Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.139
      1 /* $NetBSD: subr_autoconf.c,v 1.139 2008/03/07 07:03:06 dyoung Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.139 2008/03/07 07:03:06 dyoung Exp $");
     81 
     82 #include "opt_multiprocessor.h"
     83 #include "opt_ddb.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/systm.h>
     92 #include <sys/kernel.h>
     93 #include <sys/errno.h>
     94 #include <sys/proc.h>
     95 #include <sys/reboot.h>
     96 
     97 #include <sys/buf.h>
     98 #include <sys/dirent.h>
     99 #include <sys/vnode.h>
    100 #include <sys/mount.h>
    101 #include <sys/namei.h>
    102 #include <sys/unistd.h>
    103 #include <sys/fcntl.h>
    104 #include <sys/lockf.h>
    105 #include <sys/callout.h>
    106 #include <sys/mutex.h>
    107 #include <sys/condvar.h>
    108 
    109 #include <sys/disk.h>
    110 
    111 #include <machine/limits.h>
    112 
    113 #include "opt_userconf.h"
    114 #ifdef USERCONF
    115 #include <sys/userconf.h>
    116 #endif
    117 
    118 #ifdef __i386__
    119 #include "opt_splash.h"
    120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    121 #include <dev/splash/splash.h>
    122 extern struct splash_progress *splash_progress_state;
    123 #endif
    124 #endif
    125 
    126 /*
    127  * Autoconfiguration subroutines.
    128  */
    129 
    130 typedef struct pmf_private {
    131 	int		pp_nwait;
    132 	int		pp_nlock;
    133 	lwp_t		*pp_holder;
    134 	kmutex_t	pp_mtx;
    135 	kcondvar_t	pp_cv;
    136 } pmf_private_t;
    137 
    138 /*
    139  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    140  * devices and drivers are found via these tables.
    141  */
    142 extern struct cfdata cfdata[];
    143 extern const short cfroots[];
    144 
    145 /*
    146  * List of all cfdriver structures.  We use this to detect duplicates
    147  * when other cfdrivers are loaded.
    148  */
    149 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    150 extern struct cfdriver * const cfdriver_list_initial[];
    151 
    152 /*
    153  * Initial list of cfattach's.
    154  */
    155 extern const struct cfattachinit cfattachinit[];
    156 
    157 /*
    158  * List of cfdata tables.  We always have one such list -- the one
    159  * built statically when the kernel was configured.
    160  */
    161 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    162 static struct cftable initcftable;
    163 
    164 #define	ROOT ((device_t)NULL)
    165 
    166 struct matchinfo {
    167 	cfsubmatch_t fn;
    168 	struct	device *parent;
    169 	const int *locs;
    170 	void	*aux;
    171 	struct	cfdata *match;
    172 	int	pri;
    173 };
    174 
    175 static char *number(char *, int);
    176 static void mapply(struct matchinfo *, cfdata_t);
    177 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    178 static void config_devdealloc(device_t);
    179 static void config_makeroom(int, struct cfdriver *);
    180 static void config_devlink(device_t);
    181 static void config_devunlink(device_t);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 
    202 static void config_process_deferred(struct deferred_config_head *, device_t);
    203 
    204 /* Hooks to finalize configuration once all real devices have been found. */
    205 struct finalize_hook {
    206 	TAILQ_ENTRY(finalize_hook) f_list;
    207 	int (*f_func)(device_t);
    208 	device_t f_dev;
    209 };
    210 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    211 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    212 static int config_finalize_done;
    213 
    214 /* list of all devices */
    215 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    216 kcondvar_t alldevs_cv;
    217 kmutex_t alldevs_mtx;
    218 static int alldevs_nread = 0;
    219 static int alldevs_nwrite = 0;
    220 static lwp_t *alldevs_writer = NULL;
    221 
    222 volatile int config_pending;		/* semaphore for mountroot */
    223 
    224 #define	STREQ(s1, s2)			\
    225 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    226 
    227 static int config_initialized;		/* config_init() has been called. */
    228 
    229 static int config_do_twiddle;
    230 
    231 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
    232 
    233 struct vnode *
    234 opendisk(struct device *dv)
    235 {
    236 	int bmajor, bminor;
    237 	struct vnode *tmpvn;
    238 	int error;
    239 	dev_t dev;
    240 
    241 	/*
    242 	 * Lookup major number for disk block device.
    243 	 */
    244 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    245 	if (bmajor == -1)
    246 		return NULL;
    247 
    248 	bminor = minor(device_unit(dv));
    249 	/*
    250 	 * Fake a temporary vnode for the disk, open it, and read
    251 	 * and hash the sectors.
    252 	 */
    253 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    254 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    255 	if (bdevvp(dev, &tmpvn))
    256 		panic("%s: can't alloc vnode for %s", __func__,
    257 		    device_xname(dv));
    258 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    259 	if (error) {
    260 #ifndef DEBUG
    261 		/*
    262 		 * Ignore errors caused by missing device, partition,
    263 		 * or medium.
    264 		 */
    265 		if (error != ENXIO && error != ENODEV)
    266 #endif
    267 			printf("%s: can't open dev %s (%d)\n",
    268 			    __func__, device_xname(dv), error);
    269 		vput(tmpvn);
    270 		return NULL;
    271 	}
    272 
    273 	return tmpvn;
    274 }
    275 
    276 int
    277 config_handle_wedges(struct device *dv, int par)
    278 {
    279 	struct dkwedge_list wl;
    280 	struct dkwedge_info *wi;
    281 	struct vnode *vn;
    282 	char diskname[16];
    283 	int i, error;
    284 
    285 	if ((vn = opendisk(dv)) == NULL)
    286 		return -1;
    287 
    288 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    289 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    290 
    291 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    292 	VOP_CLOSE(vn, FREAD, NOCRED);
    293 	vput(vn);
    294 	if (error) {
    295 #ifdef DEBUG_WEDGE
    296 		printf("%s: List wedges returned %d\n",
    297 		    device_xname(dv), error);
    298 #endif
    299 		free(wi, M_TEMP);
    300 		return -1;
    301 	}
    302 
    303 #ifdef DEBUG_WEDGE
    304 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    305 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    306 #endif
    307 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    308 	    par + 'a');
    309 
    310 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    311 #ifdef DEBUG_WEDGE
    312 		printf("%s: Looking for %s in %s\n",
    313 		    device_xname(dv), diskname, wi[i].dkw_wname);
    314 #endif
    315 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    316 			break;
    317 	}
    318 
    319 	if (i == wl.dkwl_ncopied) {
    320 #ifdef DEBUG_WEDGE
    321 		printf("%s: Cannot find wedge with parent %s\n",
    322 		    device_xname(dv), diskname);
    323 #endif
    324 		free(wi, M_TEMP);
    325 		return -1;
    326 	}
    327 
    328 #ifdef DEBUG_WEDGE
    329 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    330 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    331 		(unsigned long long)wi[i].dkw_offset,
    332 		(unsigned long long)wi[i].dkw_size);
    333 #endif
    334 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    335 	free(wi, M_TEMP);
    336 	return 0;
    337 }
    338 
    339 /*
    340  * Initialize the autoconfiguration data structures.  Normally this
    341  * is done by configure(), but some platforms need to do this very
    342  * early (to e.g. initialize the console).
    343  */
    344 void
    345 config_init(void)
    346 {
    347 	const struct cfattachinit *cfai;
    348 	int i, j;
    349 
    350 	if (config_initialized)
    351 		return;
    352 
    353 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    354 	cv_init(&alldevs_cv, "alldevs");
    355 
    356 	/* allcfdrivers is statically initialized. */
    357 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    358 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    359 			panic("configure: duplicate `%s' drivers",
    360 			    cfdriver_list_initial[i]->cd_name);
    361 	}
    362 
    363 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    364 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    365 			if (config_cfattach_attach(cfai->cfai_name,
    366 						   cfai->cfai_list[j]) != 0)
    367 				panic("configure: duplicate `%s' attachment "
    368 				    "of `%s' driver",
    369 				    cfai->cfai_list[j]->ca_name,
    370 				    cfai->cfai_name);
    371 		}
    372 	}
    373 
    374 	initcftable.ct_cfdata = cfdata;
    375 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    376 
    377 	config_initialized = 1;
    378 }
    379 
    380 void
    381 config_deferred(device_t dev)
    382 {
    383 	config_process_deferred(&deferred_config_queue, dev);
    384 	config_process_deferred(&interrupt_config_queue, dev);
    385 }
    386 
    387 /*
    388  * Configure the system's hardware.
    389  */
    390 void
    391 configure(void)
    392 {
    393 	int errcnt;
    394 
    395 	/* Initialize data structures. */
    396 	config_init();
    397 	pmf_init();
    398 
    399 #ifdef USERCONF
    400 	if (boothowto & RB_USERCONF)
    401 		user_config();
    402 #endif
    403 
    404 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    405 		config_do_twiddle = 1;
    406 		printf_nolog("Detecting hardware...");
    407 	}
    408 
    409 	/*
    410 	 * Do the machine-dependent portion of autoconfiguration.  This
    411 	 * sets the configuration machinery here in motion by "finding"
    412 	 * the root bus.  When this function returns, we expect interrupts
    413 	 * to be enabled.
    414 	 */
    415 	cpu_configure();
    416 
    417 	/* Initialize callouts, part 2. */
    418 	callout_startup2();
    419 
    420 	/*
    421 	 * Now that we've found all the hardware, start the real time
    422 	 * and statistics clocks.
    423 	 */
    424 	initclocks();
    425 
    426 	cold = 0;	/* clocks are running, we're warm now! */
    427 
    428 	/* Boot the secondary processors. */
    429 	mp_online = true;
    430 #if defined(MULTIPROCESSOR)
    431 	cpu_boot_secondary_processors();
    432 #endif
    433 
    434 	/*
    435 	 * Now callback to finish configuration for devices which want
    436 	 * to do this once interrupts are enabled.
    437 	 */
    438 	config_process_deferred(&interrupt_config_queue, NULL);
    439 
    440 	errcnt = aprint_get_error_count();
    441 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
    442 	    (boothowto & AB_VERBOSE) == 0) {
    443 		if (config_do_twiddle) {
    444 			config_do_twiddle = 0;
    445 			printf_nolog("done.\n");
    446 		}
    447 		if (errcnt != 0) {
    448 			printf("WARNING: %d error%s while detecting hardware; "
    449 			    "check system log.\n", errcnt,
    450 			    errcnt == 1 ? "" : "s");
    451 		}
    452 	}
    453 }
    454 
    455 /*
    456  * Add a cfdriver to the system.
    457  */
    458 int
    459 config_cfdriver_attach(struct cfdriver *cd)
    460 {
    461 	struct cfdriver *lcd;
    462 
    463 	/* Make sure this driver isn't already in the system. */
    464 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    465 		if (STREQ(lcd->cd_name, cd->cd_name))
    466 			return (EEXIST);
    467 	}
    468 
    469 	LIST_INIT(&cd->cd_attach);
    470 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    471 
    472 	return (0);
    473 }
    474 
    475 /*
    476  * Remove a cfdriver from the system.
    477  */
    478 int
    479 config_cfdriver_detach(struct cfdriver *cd)
    480 {
    481 	int i;
    482 
    483 	/* Make sure there are no active instances. */
    484 	for (i = 0; i < cd->cd_ndevs; i++) {
    485 		if (cd->cd_devs[i] != NULL)
    486 			return (EBUSY);
    487 	}
    488 
    489 	/* ...and no attachments loaded. */
    490 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    491 		return (EBUSY);
    492 
    493 	LIST_REMOVE(cd, cd_list);
    494 
    495 	KASSERT(cd->cd_devs == NULL);
    496 
    497 	return (0);
    498 }
    499 
    500 /*
    501  * Look up a cfdriver by name.
    502  */
    503 struct cfdriver *
    504 config_cfdriver_lookup(const char *name)
    505 {
    506 	struct cfdriver *cd;
    507 
    508 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    509 		if (STREQ(cd->cd_name, name))
    510 			return (cd);
    511 	}
    512 
    513 	return (NULL);
    514 }
    515 
    516 /*
    517  * Add a cfattach to the specified driver.
    518  */
    519 int
    520 config_cfattach_attach(const char *driver, struct cfattach *ca)
    521 {
    522 	struct cfattach *lca;
    523 	struct cfdriver *cd;
    524 
    525 	cd = config_cfdriver_lookup(driver);
    526 	if (cd == NULL)
    527 		return (ESRCH);
    528 
    529 	/* Make sure this attachment isn't already on this driver. */
    530 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    531 		if (STREQ(lca->ca_name, ca->ca_name))
    532 			return (EEXIST);
    533 	}
    534 
    535 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    536 
    537 	return (0);
    538 }
    539 
    540 /*
    541  * Remove a cfattach from the specified driver.
    542  */
    543 int
    544 config_cfattach_detach(const char *driver, struct cfattach *ca)
    545 {
    546 	struct cfdriver *cd;
    547 	device_t dev;
    548 	int i;
    549 
    550 	cd = config_cfdriver_lookup(driver);
    551 	if (cd == NULL)
    552 		return (ESRCH);
    553 
    554 	/* Make sure there are no active instances. */
    555 	for (i = 0; i < cd->cd_ndevs; i++) {
    556 		if ((dev = cd->cd_devs[i]) == NULL)
    557 			continue;
    558 		if (dev->dv_cfattach == ca)
    559 			return (EBUSY);
    560 	}
    561 
    562 	LIST_REMOVE(ca, ca_list);
    563 
    564 	return (0);
    565 }
    566 
    567 /*
    568  * Look up a cfattach by name.
    569  */
    570 static struct cfattach *
    571 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    572 {
    573 	struct cfattach *ca;
    574 
    575 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    576 		if (STREQ(ca->ca_name, atname))
    577 			return (ca);
    578 	}
    579 
    580 	return (NULL);
    581 }
    582 
    583 /*
    584  * Look up a cfattach by driver/attachment name.
    585  */
    586 struct cfattach *
    587 config_cfattach_lookup(const char *name, const char *atname)
    588 {
    589 	struct cfdriver *cd;
    590 
    591 	cd = config_cfdriver_lookup(name);
    592 	if (cd == NULL)
    593 		return (NULL);
    594 
    595 	return (config_cfattach_lookup_cd(cd, atname));
    596 }
    597 
    598 /*
    599  * Apply the matching function and choose the best.  This is used
    600  * a few times and we want to keep the code small.
    601  */
    602 static void
    603 mapply(struct matchinfo *m, cfdata_t cf)
    604 {
    605 	int pri;
    606 
    607 	if (m->fn != NULL) {
    608 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    609 	} else {
    610 		pri = config_match(m->parent, cf, m->aux);
    611 	}
    612 	if (pri > m->pri) {
    613 		m->match = cf;
    614 		m->pri = pri;
    615 	}
    616 }
    617 
    618 int
    619 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    620 {
    621 	const struct cfiattrdata *ci;
    622 	const struct cflocdesc *cl;
    623 	int nlocs, i;
    624 
    625 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    626 	KASSERT(ci);
    627 	nlocs = ci->ci_loclen;
    628 	for (i = 0; i < nlocs; i++) {
    629 		cl = &ci->ci_locdesc[i];
    630 		/* !cld_defaultstr means no default value */
    631 		if ((!(cl->cld_defaultstr)
    632 		     || (cf->cf_loc[i] != cl->cld_default))
    633 		    && cf->cf_loc[i] != locs[i])
    634 			return (0);
    635 	}
    636 
    637 	return (config_match(parent, cf, aux));
    638 }
    639 
    640 /*
    641  * Helper function: check whether the driver supports the interface attribute
    642  * and return its descriptor structure.
    643  */
    644 static const struct cfiattrdata *
    645 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    646 {
    647 	const struct cfiattrdata * const *cpp;
    648 
    649 	if (cd->cd_attrs == NULL)
    650 		return (0);
    651 
    652 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    653 		if (STREQ((*cpp)->ci_name, ia)) {
    654 			/* Match. */
    655 			return (*cpp);
    656 		}
    657 	}
    658 	return (0);
    659 }
    660 
    661 /*
    662  * Lookup an interface attribute description by name.
    663  * If the driver is given, consider only its supported attributes.
    664  */
    665 const struct cfiattrdata *
    666 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    667 {
    668 	const struct cfdriver *d;
    669 	const struct cfiattrdata *ia;
    670 
    671 	if (cd)
    672 		return (cfdriver_get_iattr(cd, name));
    673 
    674 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    675 		ia = cfdriver_get_iattr(d, name);
    676 		if (ia)
    677 			return (ia);
    678 	}
    679 	return (0);
    680 }
    681 
    682 /*
    683  * Determine if `parent' is a potential parent for a device spec based
    684  * on `cfp'.
    685  */
    686 static int
    687 cfparent_match(const device_t parent, const struct cfparent *cfp)
    688 {
    689 	struct cfdriver *pcd;
    690 
    691 	/* We don't match root nodes here. */
    692 	if (cfp == NULL)
    693 		return (0);
    694 
    695 	pcd = parent->dv_cfdriver;
    696 	KASSERT(pcd != NULL);
    697 
    698 	/*
    699 	 * First, ensure this parent has the correct interface
    700 	 * attribute.
    701 	 */
    702 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    703 		return (0);
    704 
    705 	/*
    706 	 * If no specific parent device instance was specified (i.e.
    707 	 * we're attaching to the attribute only), we're done!
    708 	 */
    709 	if (cfp->cfp_parent == NULL)
    710 		return (1);
    711 
    712 	/*
    713 	 * Check the parent device's name.
    714 	 */
    715 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    716 		return (0);	/* not the same parent */
    717 
    718 	/*
    719 	 * Make sure the unit number matches.
    720 	 */
    721 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    722 	    cfp->cfp_unit == parent->dv_unit)
    723 		return (1);
    724 
    725 	/* Unit numbers don't match. */
    726 	return (0);
    727 }
    728 
    729 /*
    730  * Helper for config_cfdata_attach(): check all devices whether it could be
    731  * parent any attachment in the config data table passed, and rescan.
    732  */
    733 static void
    734 rescan_with_cfdata(const struct cfdata *cf)
    735 {
    736 	device_t d;
    737 	const struct cfdata *cf1;
    738 	deviter_t di;
    739 
    740 
    741 	/*
    742 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
    743 	 * the outer loop.
    744 	 */
    745 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    746 
    747 		if (!(d->dv_cfattach->ca_rescan))
    748 			continue;
    749 
    750 		for (cf1 = cf; cf1->cf_name; cf1++) {
    751 
    752 			if (!cfparent_match(d, cf1->cf_pspec))
    753 				continue;
    754 
    755 			(*d->dv_cfattach->ca_rescan)(d,
    756 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    757 		}
    758 	}
    759 	deviter_release(&di);
    760 }
    761 
    762 /*
    763  * Attach a supplemental config data table and rescan potential
    764  * parent devices if required.
    765  */
    766 int
    767 config_cfdata_attach(cfdata_t cf, int scannow)
    768 {
    769 	struct cftable *ct;
    770 
    771 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
    772 	ct->ct_cfdata = cf;
    773 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    774 
    775 	if (scannow)
    776 		rescan_with_cfdata(cf);
    777 
    778 	return (0);
    779 }
    780 
    781 /*
    782  * Helper for config_cfdata_detach: check whether a device is
    783  * found through any attachment in the config data table.
    784  */
    785 static int
    786 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    787 {
    788 	const struct cfdata *cf1;
    789 
    790 	for (cf1 = cf; cf1->cf_name; cf1++)
    791 		if (d->dv_cfdata == cf1)
    792 			return (1);
    793 
    794 	return (0);
    795 }
    796 
    797 /*
    798  * Detach a supplemental config data table. Detach all devices found
    799  * through that table (and thus keeping references to it) before.
    800  */
    801 int
    802 config_cfdata_detach(cfdata_t cf)
    803 {
    804 	device_t d;
    805 	int error = 0;
    806 	struct cftable *ct;
    807 	deviter_t di;
    808 
    809 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    810 	     d = deviter_next(&di)) {
    811 		if (!dev_in_cfdata(d, cf))
    812 			continue;
    813 		if ((error = config_detach(d, 0)) != 0)
    814 			break;
    815 	}
    816 	deviter_release(&di);
    817 	if (error) {
    818 		aprint_error_dev(d, "unable to detach instance\n");
    819 		return error;
    820 	}
    821 
    822 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    823 		if (ct->ct_cfdata == cf) {
    824 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    825 			free(ct, M_DEVBUF);
    826 			return (0);
    827 		}
    828 	}
    829 
    830 	/* not found -- shouldn't happen */
    831 	return (EINVAL);
    832 }
    833 
    834 /*
    835  * Invoke the "match" routine for a cfdata entry on behalf of
    836  * an external caller, usually a "submatch" routine.
    837  */
    838 int
    839 config_match(device_t parent, cfdata_t cf, void *aux)
    840 {
    841 	struct cfattach *ca;
    842 
    843 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    844 	if (ca == NULL) {
    845 		/* No attachment for this entry, oh well. */
    846 		return (0);
    847 	}
    848 
    849 	return ((*ca->ca_match)(parent, cf, aux));
    850 }
    851 
    852 /*
    853  * Iterate over all potential children of some device, calling the given
    854  * function (default being the child's match function) for each one.
    855  * Nonzero returns are matches; the highest value returned is considered
    856  * the best match.  Return the `found child' if we got a match, or NULL
    857  * otherwise.  The `aux' pointer is simply passed on through.
    858  *
    859  * Note that this function is designed so that it can be used to apply
    860  * an arbitrary function to all potential children (its return value
    861  * can be ignored).
    862  */
    863 cfdata_t
    864 config_search_loc(cfsubmatch_t fn, device_t parent,
    865 		  const char *ifattr, const int *locs, void *aux)
    866 {
    867 	struct cftable *ct;
    868 	cfdata_t cf;
    869 	struct matchinfo m;
    870 
    871 	KASSERT(config_initialized);
    872 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    873 
    874 	m.fn = fn;
    875 	m.parent = parent;
    876 	m.locs = locs;
    877 	m.aux = aux;
    878 	m.match = NULL;
    879 	m.pri = 0;
    880 
    881 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    882 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    883 
    884 			/* We don't match root nodes here. */
    885 			if (!cf->cf_pspec)
    886 				continue;
    887 
    888 			/*
    889 			 * Skip cf if no longer eligible, otherwise scan
    890 			 * through parents for one matching `parent', and
    891 			 * try match function.
    892 			 */
    893 			if (cf->cf_fstate == FSTATE_FOUND)
    894 				continue;
    895 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    896 			    cf->cf_fstate == FSTATE_DSTAR)
    897 				continue;
    898 
    899 			/*
    900 			 * If an interface attribute was specified,
    901 			 * consider only children which attach to
    902 			 * that attribute.
    903 			 */
    904 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    905 				continue;
    906 
    907 			if (cfparent_match(parent, cf->cf_pspec))
    908 				mapply(&m, cf);
    909 		}
    910 	}
    911 	return (m.match);
    912 }
    913 
    914 cfdata_t
    915 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    916     void *aux)
    917 {
    918 
    919 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
    920 }
    921 
    922 /*
    923  * Find the given root device.
    924  * This is much like config_search, but there is no parent.
    925  * Don't bother with multiple cfdata tables; the root node
    926  * must always be in the initial table.
    927  */
    928 cfdata_t
    929 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    930 {
    931 	cfdata_t cf;
    932 	const short *p;
    933 	struct matchinfo m;
    934 
    935 	m.fn = fn;
    936 	m.parent = ROOT;
    937 	m.aux = aux;
    938 	m.match = NULL;
    939 	m.pri = 0;
    940 	m.locs = 0;
    941 	/*
    942 	 * Look at root entries for matching name.  We do not bother
    943 	 * with found-state here since only one root should ever be
    944 	 * searched (and it must be done first).
    945 	 */
    946 	for (p = cfroots; *p >= 0; p++) {
    947 		cf = &cfdata[*p];
    948 		if (strcmp(cf->cf_name, rootname) == 0)
    949 			mapply(&m, cf);
    950 	}
    951 	return (m.match);
    952 }
    953 
    954 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    955 
    956 /*
    957  * The given `aux' argument describes a device that has been found
    958  * on the given parent, but not necessarily configured.  Locate the
    959  * configuration data for that device (using the submatch function
    960  * provided, or using candidates' cd_match configuration driver
    961  * functions) and attach it, and return true.  If the device was
    962  * not configured, call the given `print' function and return 0.
    963  */
    964 device_t
    965 config_found_sm_loc(device_t parent,
    966 		const char *ifattr, const int *locs, void *aux,
    967 		cfprint_t print, cfsubmatch_t submatch)
    968 {
    969 	cfdata_t cf;
    970 
    971 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    972 	if (splash_progress_state)
    973 		splash_progress_update(splash_progress_state);
    974 #endif
    975 
    976 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    977 		return(config_attach_loc(parent, cf, locs, aux, print));
    978 	if (print) {
    979 		if (config_do_twiddle)
    980 			twiddle();
    981 		aprint_normal("%s", msgs[(*print)(aux, parent->dv_xname)]);
    982 	}
    983 
    984 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    985 	if (splash_progress_state)
    986 		splash_progress_update(splash_progress_state);
    987 #endif
    988 
    989 	return (NULL);
    990 }
    991 
    992 device_t
    993 config_found_ia(device_t parent, const char *ifattr, void *aux,
    994     cfprint_t print)
    995 {
    996 
    997 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
    998 }
    999 
   1000 device_t
   1001 config_found(device_t parent, void *aux, cfprint_t print)
   1002 {
   1003 
   1004 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
   1005 }
   1006 
   1007 /*
   1008  * As above, but for root devices.
   1009  */
   1010 device_t
   1011 config_rootfound(const char *rootname, void *aux)
   1012 {
   1013 	cfdata_t cf;
   1014 
   1015 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1016 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
   1017 	aprint_error("root device %s not configured\n", rootname);
   1018 	return (NULL);
   1019 }
   1020 
   1021 /* just like sprintf(buf, "%d") except that it works from the end */
   1022 static char *
   1023 number(char *ep, int n)
   1024 {
   1025 
   1026 	*--ep = 0;
   1027 	while (n >= 10) {
   1028 		*--ep = (n % 10) + '0';
   1029 		n /= 10;
   1030 	}
   1031 	*--ep = n + '0';
   1032 	return (ep);
   1033 }
   1034 
   1035 /*
   1036  * Expand the size of the cd_devs array if necessary.
   1037  */
   1038 static void
   1039 config_makeroom(int n, struct cfdriver *cd)
   1040 {
   1041 	int old, new;
   1042 	void **nsp;
   1043 
   1044 	if (n < cd->cd_ndevs)
   1045 		return;
   1046 
   1047 	/*
   1048 	 * Need to expand the array.
   1049 	 */
   1050 	old = cd->cd_ndevs;
   1051 	if (old == 0)
   1052 		new = 4;
   1053 	else
   1054 		new = old * 2;
   1055 	while (new <= n)
   1056 		new *= 2;
   1057 	cd->cd_ndevs = new;
   1058 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
   1059 	    cold ? M_NOWAIT : M_WAITOK);
   1060 	if (nsp == NULL)
   1061 		panic("config_attach: %sing dev array",
   1062 		    old != 0 ? "expand" : "creat");
   1063 	memset(nsp + old, 0, (new - old) * sizeof(void *));
   1064 	if (old != 0) {
   1065 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
   1066 		free(cd->cd_devs, M_DEVBUF);
   1067 	}
   1068 	cd->cd_devs = nsp;
   1069 }
   1070 
   1071 static void
   1072 config_devlink(device_t dev)
   1073 {
   1074 	struct cfdriver *cd = dev->dv_cfdriver;
   1075 
   1076 	/* put this device in the devices array */
   1077 	config_makeroom(dev->dv_unit, cd);
   1078 	if (cd->cd_devs[dev->dv_unit])
   1079 		panic("config_attach: duplicate %s", dev->dv_xname);
   1080 	cd->cd_devs[dev->dv_unit] = dev;
   1081 
   1082 	/* It is safe to add a device to the tail of the list while
   1083 	 * readers are in the list, but not while a writer is in
   1084 	 * the list.  Wait for any writer to complete.
   1085 	 */
   1086 	mutex_enter(&alldevs_mtx);
   1087 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1088 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1089 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1090 	cv_signal(&alldevs_cv);
   1091 	mutex_exit(&alldevs_mtx);
   1092 }
   1093 
   1094 static void
   1095 config_devunlink(device_t dev)
   1096 {
   1097 	struct cfdriver *cd = dev->dv_cfdriver;
   1098 	int i;
   1099 
   1100 	/* Unlink from device list. */
   1101 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1102 
   1103 	/* Remove from cfdriver's array. */
   1104 	cd->cd_devs[dev->dv_unit] = NULL;
   1105 
   1106 	/*
   1107 	 * If the device now has no units in use, deallocate its softc array.
   1108 	 */
   1109 	for (i = 0; i < cd->cd_ndevs; i++)
   1110 		if (cd->cd_devs[i] != NULL)
   1111 			break;
   1112 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
   1113 		free(cd->cd_devs, M_DEVBUF);
   1114 		cd->cd_devs = NULL;
   1115 		cd->cd_ndevs = 0;
   1116 	}
   1117 }
   1118 
   1119 static device_t
   1120 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1121 {
   1122 	struct cfdriver *cd;
   1123 	struct cfattach *ca;
   1124 	size_t lname, lunit;
   1125 	const char *xunit;
   1126 	int myunit;
   1127 	char num[10];
   1128 	device_t dev;
   1129 	void *dev_private;
   1130 	const struct cfiattrdata *ia;
   1131 
   1132 	cd = config_cfdriver_lookup(cf->cf_name);
   1133 	if (cd == NULL)
   1134 		return (NULL);
   1135 
   1136 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1137 	if (ca == NULL)
   1138 		return (NULL);
   1139 
   1140 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1141 	    ca->ca_devsize < sizeof(struct device))
   1142 		panic("config_devalloc");
   1143 
   1144 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1145 	if (cf->cf_fstate == FSTATE_STAR) {
   1146 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1147 			if (cd->cd_devs[myunit] == NULL)
   1148 				break;
   1149 		/*
   1150 		 * myunit is now the unit of the first NULL device pointer,
   1151 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1152 		 */
   1153 	} else {
   1154 		myunit = cf->cf_unit;
   1155 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1156 			return (NULL);
   1157 	}
   1158 #else
   1159 	myunit = cf->cf_unit;
   1160 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1161 
   1162 	/* compute length of name and decimal expansion of unit number */
   1163 	lname = strlen(cd->cd_name);
   1164 	xunit = number(&num[sizeof(num)], myunit);
   1165 	lunit = &num[sizeof(num)] - xunit;
   1166 	if (lname + lunit > sizeof(dev->dv_xname))
   1167 		panic("config_devalloc: device name too long");
   1168 
   1169 	/* get memory for all device vars */
   1170 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1171 	if (ca->ca_devsize > 0) {
   1172 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
   1173 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1174 		if (dev_private == NULL)
   1175 			panic("config_devalloc: memory allocation for device softc failed");
   1176 	} else {
   1177 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1178 		dev_private = NULL;
   1179 	}
   1180 
   1181 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1182 		dev = malloc(sizeof(struct device), M_DEVBUF,
   1183 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1184 	} else {
   1185 		dev = dev_private;
   1186 	}
   1187 	if (dev == NULL)
   1188 		panic("config_devalloc: memory allocation for device_t failed");
   1189 
   1190 	dev->dv_class = cd->cd_class;
   1191 	dev->dv_cfdata = cf;
   1192 	dev->dv_cfdriver = cd;
   1193 	dev->dv_cfattach = ca;
   1194 	dev->dv_unit = myunit;
   1195 	dev->dv_activity_count = 0;
   1196 	dev->dv_activity_handlers = NULL;
   1197 	dev->dv_private = dev_private;
   1198 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1199 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1200 	dev->dv_parent = parent;
   1201 	if (parent != NULL)
   1202 		dev->dv_depth = parent->dv_depth + 1;
   1203 	else
   1204 		dev->dv_depth = 0;
   1205 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1206 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1207 	if (locs) {
   1208 		KASSERT(parent); /* no locators at root */
   1209 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1210 				    parent->dv_cfdriver);
   1211 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
   1212 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1213 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
   1214 	}
   1215 	dev->dv_properties = prop_dictionary_create();
   1216 	KASSERT(dev->dv_properties != NULL);
   1217 
   1218 	return (dev);
   1219 }
   1220 
   1221 static void
   1222 config_devdealloc(device_t dev)
   1223 {
   1224 
   1225 	KASSERT(dev->dv_properties != NULL);
   1226 	prop_object_release(dev->dv_properties);
   1227 
   1228 	if (dev->dv_activity_handlers)
   1229 		panic("config_devdealloc with registered handlers");
   1230 
   1231 	if (dev->dv_locators)
   1232 		free(dev->dv_locators, M_DEVBUF);
   1233 
   1234 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
   1235 		free(dev->dv_private, M_DEVBUF);
   1236 
   1237 	free(dev, M_DEVBUF);
   1238 }
   1239 
   1240 /*
   1241  * Attach a found device.
   1242  */
   1243 device_t
   1244 config_attach_loc(device_t parent, cfdata_t cf,
   1245 	const int *locs, void *aux, cfprint_t print)
   1246 {
   1247 	device_t dev;
   1248 	struct cftable *ct;
   1249 	const char *drvname;
   1250 
   1251 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1252 	if (splash_progress_state)
   1253 		splash_progress_update(splash_progress_state);
   1254 #endif
   1255 
   1256 	dev = config_devalloc(parent, cf, locs);
   1257 	if (!dev)
   1258 		panic("config_attach: allocation of device softc failed");
   1259 
   1260 	/* XXX redundant - see below? */
   1261 	if (cf->cf_fstate != FSTATE_STAR) {
   1262 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1263 		cf->cf_fstate = FSTATE_FOUND;
   1264 	}
   1265 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1266 	  else
   1267 		cf->cf_unit++;
   1268 #endif
   1269 
   1270 	config_devlink(dev);
   1271 
   1272 	if (config_do_twiddle)
   1273 		twiddle();
   1274 	else
   1275 		aprint_naive("Found ");
   1276 	/*
   1277 	 * We want the next two printfs for normal, verbose, and quiet,
   1278 	 * but not silent (in which case, we're twiddling, instead).
   1279 	 */
   1280 	if (parent == ROOT) {
   1281 		aprint_naive("%s (root)", dev->dv_xname);
   1282 		aprint_normal("%s (root)", dev->dv_xname);
   1283 	} else {
   1284 		aprint_naive("%s at %s", dev->dv_xname, parent->dv_xname);
   1285 		aprint_normal("%s at %s", dev->dv_xname, parent->dv_xname);
   1286 		if (print)
   1287 			(void) (*print)(aux, NULL);
   1288 	}
   1289 
   1290 	/*
   1291 	 * Before attaching, clobber any unfound devices that are
   1292 	 * otherwise identical.
   1293 	 * XXX code above is redundant?
   1294 	 */
   1295 	drvname = dev->dv_cfdriver->cd_name;
   1296 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1297 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1298 			if (STREQ(cf->cf_name, drvname) &&
   1299 			    cf->cf_unit == dev->dv_unit) {
   1300 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1301 					cf->cf_fstate = FSTATE_FOUND;
   1302 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1303 				/*
   1304 				 * Bump the unit number on all starred cfdata
   1305 				 * entries for this device.
   1306 				 */
   1307 				if (cf->cf_fstate == FSTATE_STAR)
   1308 					cf->cf_unit++;
   1309 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1310 			}
   1311 		}
   1312 	}
   1313 #ifdef __HAVE_DEVICE_REGISTER
   1314 	device_register(dev, aux);
   1315 #endif
   1316 
   1317 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1318 	if (splash_progress_state)
   1319 		splash_progress_update(splash_progress_state);
   1320 #endif
   1321 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1322 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1323 	if (splash_progress_state)
   1324 		splash_progress_update(splash_progress_state);
   1325 #endif
   1326 
   1327 	if (!device_pmf_is_registered(dev))
   1328 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1329 
   1330 	config_process_deferred(&deferred_config_queue, dev);
   1331 	return (dev);
   1332 }
   1333 
   1334 device_t
   1335 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1336 {
   1337 
   1338 	return (config_attach_loc(parent, cf, NULL, aux, print));
   1339 }
   1340 
   1341 /*
   1342  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1343  * way are silently inserted into the device tree, and their children
   1344  * attached.
   1345  *
   1346  * Note that because pseudo-devices are attached silently, any information
   1347  * the attach routine wishes to print should be prefixed with the device
   1348  * name by the attach routine.
   1349  */
   1350 device_t
   1351 config_attach_pseudo(cfdata_t cf)
   1352 {
   1353 	device_t dev;
   1354 
   1355 	dev = config_devalloc(ROOT, cf, NULL);
   1356 	if (!dev)
   1357 		return (NULL);
   1358 
   1359 	/* XXX mark busy in cfdata */
   1360 
   1361 	config_devlink(dev);
   1362 
   1363 #if 0	/* XXXJRT not yet */
   1364 #ifdef __HAVE_DEVICE_REGISTER
   1365 	device_register(dev, NULL);	/* like a root node */
   1366 #endif
   1367 #endif
   1368 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1369 	config_process_deferred(&deferred_config_queue, dev);
   1370 	return (dev);
   1371 }
   1372 
   1373 /*
   1374  * Detach a device.  Optionally forced (e.g. because of hardware
   1375  * removal) and quiet.  Returns zero if successful, non-zero
   1376  * (an error code) otherwise.
   1377  *
   1378  * Note that this code wants to be run from a process context, so
   1379  * that the detach can sleep to allow processes which have a device
   1380  * open to run and unwind their stacks.
   1381  */
   1382 int
   1383 config_detach(device_t dev, int flags)
   1384 {
   1385 	struct cftable *ct;
   1386 	cfdata_t cf;
   1387 	const struct cfattach *ca;
   1388 	struct cfdriver *cd;
   1389 #ifdef DIAGNOSTIC
   1390 	device_t d;
   1391 #endif
   1392 	int rv = 0;
   1393 
   1394 #ifdef DIAGNOSTIC
   1395 	if (dev->dv_cfdata != NULL &&
   1396 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
   1397 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
   1398 		panic("config_detach: bad device fstate");
   1399 #endif
   1400 	cd = dev->dv_cfdriver;
   1401 	KASSERT(cd != NULL);
   1402 
   1403 	ca = dev->dv_cfattach;
   1404 	KASSERT(ca != NULL);
   1405 
   1406 	KASSERT(curlwp != NULL);
   1407 	mutex_enter(&alldevs_mtx);
   1408 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1409 		;
   1410 	else while (alldevs_nread != 0 ||
   1411 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1412 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1413 	if (alldevs_nwrite++ == 0)
   1414 		alldevs_writer = curlwp;
   1415 	mutex_exit(&alldevs_mtx);
   1416 
   1417 	/*
   1418 	 * Ensure the device is deactivated.  If the device doesn't
   1419 	 * have an activation entry point, we allow DVF_ACTIVE to
   1420 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1421 	 * device is busy, and the detach fails.
   1422 	 */
   1423 	if (ca->ca_activate != NULL)
   1424 		rv = config_deactivate(dev);
   1425 
   1426 	/*
   1427 	 * Try to detach the device.  If that's not possible, then
   1428 	 * we either panic() (for the forced but failed case), or
   1429 	 * return an error.
   1430 	 */
   1431 	if (rv == 0) {
   1432 		if (ca->ca_detach != NULL)
   1433 			rv = (*ca->ca_detach)(dev, flags);
   1434 		else
   1435 			rv = EOPNOTSUPP;
   1436 	}
   1437 	if (rv != 0) {
   1438 		if ((flags & DETACH_FORCE) == 0)
   1439 			goto out;
   1440 		else
   1441 			panic("config_detach: forced detach of %s failed (%d)",
   1442 			    dev->dv_xname, rv);
   1443 	}
   1444 
   1445 	/*
   1446 	 * The device has now been successfully detached.
   1447 	 */
   1448 
   1449 #ifdef DIAGNOSTIC
   1450 	/*
   1451 	 * Sanity: If you're successfully detached, you should have no
   1452 	 * children.  (Note that because children must be attached
   1453 	 * after parents, we only need to search the latter part of
   1454 	 * the list.)
   1455 	 */
   1456 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1457 	    d = TAILQ_NEXT(d, dv_list)) {
   1458 		if (d->dv_parent == dev) {
   1459 			printf("config_detach: detached device %s"
   1460 			    " has children %s\n", dev->dv_xname, d->dv_xname);
   1461 			panic("config_detach");
   1462 		}
   1463 	}
   1464 #endif
   1465 
   1466 	/* notify the parent that the child is gone */
   1467 	if (dev->dv_parent) {
   1468 		device_t p = dev->dv_parent;
   1469 		if (p->dv_cfattach->ca_childdetached)
   1470 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1471 	}
   1472 
   1473 	/*
   1474 	 * Mark cfdata to show that the unit can be reused, if possible.
   1475 	 */
   1476 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1477 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1478 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1479 				if (cf->cf_fstate == FSTATE_FOUND &&
   1480 				    cf->cf_unit == dev->dv_unit)
   1481 					cf->cf_fstate = FSTATE_NOTFOUND;
   1482 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1483 				/*
   1484 				 * Note that we can only re-use a starred
   1485 				 * unit number if the unit being detached
   1486 				 * had the last assigned unit number.
   1487 				 */
   1488 				if (cf->cf_fstate == FSTATE_STAR &&
   1489 				    cf->cf_unit == dev->dv_unit + 1)
   1490 					cf->cf_unit--;
   1491 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1492 			}
   1493 		}
   1494 	}
   1495 
   1496 	config_devunlink(dev);
   1497 
   1498 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1499 		aprint_normal_dev(dev, "detached\n");
   1500 
   1501 	config_devdealloc(dev);
   1502 
   1503 out:
   1504 	mutex_enter(&alldevs_mtx);
   1505 	if (--alldevs_nwrite == 0)
   1506 		alldevs_writer = NULL;
   1507 	cv_signal(&alldevs_cv);
   1508 	mutex_exit(&alldevs_mtx);
   1509 	return rv;
   1510 }
   1511 
   1512 int
   1513 config_detach_children(device_t parent, int flags)
   1514 {
   1515 	device_t dv;
   1516 	deviter_t di;
   1517 	int error = 0;
   1518 
   1519 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1520 	     dv = deviter_next(&di)) {
   1521 		if (device_parent(dv) != parent)
   1522 			continue;
   1523 		if ((error = config_detach(dv, flags)) != 0)
   1524 			break;
   1525 	}
   1526 	deviter_release(&di);
   1527 	return error;
   1528 }
   1529 
   1530 int
   1531 config_activate(device_t dev)
   1532 {
   1533 	const struct cfattach *ca = dev->dv_cfattach;
   1534 	int rv = 0, oflags = dev->dv_flags;
   1535 
   1536 	if (ca->ca_activate == NULL)
   1537 		return (EOPNOTSUPP);
   1538 
   1539 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1540 		dev->dv_flags |= DVF_ACTIVE;
   1541 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1542 		if (rv)
   1543 			dev->dv_flags = oflags;
   1544 	}
   1545 	return (rv);
   1546 }
   1547 
   1548 int
   1549 config_deactivate(device_t dev)
   1550 {
   1551 	const struct cfattach *ca = dev->dv_cfattach;
   1552 	int rv = 0, oflags = dev->dv_flags;
   1553 
   1554 	if (ca->ca_activate == NULL)
   1555 		return (EOPNOTSUPP);
   1556 
   1557 	if (dev->dv_flags & DVF_ACTIVE) {
   1558 		dev->dv_flags &= ~DVF_ACTIVE;
   1559 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1560 		if (rv)
   1561 			dev->dv_flags = oflags;
   1562 	}
   1563 	return (rv);
   1564 }
   1565 
   1566 /*
   1567  * Defer the configuration of the specified device until all
   1568  * of its parent's devices have been attached.
   1569  */
   1570 void
   1571 config_defer(device_t dev, void (*func)(device_t))
   1572 {
   1573 	struct deferred_config *dc;
   1574 
   1575 	if (dev->dv_parent == NULL)
   1576 		panic("config_defer: can't defer config of a root device");
   1577 
   1578 #ifdef DIAGNOSTIC
   1579 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1580 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1581 		if (dc->dc_dev == dev)
   1582 			panic("config_defer: deferred twice");
   1583 	}
   1584 #endif
   1585 
   1586 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1587 	if (dc == NULL)
   1588 		panic("config_defer: unable to allocate callback");
   1589 
   1590 	dc->dc_dev = dev;
   1591 	dc->dc_func = func;
   1592 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1593 	config_pending_incr();
   1594 }
   1595 
   1596 /*
   1597  * Defer some autoconfiguration for a device until after interrupts
   1598  * are enabled.
   1599  */
   1600 void
   1601 config_interrupts(device_t dev, void (*func)(device_t))
   1602 {
   1603 	struct deferred_config *dc;
   1604 
   1605 	/*
   1606 	 * If interrupts are enabled, callback now.
   1607 	 */
   1608 	if (cold == 0) {
   1609 		(*func)(dev);
   1610 		return;
   1611 	}
   1612 
   1613 #ifdef DIAGNOSTIC
   1614 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1615 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1616 		if (dc->dc_dev == dev)
   1617 			panic("config_interrupts: deferred twice");
   1618 	}
   1619 #endif
   1620 
   1621 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1622 	if (dc == NULL)
   1623 		panic("config_interrupts: unable to allocate callback");
   1624 
   1625 	dc->dc_dev = dev;
   1626 	dc->dc_func = func;
   1627 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1628 	config_pending_incr();
   1629 }
   1630 
   1631 /*
   1632  * Process a deferred configuration queue.
   1633  */
   1634 static void
   1635 config_process_deferred(struct deferred_config_head *queue,
   1636     device_t parent)
   1637 {
   1638 	struct deferred_config *dc, *ndc;
   1639 
   1640 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1641 		ndc = TAILQ_NEXT(dc, dc_queue);
   1642 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1643 			TAILQ_REMOVE(queue, dc, dc_queue);
   1644 			(*dc->dc_func)(dc->dc_dev);
   1645 			free(dc, M_DEVBUF);
   1646 			config_pending_decr();
   1647 		}
   1648 	}
   1649 }
   1650 
   1651 /*
   1652  * Manipulate the config_pending semaphore.
   1653  */
   1654 void
   1655 config_pending_incr(void)
   1656 {
   1657 
   1658 	config_pending++;
   1659 }
   1660 
   1661 void
   1662 config_pending_decr(void)
   1663 {
   1664 
   1665 #ifdef DIAGNOSTIC
   1666 	if (config_pending == 0)
   1667 		panic("config_pending_decr: config_pending == 0");
   1668 #endif
   1669 	config_pending--;
   1670 	if (config_pending == 0)
   1671 		wakeup(&config_pending);
   1672 }
   1673 
   1674 /*
   1675  * Register a "finalization" routine.  Finalization routines are
   1676  * called iteratively once all real devices have been found during
   1677  * autoconfiguration, for as long as any one finalizer has done
   1678  * any work.
   1679  */
   1680 int
   1681 config_finalize_register(device_t dev, int (*fn)(device_t))
   1682 {
   1683 	struct finalize_hook *f;
   1684 
   1685 	/*
   1686 	 * If finalization has already been done, invoke the
   1687 	 * callback function now.
   1688 	 */
   1689 	if (config_finalize_done) {
   1690 		while ((*fn)(dev) != 0)
   1691 			/* loop */ ;
   1692 	}
   1693 
   1694 	/* Ensure this isn't already on the list. */
   1695 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1696 		if (f->f_func == fn && f->f_dev == dev)
   1697 			return (EEXIST);
   1698 	}
   1699 
   1700 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
   1701 	f->f_func = fn;
   1702 	f->f_dev = dev;
   1703 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1704 
   1705 	return (0);
   1706 }
   1707 
   1708 void
   1709 config_finalize(void)
   1710 {
   1711 	struct finalize_hook *f;
   1712 	int rv;
   1713 
   1714 	/* Run the hooks until none of them does any work. */
   1715 	do {
   1716 		rv = 0;
   1717 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1718 			rv |= (*f->f_func)(f->f_dev);
   1719 	} while (rv != 0);
   1720 
   1721 	config_finalize_done = 1;
   1722 
   1723 	/* Now free all the hooks. */
   1724 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1725 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1726 		free(f, M_TEMP);
   1727 	}
   1728 }
   1729 
   1730 /*
   1731  * device_lookup:
   1732  *
   1733  *	Look up a device instance for a given driver.
   1734  */
   1735 void *
   1736 device_lookup(cfdriver_t cd, int unit)
   1737 {
   1738 
   1739 	if (unit < 0 || unit >= cd->cd_ndevs)
   1740 		return (NULL);
   1741 
   1742 	return (cd->cd_devs[unit]);
   1743 }
   1744 
   1745 /*
   1746  * Accessor functions for the device_t type.
   1747  */
   1748 devclass_t
   1749 device_class(device_t dev)
   1750 {
   1751 
   1752 	return (dev->dv_class);
   1753 }
   1754 
   1755 cfdata_t
   1756 device_cfdata(device_t dev)
   1757 {
   1758 
   1759 	return (dev->dv_cfdata);
   1760 }
   1761 
   1762 cfdriver_t
   1763 device_cfdriver(device_t dev)
   1764 {
   1765 
   1766 	return (dev->dv_cfdriver);
   1767 }
   1768 
   1769 cfattach_t
   1770 device_cfattach(device_t dev)
   1771 {
   1772 
   1773 	return (dev->dv_cfattach);
   1774 }
   1775 
   1776 int
   1777 device_unit(device_t dev)
   1778 {
   1779 
   1780 	return (dev->dv_unit);
   1781 }
   1782 
   1783 const char *
   1784 device_xname(device_t dev)
   1785 {
   1786 
   1787 	return (dev->dv_xname);
   1788 }
   1789 
   1790 device_t
   1791 device_parent(device_t dev)
   1792 {
   1793 
   1794 	return (dev->dv_parent);
   1795 }
   1796 
   1797 bool
   1798 device_is_active(device_t dev)
   1799 {
   1800 	int active_flags;
   1801 
   1802 	active_flags = DVF_ACTIVE;
   1803 	active_flags |= DVF_CLASS_SUSPENDED;
   1804 	active_flags |= DVF_DRIVER_SUSPENDED;
   1805 	active_flags |= DVF_BUS_SUSPENDED;
   1806 
   1807 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1808 }
   1809 
   1810 bool
   1811 device_is_enabled(device_t dev)
   1812 {
   1813 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1814 }
   1815 
   1816 bool
   1817 device_has_power(device_t dev)
   1818 {
   1819 	int active_flags;
   1820 
   1821 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1822 
   1823 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1824 }
   1825 
   1826 int
   1827 device_locator(device_t dev, u_int locnum)
   1828 {
   1829 
   1830 	KASSERT(dev->dv_locators != NULL);
   1831 	return (dev->dv_locators[locnum]);
   1832 }
   1833 
   1834 void *
   1835 device_private(device_t dev)
   1836 {
   1837 
   1838 	/*
   1839 	 * The reason why device_private(NULL) is allowed is to simplify the
   1840 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1841 	 * handlers) which grab cfdriver_t->cd_units[n].
   1842 	 * It avoids having them test for it to be NULL and only then calling
   1843 	 * device_private.
   1844 	 */
   1845 	return dev == NULL ? NULL : dev->dv_private;
   1846 }
   1847 
   1848 prop_dictionary_t
   1849 device_properties(device_t dev)
   1850 {
   1851 
   1852 	return (dev->dv_properties);
   1853 }
   1854 
   1855 /*
   1856  * device_is_a:
   1857  *
   1858  *	Returns true if the device is an instance of the specified
   1859  *	driver.
   1860  */
   1861 bool
   1862 device_is_a(device_t dev, const char *dname)
   1863 {
   1864 
   1865 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
   1866 }
   1867 
   1868 /*
   1869  * device_find_by_xname:
   1870  *
   1871  *	Returns the device of the given name or NULL if it doesn't exist.
   1872  */
   1873 device_t
   1874 device_find_by_xname(const char *name)
   1875 {
   1876 	device_t dv;
   1877 	deviter_t di;
   1878 
   1879 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   1880 		if (strcmp(device_xname(dv), name) == 0)
   1881 			break;
   1882 	}
   1883 	deviter_release(&di);
   1884 
   1885 	return dv;
   1886 }
   1887 
   1888 /*
   1889  * device_find_by_driver_unit:
   1890  *
   1891  *	Returns the device of the given driver name and unit or
   1892  *	NULL if it doesn't exist.
   1893  */
   1894 device_t
   1895 device_find_by_driver_unit(const char *name, int unit)
   1896 {
   1897 	struct cfdriver *cd;
   1898 
   1899 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   1900 		return NULL;
   1901 	return device_lookup(cd, unit);
   1902 }
   1903 
   1904 /*
   1905  * Power management related functions.
   1906  */
   1907 
   1908 bool
   1909 device_pmf_is_registered(device_t dev)
   1910 {
   1911 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   1912 }
   1913 
   1914 bool
   1915 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   1916 {
   1917 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   1918 		return true;
   1919 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   1920 		return false;
   1921 	if (*dev->dv_driver_suspend != NULL &&
   1922 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   1923 		return false;
   1924 
   1925 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   1926 	return true;
   1927 }
   1928 
   1929 bool
   1930 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   1931 {
   1932 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   1933 		return true;
   1934 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   1935 		return false;
   1936 	if (*dev->dv_driver_resume != NULL &&
   1937 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   1938 		return false;
   1939 
   1940 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   1941 	return true;
   1942 }
   1943 
   1944 bool
   1945 device_pmf_driver_shutdown(device_t dev, int how)
   1946 {
   1947 
   1948 	if (*dev->dv_driver_shutdown != NULL &&
   1949 	    !(*dev->dv_driver_shutdown)(dev, how))
   1950 		return false;
   1951 	return true;
   1952 }
   1953 
   1954 bool
   1955 device_pmf_driver_register(device_t dev,
   1956     bool (*suspend)(device_t PMF_FN_PROTO),
   1957     bool (*resume)(device_t PMF_FN_PROTO),
   1958     bool (*shutdown)(device_t, int))
   1959 {
   1960 	pmf_private_t *pp;
   1961 
   1962 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
   1963 		return false;
   1964 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
   1965 	cv_init(&pp->pp_cv, "pmfsusp");
   1966 	dev->dv_pmf_private = pp;
   1967 
   1968 	dev->dv_driver_suspend = suspend;
   1969 	dev->dv_driver_resume = resume;
   1970 	dev->dv_driver_shutdown = shutdown;
   1971 	dev->dv_flags |= DVF_POWER_HANDLERS;
   1972 	return true;
   1973 }
   1974 
   1975 static const char *
   1976 curlwp_name(void)
   1977 {
   1978 	if (curlwp->l_name != NULL)
   1979 		return curlwp->l_name;
   1980 	else
   1981 		return curlwp->l_proc->p_comm;
   1982 }
   1983 
   1984 void
   1985 device_pmf_driver_deregister(device_t dev)
   1986 {
   1987 	pmf_private_t *pp = dev->dv_pmf_private;
   1988 
   1989 	dev->dv_driver_suspend = NULL;
   1990 	dev->dv_driver_resume = NULL;
   1991 
   1992 	dev->dv_pmf_private = NULL;
   1993 
   1994 	mutex_enter(&pp->pp_mtx);
   1995 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   1996 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
   1997 		/* Wake a thread that waits for the lock.  That
   1998 		 * thread will fail to acquire the lock, and then
   1999 		 * it will wake the next thread that waits for the
   2000 		 * lock, or else it will wake us.
   2001 		 */
   2002 		cv_signal(&pp->pp_cv);
   2003 		pmflock_debug(dev, __func__, __LINE__);
   2004 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2005 		pmflock_debug(dev, __func__, __LINE__);
   2006 	}
   2007 	mutex_exit(&pp->pp_mtx);
   2008 
   2009 	cv_destroy(&pp->pp_cv);
   2010 	mutex_destroy(&pp->pp_mtx);
   2011 	free(pp, M_PMFPRIV);
   2012 }
   2013 
   2014 bool
   2015 device_pmf_driver_child_register(device_t dev)
   2016 {
   2017 	device_t parent = device_parent(dev);
   2018 
   2019 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2020 		return true;
   2021 	return (*parent->dv_driver_child_register)(dev);
   2022 }
   2023 
   2024 void
   2025 device_pmf_driver_set_child_register(device_t dev,
   2026     bool (*child_register)(device_t))
   2027 {
   2028 	dev->dv_driver_child_register = child_register;
   2029 }
   2030 
   2031 static void
   2032 pmflock_debug(device_t dev, const char *func, int line)
   2033 {
   2034 	pmf_private_t *pp = device_pmf_private(dev);
   2035 
   2036 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
   2037 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
   2038 	    dev->dv_flags);
   2039 }
   2040 
   2041 static void
   2042 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2043 {
   2044 	pmf_private_t *pp = device_pmf_private(dev);
   2045 
   2046 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
   2047 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2048 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
   2049 }
   2050 
   2051 static bool
   2052 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2053 {
   2054 	pmf_private_t *pp = device_pmf_private(dev);
   2055 
   2056 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
   2057 	       device_pmf_is_registered(dev)) {
   2058 		pp->pp_nwait++;
   2059 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2060 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2061 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2062 		pp->pp_nwait--;
   2063 	}
   2064 	if (!device_pmf_is_registered(dev)) {
   2065 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2066 		/* We could not acquire the lock, but some other thread may
   2067 		 * wait for it, also.  Wake that thread.
   2068 		 */
   2069 		cv_signal(&pp->pp_cv);
   2070 		return false;
   2071 	}
   2072 	pp->pp_nlock++;
   2073 	pp->pp_holder = curlwp;
   2074 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2075 	return true;
   2076 }
   2077 
   2078 bool
   2079 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2080 {
   2081 	bool rc;
   2082 	pmf_private_t *pp = device_pmf_private(dev);
   2083 
   2084 	mutex_enter(&pp->pp_mtx);
   2085 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2086 	mutex_exit(&pp->pp_mtx);
   2087 
   2088 	return rc;
   2089 }
   2090 
   2091 void
   2092 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2093 {
   2094 	pmf_private_t *pp = device_pmf_private(dev);
   2095 
   2096 	KASSERT(pp->pp_nlock > 0);
   2097 	mutex_enter(&pp->pp_mtx);
   2098 	if (--pp->pp_nlock == 0)
   2099 		pp->pp_holder = NULL;
   2100 	cv_signal(&pp->pp_cv);
   2101 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2102 	mutex_exit(&pp->pp_mtx);
   2103 }
   2104 
   2105 void *
   2106 device_pmf_private(device_t dev)
   2107 {
   2108 	return dev->dv_pmf_private;
   2109 }
   2110 
   2111 void *
   2112 device_pmf_bus_private(device_t dev)
   2113 {
   2114 	return dev->dv_bus_private;
   2115 }
   2116 
   2117 bool
   2118 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2119 {
   2120 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2121 		return true;
   2122 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2123 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2124 		return false;
   2125 	if (*dev->dv_bus_suspend != NULL &&
   2126 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2127 		return false;
   2128 
   2129 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2130 	return true;
   2131 }
   2132 
   2133 bool
   2134 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2135 {
   2136 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2137 		return true;
   2138 	if (*dev->dv_bus_resume != NULL &&
   2139 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2140 		return false;
   2141 
   2142 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2143 	return true;
   2144 }
   2145 
   2146 bool
   2147 device_pmf_bus_shutdown(device_t dev, int how)
   2148 {
   2149 
   2150 	if (*dev->dv_bus_shutdown != NULL &&
   2151 	    !(*dev->dv_bus_shutdown)(dev, how))
   2152 		return false;
   2153 	return true;
   2154 }
   2155 
   2156 void
   2157 device_pmf_bus_register(device_t dev, void *priv,
   2158     bool (*suspend)(device_t PMF_FN_PROTO),
   2159     bool (*resume)(device_t PMF_FN_PROTO),
   2160     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2161 {
   2162 	dev->dv_bus_private = priv;
   2163 	dev->dv_bus_resume = resume;
   2164 	dev->dv_bus_suspend = suspend;
   2165 	dev->dv_bus_shutdown = shutdown;
   2166 	dev->dv_bus_deregister = deregister;
   2167 }
   2168 
   2169 void
   2170 device_pmf_bus_deregister(device_t dev)
   2171 {
   2172 	if (dev->dv_bus_deregister == NULL)
   2173 		return;
   2174 	(*dev->dv_bus_deregister)(dev);
   2175 	dev->dv_bus_private = NULL;
   2176 	dev->dv_bus_suspend = NULL;
   2177 	dev->dv_bus_resume = NULL;
   2178 	dev->dv_bus_deregister = NULL;
   2179 }
   2180 
   2181 void *
   2182 device_pmf_class_private(device_t dev)
   2183 {
   2184 	return dev->dv_class_private;
   2185 }
   2186 
   2187 bool
   2188 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2189 {
   2190 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2191 		return true;
   2192 	if (*dev->dv_class_suspend != NULL &&
   2193 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2194 		return false;
   2195 
   2196 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2197 	return true;
   2198 }
   2199 
   2200 bool
   2201 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2202 {
   2203 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2204 		return true;
   2205 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2206 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2207 		return false;
   2208 	if (*dev->dv_class_resume != NULL &&
   2209 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2210 		return false;
   2211 
   2212 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2213 	return true;
   2214 }
   2215 
   2216 void
   2217 device_pmf_class_register(device_t dev, void *priv,
   2218     bool (*suspend)(device_t PMF_FN_PROTO),
   2219     bool (*resume)(device_t PMF_FN_PROTO),
   2220     void (*deregister)(device_t))
   2221 {
   2222 	dev->dv_class_private = priv;
   2223 	dev->dv_class_suspend = suspend;
   2224 	dev->dv_class_resume = resume;
   2225 	dev->dv_class_deregister = deregister;
   2226 }
   2227 
   2228 void
   2229 device_pmf_class_deregister(device_t dev)
   2230 {
   2231 	if (dev->dv_class_deregister == NULL)
   2232 		return;
   2233 	(*dev->dv_class_deregister)(dev);
   2234 	dev->dv_class_private = NULL;
   2235 	dev->dv_class_suspend = NULL;
   2236 	dev->dv_class_resume = NULL;
   2237 	dev->dv_class_deregister = NULL;
   2238 }
   2239 
   2240 bool
   2241 device_active(device_t dev, devactive_t type)
   2242 {
   2243 	size_t i;
   2244 
   2245 	if (dev->dv_activity_count == 0)
   2246 		return false;
   2247 
   2248 	for (i = 0; i < dev->dv_activity_count; ++i)
   2249 		(*dev->dv_activity_handlers[i])(dev, type);
   2250 
   2251 	return true;
   2252 }
   2253 
   2254 bool
   2255 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2256 {
   2257 	void (**new_handlers)(device_t, devactive_t);
   2258 	void (**old_handlers)(device_t, devactive_t);
   2259 	size_t i, new_size;
   2260 	int s;
   2261 
   2262 	old_handlers = dev->dv_activity_handlers;
   2263 
   2264 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2265 		if (old_handlers[i] == handler)
   2266 			panic("Double registering of idle handlers");
   2267 	}
   2268 
   2269 	new_size = dev->dv_activity_count + 1;
   2270 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
   2271 
   2272 	memcpy(new_handlers, old_handlers,
   2273 	    sizeof(void *) * dev->dv_activity_count);
   2274 	new_handlers[new_size - 1] = handler;
   2275 
   2276 	s = splhigh();
   2277 	dev->dv_activity_count = new_size;
   2278 	dev->dv_activity_handlers = new_handlers;
   2279 	splx(s);
   2280 
   2281 	if (old_handlers != NULL)
   2282 		free(old_handlers, M_DEVBUF);
   2283 
   2284 	return true;
   2285 }
   2286 
   2287 void
   2288 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2289 {
   2290 	void (**new_handlers)(device_t, devactive_t);
   2291 	void (**old_handlers)(device_t, devactive_t);
   2292 	size_t i, new_size;
   2293 	int s;
   2294 
   2295 	old_handlers = dev->dv_activity_handlers;
   2296 
   2297 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2298 		if (old_handlers[i] == handler)
   2299 			break;
   2300 	}
   2301 
   2302 	if (i == dev->dv_activity_count)
   2303 		return; /* XXX panic? */
   2304 
   2305 	new_size = dev->dv_activity_count - 1;
   2306 
   2307 	if (new_size == 0) {
   2308 		new_handlers = NULL;
   2309 	} else {
   2310 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
   2311 		    M_WAITOK);
   2312 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
   2313 		memcpy(new_handlers + i, old_handlers + i + 1,
   2314 		    sizeof(void *) * (new_size - i));
   2315 	}
   2316 
   2317 	s = splhigh();
   2318 	dev->dv_activity_count = new_size;
   2319 	dev->dv_activity_handlers = new_handlers;
   2320 	splx(s);
   2321 
   2322 	free(old_handlers, M_DEVBUF);
   2323 }
   2324 
   2325 /*
   2326  * Device Iteration
   2327  *
   2328  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2329  *     each device_t's in the device tree.
   2330  *
   2331  * deviter_init(di, flags): initialize the device iterator `di'
   2332  *     to "walk" the device tree.  deviter_next(di) will return
   2333  *     the first device_t in the device tree, or NULL if there are
   2334  *     no devices.
   2335  *
   2336  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2337  *     caller intends to modify the device tree by calling
   2338  *     config_detach(9) on devices in the order that the iterator
   2339  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2340  *     nearest the "root" of the device tree to be returned, first;
   2341  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2342  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2343  *     indicating both that deviter_init() should not respect any
   2344  *     locks on the device tree, and that deviter_next(di) may run
   2345  *     in more than one LWP before the walk has finished.
   2346  *
   2347  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2348  *     once.
   2349  *
   2350  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2351  *
   2352  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2353  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2354  *
   2355  * deviter_first(di, flags): initialize the device iterator `di'
   2356  *     and return the first device_t in the device tree, or NULL
   2357  *     if there are no devices.  The statement
   2358  *
   2359  *         dv = deviter_first(di);
   2360  *
   2361  *     is shorthand for
   2362  *
   2363  *         deviter_init(di);
   2364  *         dv = deviter_next(di);
   2365  *
   2366  * deviter_next(di): return the next device_t in the device tree,
   2367  *     or NULL if there are no more devices.  deviter_next(di)
   2368  *     is undefined if `di' was not initialized with deviter_init() or
   2369  *     deviter_first().
   2370  *
   2371  * deviter_release(di): stops iteration (subsequent calls to
   2372  *     deviter_next() will return NULL), releases any locks and
   2373  *     resources held by the device iterator.
   2374  *
   2375  * Device iteration does not return device_t's in any particular
   2376  * order.  An iterator will never return the same device_t twice.
   2377  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2378  * is called repeatedly on the same `di', it will eventually return
   2379  * NULL.  It is ok to attach/detach devices during device iteration.
   2380  */
   2381 void
   2382 deviter_init(deviter_t *di, deviter_flags_t flags)
   2383 {
   2384 	device_t dv;
   2385 	bool rw;
   2386 
   2387 	mutex_enter(&alldevs_mtx);
   2388 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2389 		flags |= DEVITER_F_RW;
   2390 		alldevs_nwrite++;
   2391 		alldevs_writer = NULL;
   2392 		alldevs_nread = 0;
   2393 	} else {
   2394 		rw = (flags & DEVITER_F_RW) != 0;
   2395 
   2396 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2397 			;
   2398 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2399 		       (rw && alldevs_nread != 0))
   2400 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2401 
   2402 		if (rw) {
   2403 			if (alldevs_nwrite++ == 0)
   2404 				alldevs_writer = curlwp;
   2405 		} else
   2406 			alldevs_nread++;
   2407 	}
   2408 	mutex_exit(&alldevs_mtx);
   2409 
   2410 	memset(di, 0, sizeof(*di));
   2411 
   2412 	di->di_flags = flags;
   2413 
   2414 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2415 	case DEVITER_F_LEAVES_FIRST:
   2416 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2417 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2418 		break;
   2419 	case DEVITER_F_ROOT_FIRST:
   2420 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2421 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2422 		break;
   2423 	default:
   2424 		break;
   2425 	}
   2426 
   2427 	deviter_reinit(di);
   2428 }
   2429 
   2430 static void
   2431 deviter_reinit(deviter_t *di)
   2432 {
   2433 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2434 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2435 	else
   2436 		di->di_prev = TAILQ_FIRST(&alldevs);
   2437 }
   2438 
   2439 device_t
   2440 deviter_first(deviter_t *di, deviter_flags_t flags)
   2441 {
   2442 	deviter_init(di, flags);
   2443 	return deviter_next(di);
   2444 }
   2445 
   2446 static device_t
   2447 deviter_next1(deviter_t *di)
   2448 {
   2449 	device_t dv;
   2450 
   2451 	dv = di->di_prev;
   2452 
   2453 	if (dv == NULL)
   2454 		;
   2455 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2456 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2457 	else
   2458 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2459 
   2460 	return dv;
   2461 }
   2462 
   2463 device_t
   2464 deviter_next(deviter_t *di)
   2465 {
   2466 	device_t dv = NULL;
   2467 
   2468 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2469 	case 0:
   2470 		return deviter_next1(di);
   2471 	case DEVITER_F_LEAVES_FIRST:
   2472 		while (di->di_curdepth >= 0) {
   2473 			if ((dv = deviter_next1(di)) == NULL) {
   2474 				di->di_curdepth--;
   2475 				deviter_reinit(di);
   2476 			} else if (dv->dv_depth == di->di_curdepth)
   2477 				break;
   2478 		}
   2479 		return dv;
   2480 	case DEVITER_F_ROOT_FIRST:
   2481 		while (di->di_curdepth <= di->di_maxdepth) {
   2482 			if ((dv = deviter_next1(di)) == NULL) {
   2483 				di->di_curdepth++;
   2484 				deviter_reinit(di);
   2485 			} else if (dv->dv_depth == di->di_curdepth)
   2486 				break;
   2487 		}
   2488 		return dv;
   2489 	default:
   2490 		return NULL;
   2491 	}
   2492 }
   2493 
   2494 void
   2495 deviter_release(deviter_t *di)
   2496 {
   2497 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2498 
   2499 	mutex_enter(&alldevs_mtx);
   2500 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2501 		--alldevs_nwrite;
   2502 	else {
   2503 
   2504 		if (rw) {
   2505 			if (--alldevs_nwrite == 0)
   2506 				alldevs_writer = NULL;
   2507 		} else
   2508 			--alldevs_nread;
   2509 
   2510 		cv_signal(&alldevs_cv);
   2511 	}
   2512 	mutex_exit(&alldevs_mtx);
   2513 }
   2514