca;
1375 struct cfdriver *cd;
1376 #ifdef DIAGNOSTIC
1377 device_t d;
1378 #endif
1379 int rv = 0;
1380
1381 #ifdef DIAGNOSTIC
1382 if (dev->dv_cfdata != NULL &&
1383 dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1384 dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1385 panic("config_detach: bad device fstate");
1386 #endif
1387 cd = dev->dv_cfdriver;
1388 KASSERT(cd != NULL);
1389
1390 ca = dev->dv_cfattach;
1391 KASSERT(ca != NULL);
1392
1393 KASSERT(curlwp != NULL);
1394 mutex_enter(&alldevs_mtx);
1395 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1396 ;
1397 else while (alldevs_nread != 0 ||
1398 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1399 cv_wait(&alldevs_cv, &alldevs_mtx);
1400 if (alldevs_nwrite++ == 0)
1401 alldevs_writer = curlwp;
1402 mutex_exit(&alldevs_mtx);
1403
1404 /*
1405 * Ensure the device is deactivated. If the device doesn't
1406 * have an activation entry point, we allow DVF_ACTIVE to
1407 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1408 * device is busy, and the detach fails.
1409 */
1410 if (ca->ca_activate != NULL)
1411 rv = config_deactivate(dev);
1412
1413 /*
1414 * Try to detach the device. If that's not possible, then
1415 * we either panic() (for the forced but failed case), or
1416 * return an error.
1417 */
1418 if (rv == 0) {
1419 if (ca->ca_detach != NULL)
1420 rv = (*ca->ca_detach)(dev, flags);
1421 else
1422 rv = EOPNOTSUPP;
1423 }
1424 if (rv != 0) {
1425 if ((flags & DETACH_FORCE) == 0)
1426 goto out;
1427 else
1428 panic("config_detach: forced detach of %s failed (%d)",
1429 dev->dv_xname, rv);
1430 }
1431
1432 /*
1433 * The device has now been successfully detached.
1434 */
1435
1436 #ifdef DIAGNOSTIC
1437 /*
1438 * Sanity: If you're successfully detached, you should have no
1439 * children. (Note that because children must be attached
1440 * after parents, we only need to search the latter part of
1441 * the list.)
1442 */
1443 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1444 d = TAILQ_NEXT(d, dv_list)) {
1445 if (d->dv_parent == dev) {
1446 printf("config_detach: detached device %s"
1447 " has children %s\n", dev->dv_xname, d->dv_xname);
1448 panic("config_detach");
1449 }
1450 }
1451 #endif
1452
1453 /* notify the parent that the child is gone */
1454 if (dev->dv_parent) {
1455 device_t p = dev->dv_parent;
1456 if (p->dv_cfattach->ca_childdetached)
1457 (*p->dv_cfattach->ca_childdetached)(p, dev);
1458 }
1459
1460 /*
1461 * Mark cfdata to show that the unit can be reused, if possible.
1462 */
1463 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1464 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1465 if (STREQ(cf->cf_name, cd->cd_name)) {
1466 if (cf->cf_fstate == FSTATE_FOUND &&
1467 cf->cf_unit == dev->dv_unit)
1468 cf->cf_fstate = FSTATE_NOTFOUND;
1469 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1470 /*
1471 * Note that we can only re-use a starred
1472 * unit number if the unit being detached
1473 * had the last assigned unit number.
1474 */
1475 if (cf->cf_fstate == FSTATE_STAR &&
1476 cf->cf_unit == dev->dv_unit + 1)
1477 cf->cf_unit--;
1478 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1479 }
1480 }
1481 }
1482
1483 config_devunlink(dev);
1484
1485 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1486 aprint_normal_dev(dev, "detached\n");
1487
1488 config_devdealloc(dev);
1489
1490 out:
1491 mutex_enter(&alldevs_mtx);
1492 if (--alldevs_nwrite == 0)
1493 alldevs_writer = NULL;
1494 cv_signal(&alldevs_cv);
1495 mutex_exit(&alldevs_mtx);
1496 return rv;
1497 }
1498
1499 int
1500 config_detach_children(device_t parent, int flags)
1501 {
1502 device_t dv;
1503 deviter_t di;
1504 int error = 0;
1505
1506 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1507 dv = deviter_next(&di)) {
1508 if (device_parent(dv) != parent)
1509 continue;
1510 if ((error = config_detach(dv, flags)) != 0)
1511 break;
1512 }
1513 deviter_release(&di);
1514 return error;
1515 }
1516
1517 int
1518 config_activate(device_t dev)
1519 {
1520 const struct cfattach *ca = dev->dv_cfattach;
1521 int rv = 0, oflags = dev->dv_flags;
1522
1523 if (ca->ca_activate == NULL)
1524 return (EOPNOTSUPP);
1525
1526 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1527 dev->dv_flags |= DVF_ACTIVE;
1528 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1529 if (rv)
1530 dev->dv_flags = oflags;
1531 }
1532 return (rv);
1533 }
1534
1535 int
1536 config_deactivate(device_t dev)
1537 {
1538 const struct cfattach *ca = dev->dv_cfattach;
1539 int rv = 0, oflags = dev->dv_flags;
1540
1541 if (ca->ca_activate == NULL)
1542 return (EOPNOTSUPP);
1543
1544 if (dev->dv_flags & DVF_ACTIVE) {
1545 dev->dv_flags &= ~DVF_ACTIVE;
1546 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1547 if (rv)
1548 dev->dv_flags = oflags;
1549 }
1550 return (rv);
1551 }
1552
1553 /*
1554 * Defer the configuration of the specified device until all
1555 * of its parent's devices have been attached.
1556 */
1557 void
1558 config_defer(device_t dev, void (*func)(device_t))
1559 {
1560 struct deferred_config *dc;
1561
1562 if (dev->dv_parent == NULL)
1563 panic("config_defer: can't defer config of a root device");
1564
1565 #ifdef DIAGNOSTIC
1566 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1567 dc = TAILQ_NEXT(dc, dc_queue)) {
1568 if (dc->dc_dev == dev)
1569 panic("config_defer: deferred twice");
1570 }
1571 #endif
1572
1573 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1574 if (dc == NULL)
1575 panic("config_defer: unable to allocate callback");
1576
1577 dc->dc_dev = dev;
1578 dc->dc_func = func;
1579 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1580 config_pending_incr();
1581 }
1582
1583 /*
1584 * Defer some autoconfiguration for a device until after interrupts
1585 * are enabled.
1586 */
1587 void
1588 config_interrupts(device_t dev, void (*func)(device_t))
1589 {
1590 struct deferred_config *dc;
1591
1592 /*
1593 * If interrupts are enabled, callback now.
1594 */
1595 if (cold == 0) {
1596 (*func)(dev);
1597 return;
1598 }
1599
1600 #ifdef DIAGNOSTIC
1601 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1602 dc = TAILQ_NEXT(dc, dc_queue)) {
1603 if (dc->dc_dev == dev)
1604 panic("config_interrupts: deferred twice");
1605 }
1606 #endif
1607
1608 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1609 if (dc == NULL)
1610 panic("config_interrupts: unable to allocate callback");
1611
1612 dc->dc_dev = dev;
1613 dc->dc_func = func;
1614 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1615 config_pending_incr();
1616 }
1617
1618 /*
1619 * Process a deferred configuration queue.
1620 */
1621 static void
1622 config_process_deferred(struct deferred_config_head *queue,
1623 device_t parent)
1624 {
1625 struct deferred_config *dc, *ndc;
1626
1627 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1628 ndc = TAILQ_NEXT(dc, dc_queue);
1629 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1630 TAILQ_REMOVE(queue, dc, dc_queue);
1631 (*dc->dc_func)(dc->dc_dev);
1632 free(dc, M_DEVBUF);
1633 config_pending_decr();
1634 }
1635 }
1636 }
1637
1638 /*
1639 * Manipulate the config_pending semaphore.
1640 */
1641 void
1642 config_pending_incr(void)
1643 {
1644
1645 config_pending++;
1646 }
1647
1648 void
1649 config_pending_decr(void)
1650 {
1651
1652 #ifdef DIAGNOSTIC
1653 if (config_pending == 0)
1654 panic("config_pending_decr: config_pending == 0");
1655 #endif
1656 config_pending--;
1657 if (config_pending == 0)
1658 wakeup(&config_pending);
1659 }
1660
1661 /*
1662 * Register a "finalization" routine. Finalization routines are
1663 * called iteratively once all real devices have been found during
1664 * autoconfiguration, for as long as any one finalizer has done
1665 * any work.
1666 */
1667 int
1668 config_finalize_register(device_t dev, int (*fn)(device_t))
1669 {
1670 struct finalize_hook *f;
1671
1672 /*
1673 * If finalization has already been done, invoke the
1674 * callback function now.
1675 */
1676 if (config_finalize_done) {
1677 while ((*fn)(dev) != 0)
1678 /* loop */ ;
1679 }
1680
1681 /* Ensure this isn't already on the list. */
1682 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1683 if (f->f_func == fn && f->f_dev == dev)
1684 return (EEXIST);
1685 }
1686
1687 f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
1688 f->f_func = fn;
1689 f->f_dev = dev;
1690 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1691
1692 return (0);
1693 }
1694
1695 void
1696 config_finalize(void)
1697 {
1698 struct finalize_hook *f;
1699 int rv;
1700
1701 /* Run the hooks until none of them does any work. */
1702 do {
1703 rv = 0;
1704 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1705 rv |= (*f->f_func)(f->f_dev);
1706 } while (rv != 0);
1707
1708 config_finalize_done = 1;
1709
1710 /* Now free all the hooks. */
1711 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1712 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1713 free(f, M_TEMP);
1714 }
1715 }
1716
1717 /*
1718 * device_lookup:
1719 *
1720 * Look up a device instance for a given driver.
1721 */
1722 void *
1723 device_lookup(cfdriver_t cd, int unit)
1724 {
1725
1726 if (unit < 0 || unit >= cd->cd_ndevs)
1727 return (NULL);
1728
1729 return (cd->cd_devs[unit]);
1730 }
1731
1732 /*
1733 * Accessor functions for the device_t type.
1734 */
1735 devclass_t
1736 device_class(device_t dev)
1737 {
1738
1739 return (dev->dv_class);
1740 }
1741
1742 cfdata_t
1743 device_cfdata(device_t dev)
1744 {
1745
1746 return (dev->dv_cfdata);
1747 }
1748
1749 cfdriver_t
1750 device_cfdriver(device_t dev)
1751 {
1752
1753 return (dev->dv_cfdriver);
1754 }
1755
1756 cfattach_t
1757 device_cfattach(device_t dev)
1758 {
1759
1760 return (dev->dv_cfattach);
1761 }
1762
1763 int
1764 device_unit(device_t dev)
1765 {
1766
1767 return (dev->dv_unit);
1768 }
1769
1770 const char *
1771 device_xname(device_t dev)
1772 {
1773
1774 return (dev->dv_xname);
1775 }
1776
1777 device_t
1778 device_parent(device_t dev)
1779 {
1780
1781 return (dev->dv_parent);
1782 }
1783
1784 bool
1785 device_is_active(device_t dev)
1786 {
1787 int active_flags;
1788
1789 active_flags = DVF_ACTIVE;
1790 active_flags |= DVF_CLASS_SUSPENDED;
1791 active_flags |= DVF_DRIVER_SUSPENDED;
1792 active_flags |= DVF_BUS_SUSPENDED;
1793
1794 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1795 }
1796
1797 bool
1798 device_is_enabled(device_t dev)
1799 {
1800 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1801 }
1802
1803 bool
1804 device_has_power(device_t dev)
1805 {
1806 int active_flags;
1807
1808 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1809
1810 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1811 }
1812
1813 int
1814 device_locator(device_t dev, u_int locnum)
1815 {
1816
1817 KASSERT(dev->dv_locators != NULL);
1818 return (dev->dv_locators[locnum]);
1819 }
1820
1821 void *
1822 device_private(device_t dev)
1823 {
1824
1825 /*
1826 * The reason why device_private(NULL) is allowed is to simplify the
1827 * work of a lot of userspace request handlers (i.e., c/bdev
1828 * handlers) which grab cfdriver_t->cd_units[n].
1829 * It avoids having them test for it to be NULL and only then calling
1830 * device_private.
1831 */
1832 return dev == NULL ? NULL : dev->dv_private;
1833 }
1834
1835 prop_dictionary_t
1836 device_properties(device_t dev)
1837 {
1838
1839 return (dev->dv_properties);
1840 }
1841
1842 /*
1843 * device_is_a:
1844 *
1845 * Returns true if the device is an instance of the specified
1846 * driver.
1847 */
1848 bool
1849 device_is_a(device_t dev, const char *dname)
1850 {
1851
1852 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1853 }
1854
1855 /*
1856 * device_find_by_xname:
1857 *
1858 * Returns the device of the given name or NULL if it doesn't exist.
1859 */
1860 device_t
1861 device_find_by_xname(const char *name)
1862 {
1863 device_t dv;
1864 deviter_t di;
1865
1866 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1867 if (strcmp(device_xname(dv), name) == 0)
1868 break;
1869 }
1870 deviter_release(&di);
1871
1872 return dv;
1873 }
1874
1875 /*
1876 * device_find_by_driver_unit:
1877 *
1878 * Returns the device of the given driver name and unit or
1879 * NULL if it doesn't exist.
1880 */
1881 device_t
1882 device_find_by_driver_unit(const char *name, int unit)
1883 {
1884 struct cfdriver *cd;
1885
1886 if ((cd = config_cfdriver_lookup(name)) == NULL)
1887 return NULL;
1888 return device_lookup(cd, unit);
1889 }
1890
1891 /*
1892 * Power management related functions.
1893 */
1894
1895 bool
1896 device_pmf_is_registered(device_t dev)
1897 {
1898 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
1899 }
1900
1901 bool
1902 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
1903 {
1904 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
1905 return true;
1906 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
1907 return false;
1908 if (*dev->dv_driver_suspend != NULL &&
1909 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
1910 return false;
1911
1912 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
1913 return true;
1914 }
1915
1916 bool
1917 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
1918 {
1919 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1920 return true;
1921 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1922 return false;
1923 if (*dev->dv_driver_resume != NULL &&
1924 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
1925 return false;
1926
1927 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
1928 return true;
1929 }
1930
1931 bool
1932 device_pmf_driver_shutdown(device_t dev, int how)
1933 {
1934
1935 if (*dev->dv_driver_shutdown != NULL &&
1936 !(*dev->dv_driver_shutdown)(dev, how))
1937 return false;
1938 return true;
1939 }
1940
1941 bool
1942 device_pmf_driver_register(device_t dev,
1943 bool (*suspend)(device_t PMF_FN_PROTO),
1944 bool (*resume)(device_t PMF_FN_PROTO),
1945 bool (*shutdown)(device_t, int))
1946 {
1947 dev->dv_driver_suspend = suspend;
1948 dev->dv_driver_resume = resume;
1949 dev->dv_driver_shutdown = shutdown;
1950 dev->dv_flags |= DVF_POWER_HANDLERS;
1951 return true;
1952 }
1953
1954 void
1955 device_pmf_driver_deregister(device_t dev)
1956 {
1957 dev->dv_driver_suspend = NULL;
1958 dev->dv_driver_resume = NULL;
1959 dev->dv_flags &= ~DVF_POWER_HANDLERS;
1960 }
1961
1962 bool
1963 device_pmf_driver_child_register(device_t dev)
1964 {
1965 device_t parent = device_parent(dev);
1966
1967 if (parent == NULL || parent->dv_driver_child_register == NULL)
1968 return true;
1969 return (*parent->dv_driver_child_register)(dev);
1970 }
1971
1972 void
1973 device_pmf_driver_set_child_register(device_t dev,
1974 bool (*child_register)(device_t))
1975 {
1976 dev->dv_driver_child_register = child_register;
1977 }
1978
1979 void *
1980 device_pmf_bus_private(device_t dev)
1981 {
1982 return dev->dv_bus_private;
1983 }
1984
1985 bool
1986 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
1987 {
1988 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1989 return true;
1990 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
1991 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1992 return false;
1993 if (*dev->dv_bus_suspend != NULL &&
1994 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
1995 return false;
1996
1997 dev->dv_flags |= DVF_BUS_SUSPENDED;
1998 return true;
1999 }
2000
2001 bool
2002 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2003 {
2004 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2005 return true;
2006 if (*dev->dv_bus_resume != NULL &&
2007 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2008 return false;
2009
2010 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2011 return true;
2012 }
2013
2014 bool
2015 device_pmf_bus_shutdown(device_t dev, int how)
2016 {
2017
2018 if (*dev->dv_bus_shutdown != NULL &&
2019 !(*dev->dv_bus_shutdown)(dev, how))
2020 return false;
2021 return true;
2022 }
2023
2024 void
2025 device_pmf_bus_register(device_t dev, void *priv,
2026 bool (*suspend)(device_t PMF_FN_PROTO),
2027 bool (*resume)(device_t PMF_FN_PROTO),
2028 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2029 {
2030 dev->dv_bus_private = priv;
2031 dev->dv_bus_resume = resume;
2032 dev->dv_bus_suspend = suspend;
2033 dev->dv_bus_shutdown = shutdown;
2034 dev->dv_bus_deregister = deregister;
2035 }
2036
2037 void
2038 device_pmf_bus_deregister(device_t dev)
2039 {
2040 if (dev->dv_bus_deregister == NULL)
2041 return;
2042 (*dev->dv_bus_deregister)(dev);
2043 dev->dv_bus_private = NULL;
2044 dev->dv_bus_suspend = NULL;
2045 dev->dv_bus_resume = NULL;
2046 dev->dv_bus_deregister = NULL;
2047 }
2048
2049 void *
2050 device_pmf_class_private(device_t dev)
2051 {
2052 return dev->dv_class_private;
2053 }
2054
2055 bool
2056 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2057 {
2058 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2059 return true;
2060 if (*dev->dv_class_suspend != NULL &&
2061 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2062 return false;
2063
2064 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2065 return true;
2066 }
2067
2068 bool
2069 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2070 {
2071 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2072 return true;
2073 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2074 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2075 return false;
2076 if (*dev->dv_class_resume != NULL &&
2077 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2078 return false;
2079
2080 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2081 return true;
2082 }
2083
2084 void
2085 device_pmf_class_register(device_t dev, void *priv,
2086 bool (*suspend)(device_t PMF_FN_PROTO),
2087 bool (*resume)(device_t PMF_FN_PROTO),
2088 void (*deregister)(device_t))
2089 {
2090 dev->dv_class_private = priv;
2091 dev->dv_class_suspend = suspend;
2092 dev->dv_class_resume = resume;
2093 dev->dv_class_deregister = deregister;
2094 }
2095
2096 void
2097 device_pmf_class_deregister(device_t dev)
2098 {
2099 if (dev->dv_class_deregister == NULL)
2100 return;
2101 (*dev->dv_class_deregister)(dev);
2102 dev->dv_class_private = NULL;
2103 dev->dv_class_suspend = NULL;
2104 dev->dv_class_resume = NULL;
2105 dev->dv_class_deregister = NULL;
2106 }
2107
2108 bool
2109 device_active(device_t dev, devactive_t type)
2110 {
2111 size_t i;
2112
2113 if (dev->dv_activity_count == 0)
2114 return false;
2115
2116 for (i = 0; i < dev->dv_activity_count; ++i)
2117 (*dev->dv_activity_handlers[i])(dev, type);
2118
2119 return true;
2120 }
2121
2122 bool
2123 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2124 {
2125 void (**new_handlers)(device_t, devactive_t);
2126 void (**old_handlers)(device_t, devactive_t);
2127 size_t i, new_size;
2128 int s;
2129
2130 old_handlers = dev->dv_activity_handlers;
2131
2132 for (i = 0; i < dev->dv_activity_count; ++i) {
2133 if (old_handlers[i] == handler)
2134 panic("Double registering of idle handlers");
2135 }
2136
2137 new_size = dev->dv_activity_count + 1;
2138 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
2139
2140 memcpy(new_handlers, old_handlers,
2141 sizeof(void *) * dev->dv_activity_count);
2142 new_handlers[new_size - 1] = handler;
2143
2144 s = splhigh();
2145 dev->dv_activity_count = new_size;
2146 dev->dv_activity_handlers = new_handlers;
2147 splx(s);
2148
2149 if (old_handlers != NULL)
2150 free(old_handlers, M_DEVBUF);
2151
2152 return true;
2153 }
2154
2155 void
2156 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2157 {
2158 void (**new_handlers)(device_t, devactive_t);
2159 void (**old_handlers)(device_t, devactive_t);
2160 size_t i, new_size;
2161 int s;
2162
2163 old_handlers = dev->dv_activity_handlers;
2164
2165 for (i = 0; i < dev->dv_activity_count; ++i) {
2166 if (old_handlers[i] == handler)
2167 break;
2168 }
2169
2170 if (i == dev->dv_activity_count)
2171 return; /* XXX panic? */
2172
2173 new_size = dev->dv_activity_count - 1;
2174
2175 if (new_size == 0) {
2176 new_handlers = NULL;
2177 } else {
2178 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
2179 M_WAITOK);
2180 memcpy(new_handlers, old_handlers, sizeof(void *) * i);
2181 memcpy(new_handlers + i, old_handlers + i + 1,
2182 sizeof(void *) * (new_size - i));
2183 }
2184
2185 s = splhigh();
2186 dev->dv_activity_count = new_size;
2187 dev->dv_activity_handlers = new_handlers;
2188 splx(s);
2189
2190 free(old_handlers, M_DEVBUF);
2191 }
2192
2193 /*
2194 * Device Iteration
2195 *
2196 * deviter_t: a device iterator. Holds state for a "walk" visiting
2197 * each device_t's in the device tree.
2198 *
2199 * deviter_init(di, flags): initialize the device iterator `di'
2200 * to "walk" the device tree. deviter_next(di) will return
2201 * the first device_t in the device tree, or NULL if there are
2202 * no devices.
2203 *
2204 * `flags' is one or more of DEVITER_F_RW, indicating that the
2205 * caller intends to modify the device tree by calling
2206 * config_detach(9) on devices in the order that the iterator
2207 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2208 * nearest the "root" of the device tree to be returned, first;
2209 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2210 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2211 * indicating both that deviter_init() should not respect any
2212 * locks on the device tree, and that deviter_next(di) may run
2213 * in more than one LWP before the walk has finished.
2214 *
2215 * Only one DEVITER_F_RW iterator may be in the device tree at
2216 * once.
2217 *
2218 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2219 *
2220 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2221 * DEVITER_F_LEAVES_FIRST are used in combination.
2222 *
2223 * deviter_first(di, flags): initialize the device iterator `di'
2224 * and return the first device_t in the device tree, or NULL
2225 * if there are no devices. The statement
2226 *
2227 * dv = deviter_first(di);
2228 *
2229 * is shorthand for
2230 *
2231 * deviter_init(di);
2232 * dv = deviter_next(di);
2233 *
2234 * deviter_next(di): return the next device_t in the device tree,
2235 * or NULL if there are no more devices. deviter_next(di)
2236 * is undefined if `di' was not initialized with deviter_init() or
2237 * deviter_first().
2238 *
2239 * deviter_release(di): stops iteration (subsequent calls to
2240 * deviter_next() will return NULL), releases any locks and
2241 * resources held by the device iterator.
2242 *
2243 * Device iteration does not return device_t's in any particular
2244 * order. An iterator will never return the same device_t twice.
2245 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2246 * is called repeatedly on the same `di', it will eventually return
2247 * NULL. It is ok to attach/detach devices during device iteration.
2248 */
2249 void
2250 deviter_init(deviter_t *di, deviter_flags_t flags)
2251 {
2252 device_t dv;
2253 bool rw;
2254
2255 KASSERT(!rw || curlwp != NULL);
2256
2257 mutex_enter(&alldevs_mtx);
2258 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2259 flags |= DEVITER_F_RW;
2260 alldevs_nwrite++;
2261 alldevs_writer = NULL;
2262 alldevs_nread = 0;
2263 } else {
2264 rw = (flags & DEVITER_F_RW) != 0;
2265
2266 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2267 ;
2268 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2269 (rw && alldevs_nread != 0))
2270 cv_wait(&alldevs_cv, &alldevs_mtx);
2271
2272 if (rw) {
2273 if (alldevs_nwrite++ == 0)
2274 alldevs_writer = curlwp;
2275 } else
2276 alldevs_nread++;
2277 }
2278 mutex_exit(&alldevs_mtx);
2279
2280 memset(di, 0, sizeof(*di));
2281
2282 di->di_flags = flags;
2283
2284 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2285 case DEVITER_F_LEAVES_FIRST:
2286 TAILQ_FOREACH(dv, &alldevs, dv_list)
2287 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2288 break;
2289 case DEVITER_F_ROOT_FIRST:
2290 TAILQ_FOREACH(dv, &alldevs, dv_list)
2291 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2292 break;
2293 default:
2294 break;
2295 }
2296
2297 deviter_reinit(di);
2298 }
2299
2300 static void
2301 deviter_reinit(deviter_t *di)
2302 {
2303 if ((di->di_flags & DEVITER_F_RW) != 0)
2304 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2305 else
2306 di->di_prev = TAILQ_FIRST(&alldevs);
2307 }
2308
2309 device_t
2310 deviter_first(deviter_t *di, deviter_flags_t flags)
2311 {
2312 deviter_init(di, flags);
2313 return deviter_next(di);
2314 }
2315
2316 static device_t
2317 deviter_next1(deviter_t *di)
2318 {
2319 device_t dv;
2320
2321 dv = di->di_prev;
2322
2323 if (dv == NULL)
2324 ;
2325 else if ((di->di_flags & DEVITER_F_RW) != 0)
2326 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2327 else
2328 di->di_prev = TAILQ_NEXT(dv, dv_list);
2329
2330 return dv;
2331 }
2332
2333 device_t
2334 deviter_next(deviter_t *di)
2335 {
2336 device_t dv = NULL;
2337
2338 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2339 case 0:
2340 return deviter_next1(di);
2341 case DEVITER_F_LEAVES_FIRST:
2342 while (di->di_curdepth >= 0) {
2343 if ((dv = deviter_next1(di)) == NULL) {
2344 di->di_curdepth--;
2345 deviter_reinit(di);
2346 } else if (dv->dv_depth == di->di_curdepth)
2347 break;
2348 }
2349 return dv;
2350 case DEVITER_F_ROOT_FIRST:
2351 while (di->di_curdepth <= di->di_maxdepth) {
2352 if ((dv = deviter_next1(di)) == NULL) {
2353 di->di_curdepth++;
2354 deviter_reinit(di);
2355 } else if (dv->dv_depth == di->di_curdepth)
2356 break;
2357 }
2358 return dv;
2359 default:
2360 return NULL;
2361 }
2362 }
2363
2364 void
2365 deviter_release(deviter_t *di)
2366 {
2367 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2368
2369 KASSERT(!rw || alldevs_nwrite > 0);
2370
2371 mutex_enter(&alldevs_mtx);
2372 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2373 --alldevs_nwrite;
2374 else {
2375
2376 if (rw) {
2377 if (--alldevs_nwrite == 0)
2378 alldevs_writer = NULL;
2379 } else
2380 --alldevs_nread;
2381
2382 cv_signal(&alldevs_cv);
2383 }
2384 mutex_exit(&alldevs_mtx);
2385 }
2386