Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.142
      1 /* $NetBSD: subr_autoconf.c,v 1.142 2008/04/01 10:37:42 ad Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.142 2008/04/01 10:37:42 ad Exp $");
     81 
     82 #include "opt_multiprocessor.h"
     83 #include "opt_ddb.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/systm.h>
     92 #include <sys/kernel.h>
     93 #include <sys/errno.h>
     94 #include <sys/proc.h>
     95 #include <sys/reboot.h>
     96 #include <sys/kthread.h>
     97 #include <sys/buf.h>
     98 #include <sys/dirent.h>
     99 #include <sys/vnode.h>
    100 #include <sys/mount.h>
    101 #include <sys/namei.h>
    102 #include <sys/unistd.h>
    103 #include <sys/fcntl.h>
    104 #include <sys/lockf.h>
    105 #include <sys/callout.h>
    106 #include <sys/mutex.h>
    107 #include <sys/condvar.h>
    108 
    109 #include <sys/disk.h>
    110 
    111 #include <machine/limits.h>
    112 
    113 #include "opt_userconf.h"
    114 #ifdef USERCONF
    115 #include <sys/userconf.h>
    116 #endif
    117 
    118 #ifdef __i386__
    119 #include "opt_splash.h"
    120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    121 #include <dev/splash/splash.h>
    122 extern struct splash_progress *splash_progress_state;
    123 #endif
    124 #endif
    125 
    126 /*
    127  * Autoconfiguration subroutines.
    128  */
    129 
    130 typedef struct pmf_private {
    131 	int		pp_nwait;
    132 	int		pp_nlock;
    133 	lwp_t		*pp_holder;
    134 	kmutex_t	pp_mtx;
    135 	kcondvar_t	pp_cv;
    136 } pmf_private_t;
    137 
    138 /*
    139  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    140  * devices and drivers are found via these tables.
    141  */
    142 extern struct cfdata cfdata[];
    143 extern const short cfroots[];
    144 
    145 /*
    146  * List of all cfdriver structures.  We use this to detect duplicates
    147  * when other cfdrivers are loaded.
    148  */
    149 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    150 extern struct cfdriver * const cfdriver_list_initial[];
    151 
    152 /*
    153  * Initial list of cfattach's.
    154  */
    155 extern const struct cfattachinit cfattachinit[];
    156 
    157 /*
    158  * List of cfdata tables.  We always have one such list -- the one
    159  * built statically when the kernel was configured.
    160  */
    161 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    162 static struct cftable initcftable;
    163 
    164 #define	ROOT ((device_t)NULL)
    165 
    166 struct matchinfo {
    167 	cfsubmatch_t fn;
    168 	struct	device *parent;
    169 	const int *locs;
    170 	void	*aux;
    171 	struct	cfdata *match;
    172 	int	pri;
    173 };
    174 
    175 static char *number(char *, int);
    176 static void mapply(struct matchinfo *, cfdata_t);
    177 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    178 static void config_devdealloc(device_t);
    179 static void config_makeroom(int, struct cfdriver *);
    180 static void config_devlink(device_t);
    181 static void config_devunlink(device_t);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 int interrupt_config_threads = 8;
    202 
    203 static void config_process_deferred(struct deferred_config_head *, device_t);
    204 
    205 /* Hooks to finalize configuration once all real devices have been found. */
    206 struct finalize_hook {
    207 	TAILQ_ENTRY(finalize_hook) f_list;
    208 	int (*f_func)(device_t);
    209 	device_t f_dev;
    210 };
    211 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    212 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    213 static int config_finalize_done;
    214 
    215 /* list of all devices */
    216 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    217 kcondvar_t alldevs_cv;
    218 kmutex_t alldevs_mtx;
    219 static int alldevs_nread = 0;
    220 static int alldevs_nwrite = 0;
    221 static lwp_t *alldevs_writer = NULL;
    222 
    223 volatile int config_pending;		/* semaphore for mountroot */
    224 
    225 #define	STREQ(s1, s2)			\
    226 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    227 
    228 static int config_initialized;		/* config_init() has been called. */
    229 
    230 static int config_do_twiddle;
    231 
    232 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
    233 
    234 struct vnode *
    235 opendisk(struct device *dv)
    236 {
    237 	int bmajor, bminor;
    238 	struct vnode *tmpvn;
    239 	int error;
    240 	dev_t dev;
    241 
    242 	/*
    243 	 * Lookup major number for disk block device.
    244 	 */
    245 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    246 	if (bmajor == -1)
    247 		return NULL;
    248 
    249 	bminor = minor(device_unit(dv));
    250 	/*
    251 	 * Fake a temporary vnode for the disk, open it, and read
    252 	 * and hash the sectors.
    253 	 */
    254 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    255 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    256 	if (bdevvp(dev, &tmpvn))
    257 		panic("%s: can't alloc vnode for %s", __func__,
    258 		    device_xname(dv));
    259 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    260 	if (error) {
    261 #ifndef DEBUG
    262 		/*
    263 		 * Ignore errors caused by missing device, partition,
    264 		 * or medium.
    265 		 */
    266 		if (error != ENXIO && error != ENODEV)
    267 #endif
    268 			printf("%s: can't open dev %s (%d)\n",
    269 			    __func__, device_xname(dv), error);
    270 		vput(tmpvn);
    271 		return NULL;
    272 	}
    273 
    274 	return tmpvn;
    275 }
    276 
    277 int
    278 config_handle_wedges(struct device *dv, int par)
    279 {
    280 	struct dkwedge_list wl;
    281 	struct dkwedge_info *wi;
    282 	struct vnode *vn;
    283 	char diskname[16];
    284 	int i, error;
    285 
    286 	if ((vn = opendisk(dv)) == NULL)
    287 		return -1;
    288 
    289 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    290 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    291 
    292 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    293 	VOP_CLOSE(vn, FREAD, NOCRED);
    294 	vput(vn);
    295 	if (error) {
    296 #ifdef DEBUG_WEDGE
    297 		printf("%s: List wedges returned %d\n",
    298 		    device_xname(dv), error);
    299 #endif
    300 		free(wi, M_TEMP);
    301 		return -1;
    302 	}
    303 
    304 #ifdef DEBUG_WEDGE
    305 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    306 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    307 #endif
    308 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    309 	    par + 'a');
    310 
    311 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    312 #ifdef DEBUG_WEDGE
    313 		printf("%s: Looking for %s in %s\n",
    314 		    device_xname(dv), diskname, wi[i].dkw_wname);
    315 #endif
    316 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    317 			break;
    318 	}
    319 
    320 	if (i == wl.dkwl_ncopied) {
    321 #ifdef DEBUG_WEDGE
    322 		printf("%s: Cannot find wedge with parent %s\n",
    323 		    device_xname(dv), diskname);
    324 #endif
    325 		free(wi, M_TEMP);
    326 		return -1;
    327 	}
    328 
    329 #ifdef DEBUG_WEDGE
    330 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    331 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    332 		(unsigned long long)wi[i].dkw_offset,
    333 		(unsigned long long)wi[i].dkw_size);
    334 #endif
    335 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    336 	free(wi, M_TEMP);
    337 	return 0;
    338 }
    339 
    340 /*
    341  * Initialize the autoconfiguration data structures.  Normally this
    342  * is done by configure(), but some platforms need to do this very
    343  * early (to e.g. initialize the console).
    344  */
    345 void
    346 config_init(void)
    347 {
    348 	const struct cfattachinit *cfai;
    349 	int i, j;
    350 
    351 	if (config_initialized)
    352 		return;
    353 
    354 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    355 	cv_init(&alldevs_cv, "alldevs");
    356 
    357 	/* allcfdrivers is statically initialized. */
    358 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    359 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    360 			panic("configure: duplicate `%s' drivers",
    361 			    cfdriver_list_initial[i]->cd_name);
    362 	}
    363 
    364 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    365 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    366 			if (config_cfattach_attach(cfai->cfai_name,
    367 						   cfai->cfai_list[j]) != 0)
    368 				panic("configure: duplicate `%s' attachment "
    369 				    "of `%s' driver",
    370 				    cfai->cfai_list[j]->ca_name,
    371 				    cfai->cfai_name);
    372 		}
    373 	}
    374 
    375 	initcftable.ct_cfdata = cfdata;
    376 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    377 
    378 	config_initialized = 1;
    379 }
    380 
    381 void
    382 config_deferred(device_t dev)
    383 {
    384 	config_process_deferred(&deferred_config_queue, dev);
    385 	config_process_deferred(&interrupt_config_queue, dev);
    386 }
    387 
    388 static void
    389 config_interrupts_thread(void *cookie)
    390 {
    391 	struct deferred_config *dc;
    392 
    393 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    394 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    395 		(*dc->dc_func)(dc->dc_dev);
    396 		free(dc, M_DEVBUF);
    397 		config_pending_decr();
    398 	}
    399 	kthread_exit(0);
    400 }
    401 
    402 /*
    403  * Configure the system's hardware.
    404  */
    405 void
    406 configure(void)
    407 {
    408 	int i;
    409 
    410 	/* Initialize data structures. */
    411 	config_init();
    412 	pmf_init();
    413 
    414 #ifdef USERCONF
    415 	if (boothowto & RB_USERCONF)
    416 		user_config();
    417 #endif
    418 
    419 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    420 		config_do_twiddle = 1;
    421 		printf_nolog("Detecting hardware...");
    422 	}
    423 
    424 	/*
    425 	 * Do the machine-dependent portion of autoconfiguration.  This
    426 	 * sets the configuration machinery here in motion by "finding"
    427 	 * the root bus.  When this function returns, we expect interrupts
    428 	 * to be enabled.
    429 	 */
    430 	cpu_configure();
    431 
    432 	/* Initialize callouts, part 2. */
    433 	callout_startup2();
    434 
    435 	/*
    436 	 * Now that we've found all the hardware, start the real time
    437 	 * and statistics clocks.
    438 	 */
    439 	initclocks();
    440 
    441 	cold = 0;	/* clocks are running, we're warm now! */
    442 
    443 	/* Boot the secondary processors. */
    444 	mp_online = true;
    445 #if defined(MULTIPROCESSOR)
    446 	cpu_boot_secondary_processors();
    447 #endif
    448 
    449 	/* Setup the scheduler. */
    450 	sched_init();
    451 
    452 	/*
    453 	 * Create threads to call back and finish configuration for
    454 	 * devices that want interrupts enabled.
    455 	 */
    456 	for (i = 0; i < interrupt_config_threads; i++) {
    457 		(void)kthread_create(PRI_NONE, 0, NULL,
    458 		    config_interrupts_thread, NULL, NULL, "config");
    459 	}
    460 
    461 	/* Get the threads going and into any sleeps before continuing. */
    462 	yield();
    463 
    464 	/* Lock the kernel on behalf of lwp0. */
    465 	KERNEL_LOCK(1, NULL);
    466 }
    467 
    468 /*
    469  * Add a cfdriver to the system.
    470  */
    471 int
    472 config_cfdriver_attach(struct cfdriver *cd)
    473 {
    474 	struct cfdriver *lcd;
    475 
    476 	/* Make sure this driver isn't already in the system. */
    477 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    478 		if (STREQ(lcd->cd_name, cd->cd_name))
    479 			return (EEXIST);
    480 	}
    481 
    482 	LIST_INIT(&cd->cd_attach);
    483 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    484 
    485 	return (0);
    486 }
    487 
    488 /*
    489  * Remove a cfdriver from the system.
    490  */
    491 int
    492 config_cfdriver_detach(struct cfdriver *cd)
    493 {
    494 	int i;
    495 
    496 	/* Make sure there are no active instances. */
    497 	for (i = 0; i < cd->cd_ndevs; i++) {
    498 		if (cd->cd_devs[i] != NULL)
    499 			return (EBUSY);
    500 	}
    501 
    502 	/* ...and no attachments loaded. */
    503 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    504 		return (EBUSY);
    505 
    506 	LIST_REMOVE(cd, cd_list);
    507 
    508 	KASSERT(cd->cd_devs == NULL);
    509 
    510 	return (0);
    511 }
    512 
    513 /*
    514  * Look up a cfdriver by name.
    515  */
    516 struct cfdriver *
    517 config_cfdriver_lookup(const char *name)
    518 {
    519 	struct cfdriver *cd;
    520 
    521 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    522 		if (STREQ(cd->cd_name, name))
    523 			return (cd);
    524 	}
    525 
    526 	return (NULL);
    527 }
    528 
    529 /*
    530  * Add a cfattach to the specified driver.
    531  */
    532 int
    533 config_cfattach_attach(const char *driver, struct cfattach *ca)
    534 {
    535 	struct cfattach *lca;
    536 	struct cfdriver *cd;
    537 
    538 	cd = config_cfdriver_lookup(driver);
    539 	if (cd == NULL)
    540 		return (ESRCH);
    541 
    542 	/* Make sure this attachment isn't already on this driver. */
    543 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    544 		if (STREQ(lca->ca_name, ca->ca_name))
    545 			return (EEXIST);
    546 	}
    547 
    548 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    549 
    550 	return (0);
    551 }
    552 
    553 /*
    554  * Remove a cfattach from the specified driver.
    555  */
    556 int
    557 config_cfattach_detach(const char *driver, struct cfattach *ca)
    558 {
    559 	struct cfdriver *cd;
    560 	device_t dev;
    561 	int i;
    562 
    563 	cd = config_cfdriver_lookup(driver);
    564 	if (cd == NULL)
    565 		return (ESRCH);
    566 
    567 	/* Make sure there are no active instances. */
    568 	for (i = 0; i < cd->cd_ndevs; i++) {
    569 		if ((dev = cd->cd_devs[i]) == NULL)
    570 			continue;
    571 		if (dev->dv_cfattach == ca)
    572 			return (EBUSY);
    573 	}
    574 
    575 	LIST_REMOVE(ca, ca_list);
    576 
    577 	return (0);
    578 }
    579 
    580 /*
    581  * Look up a cfattach by name.
    582  */
    583 static struct cfattach *
    584 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    585 {
    586 	struct cfattach *ca;
    587 
    588 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    589 		if (STREQ(ca->ca_name, atname))
    590 			return (ca);
    591 	}
    592 
    593 	return (NULL);
    594 }
    595 
    596 /*
    597  * Look up a cfattach by driver/attachment name.
    598  */
    599 struct cfattach *
    600 config_cfattach_lookup(const char *name, const char *atname)
    601 {
    602 	struct cfdriver *cd;
    603 
    604 	cd = config_cfdriver_lookup(name);
    605 	if (cd == NULL)
    606 		return (NULL);
    607 
    608 	return (config_cfattach_lookup_cd(cd, atname));
    609 }
    610 
    611 /*
    612  * Apply the matching function and choose the best.  This is used
    613  * a few times and we want to keep the code small.
    614  */
    615 static void
    616 mapply(struct matchinfo *m, cfdata_t cf)
    617 {
    618 	int pri;
    619 
    620 	if (m->fn != NULL) {
    621 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    622 	} else {
    623 		pri = config_match(m->parent, cf, m->aux);
    624 	}
    625 	if (pri > m->pri) {
    626 		m->match = cf;
    627 		m->pri = pri;
    628 	}
    629 }
    630 
    631 int
    632 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    633 {
    634 	const struct cfiattrdata *ci;
    635 	const struct cflocdesc *cl;
    636 	int nlocs, i;
    637 
    638 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    639 	KASSERT(ci);
    640 	nlocs = ci->ci_loclen;
    641 	for (i = 0; i < nlocs; i++) {
    642 		cl = &ci->ci_locdesc[i];
    643 		/* !cld_defaultstr means no default value */
    644 		if ((!(cl->cld_defaultstr)
    645 		     || (cf->cf_loc[i] != cl->cld_default))
    646 		    && cf->cf_loc[i] != locs[i])
    647 			return (0);
    648 	}
    649 
    650 	return (config_match(parent, cf, aux));
    651 }
    652 
    653 /*
    654  * Helper function: check whether the driver supports the interface attribute
    655  * and return its descriptor structure.
    656  */
    657 static const struct cfiattrdata *
    658 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    659 {
    660 	const struct cfiattrdata * const *cpp;
    661 
    662 	if (cd->cd_attrs == NULL)
    663 		return (0);
    664 
    665 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    666 		if (STREQ((*cpp)->ci_name, ia)) {
    667 			/* Match. */
    668 			return (*cpp);
    669 		}
    670 	}
    671 	return (0);
    672 }
    673 
    674 /*
    675  * Lookup an interface attribute description by name.
    676  * If the driver is given, consider only its supported attributes.
    677  */
    678 const struct cfiattrdata *
    679 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    680 {
    681 	const struct cfdriver *d;
    682 	const struct cfiattrdata *ia;
    683 
    684 	if (cd)
    685 		return (cfdriver_get_iattr(cd, name));
    686 
    687 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    688 		ia = cfdriver_get_iattr(d, name);
    689 		if (ia)
    690 			return (ia);
    691 	}
    692 	return (0);
    693 }
    694 
    695 /*
    696  * Determine if `parent' is a potential parent for a device spec based
    697  * on `cfp'.
    698  */
    699 static int
    700 cfparent_match(const device_t parent, const struct cfparent *cfp)
    701 {
    702 	struct cfdriver *pcd;
    703 
    704 	/* We don't match root nodes here. */
    705 	if (cfp == NULL)
    706 		return (0);
    707 
    708 	pcd = parent->dv_cfdriver;
    709 	KASSERT(pcd != NULL);
    710 
    711 	/*
    712 	 * First, ensure this parent has the correct interface
    713 	 * attribute.
    714 	 */
    715 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    716 		return (0);
    717 
    718 	/*
    719 	 * If no specific parent device instance was specified (i.e.
    720 	 * we're attaching to the attribute only), we're done!
    721 	 */
    722 	if (cfp->cfp_parent == NULL)
    723 		return (1);
    724 
    725 	/*
    726 	 * Check the parent device's name.
    727 	 */
    728 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    729 		return (0);	/* not the same parent */
    730 
    731 	/*
    732 	 * Make sure the unit number matches.
    733 	 */
    734 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    735 	    cfp->cfp_unit == parent->dv_unit)
    736 		return (1);
    737 
    738 	/* Unit numbers don't match. */
    739 	return (0);
    740 }
    741 
    742 /*
    743  * Helper for config_cfdata_attach(): check all devices whether it could be
    744  * parent any attachment in the config data table passed, and rescan.
    745  */
    746 static void
    747 rescan_with_cfdata(const struct cfdata *cf)
    748 {
    749 	device_t d;
    750 	const struct cfdata *cf1;
    751 	deviter_t di;
    752 
    753 
    754 	/*
    755 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
    756 	 * the outer loop.
    757 	 */
    758 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    759 
    760 		if (!(d->dv_cfattach->ca_rescan))
    761 			continue;
    762 
    763 		for (cf1 = cf; cf1->cf_name; cf1++) {
    764 
    765 			if (!cfparent_match(d, cf1->cf_pspec))
    766 				continue;
    767 
    768 			(*d->dv_cfattach->ca_rescan)(d,
    769 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    770 		}
    771 	}
    772 	deviter_release(&di);
    773 }
    774 
    775 /*
    776  * Attach a supplemental config data table and rescan potential
    777  * parent devices if required.
    778  */
    779 int
    780 config_cfdata_attach(cfdata_t cf, int scannow)
    781 {
    782 	struct cftable *ct;
    783 
    784 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
    785 	ct->ct_cfdata = cf;
    786 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    787 
    788 	if (scannow)
    789 		rescan_with_cfdata(cf);
    790 
    791 	return (0);
    792 }
    793 
    794 /*
    795  * Helper for config_cfdata_detach: check whether a device is
    796  * found through any attachment in the config data table.
    797  */
    798 static int
    799 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    800 {
    801 	const struct cfdata *cf1;
    802 
    803 	for (cf1 = cf; cf1->cf_name; cf1++)
    804 		if (d->dv_cfdata == cf1)
    805 			return (1);
    806 
    807 	return (0);
    808 }
    809 
    810 /*
    811  * Detach a supplemental config data table. Detach all devices found
    812  * through that table (and thus keeping references to it) before.
    813  */
    814 int
    815 config_cfdata_detach(cfdata_t cf)
    816 {
    817 	device_t d;
    818 	int error = 0;
    819 	struct cftable *ct;
    820 	deviter_t di;
    821 
    822 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    823 	     d = deviter_next(&di)) {
    824 		if (!dev_in_cfdata(d, cf))
    825 			continue;
    826 		if ((error = config_detach(d, 0)) != 0)
    827 			break;
    828 	}
    829 	deviter_release(&di);
    830 	if (error) {
    831 		aprint_error_dev(d, "unable to detach instance\n");
    832 		return error;
    833 	}
    834 
    835 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    836 		if (ct->ct_cfdata == cf) {
    837 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    838 			free(ct, M_DEVBUF);
    839 			return (0);
    840 		}
    841 	}
    842 
    843 	/* not found -- shouldn't happen */
    844 	return (EINVAL);
    845 }
    846 
    847 /*
    848  * Invoke the "match" routine for a cfdata entry on behalf of
    849  * an external caller, usually a "submatch" routine.
    850  */
    851 int
    852 config_match(device_t parent, cfdata_t cf, void *aux)
    853 {
    854 	struct cfattach *ca;
    855 
    856 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    857 	if (ca == NULL) {
    858 		/* No attachment for this entry, oh well. */
    859 		return (0);
    860 	}
    861 
    862 	return ((*ca->ca_match)(parent, cf, aux));
    863 }
    864 
    865 /*
    866  * Iterate over all potential children of some device, calling the given
    867  * function (default being the child's match function) for each one.
    868  * Nonzero returns are matches; the highest value returned is considered
    869  * the best match.  Return the `found child' if we got a match, or NULL
    870  * otherwise.  The `aux' pointer is simply passed on through.
    871  *
    872  * Note that this function is designed so that it can be used to apply
    873  * an arbitrary function to all potential children (its return value
    874  * can be ignored).
    875  */
    876 cfdata_t
    877 config_search_loc(cfsubmatch_t fn, device_t parent,
    878 		  const char *ifattr, const int *locs, void *aux)
    879 {
    880 	struct cftable *ct;
    881 	cfdata_t cf;
    882 	struct matchinfo m;
    883 
    884 	KASSERT(config_initialized);
    885 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    886 
    887 	m.fn = fn;
    888 	m.parent = parent;
    889 	m.locs = locs;
    890 	m.aux = aux;
    891 	m.match = NULL;
    892 	m.pri = 0;
    893 
    894 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    895 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    896 
    897 			/* We don't match root nodes here. */
    898 			if (!cf->cf_pspec)
    899 				continue;
    900 
    901 			/*
    902 			 * Skip cf if no longer eligible, otherwise scan
    903 			 * through parents for one matching `parent', and
    904 			 * try match function.
    905 			 */
    906 			if (cf->cf_fstate == FSTATE_FOUND)
    907 				continue;
    908 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    909 			    cf->cf_fstate == FSTATE_DSTAR)
    910 				continue;
    911 
    912 			/*
    913 			 * If an interface attribute was specified,
    914 			 * consider only children which attach to
    915 			 * that attribute.
    916 			 */
    917 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    918 				continue;
    919 
    920 			if (cfparent_match(parent, cf->cf_pspec))
    921 				mapply(&m, cf);
    922 		}
    923 	}
    924 	return (m.match);
    925 }
    926 
    927 cfdata_t
    928 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    929     void *aux)
    930 {
    931 
    932 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
    933 }
    934 
    935 /*
    936  * Find the given root device.
    937  * This is much like config_search, but there is no parent.
    938  * Don't bother with multiple cfdata tables; the root node
    939  * must always be in the initial table.
    940  */
    941 cfdata_t
    942 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    943 {
    944 	cfdata_t cf;
    945 	const short *p;
    946 	struct matchinfo m;
    947 
    948 	m.fn = fn;
    949 	m.parent = ROOT;
    950 	m.aux = aux;
    951 	m.match = NULL;
    952 	m.pri = 0;
    953 	m.locs = 0;
    954 	/*
    955 	 * Look at root entries for matching name.  We do not bother
    956 	 * with found-state here since only one root should ever be
    957 	 * searched (and it must be done first).
    958 	 */
    959 	for (p = cfroots; *p >= 0; p++) {
    960 		cf = &cfdata[*p];
    961 		if (strcmp(cf->cf_name, rootname) == 0)
    962 			mapply(&m, cf);
    963 	}
    964 	return (m.match);
    965 }
    966 
    967 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    968 
    969 /*
    970  * The given `aux' argument describes a device that has been found
    971  * on the given parent, but not necessarily configured.  Locate the
    972  * configuration data for that device (using the submatch function
    973  * provided, or using candidates' cd_match configuration driver
    974  * functions) and attach it, and return true.  If the device was
    975  * not configured, call the given `print' function and return 0.
    976  */
    977 device_t
    978 config_found_sm_loc(device_t parent,
    979 		const char *ifattr, const int *locs, void *aux,
    980 		cfprint_t print, cfsubmatch_t submatch)
    981 {
    982 	cfdata_t cf;
    983 
    984 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    985 	if (splash_progress_state)
    986 		splash_progress_update(splash_progress_state);
    987 #endif
    988 
    989 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    990 		return(config_attach_loc(parent, cf, locs, aux, print));
    991 	if (print) {
    992 		if (config_do_twiddle)
    993 			twiddle();
    994 		aprint_normal("%s", msgs[(*print)(aux, parent->dv_xname)]);
    995 	}
    996 
    997 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    998 	if (splash_progress_state)
    999 		splash_progress_update(splash_progress_state);
   1000 #endif
   1001 
   1002 	return (NULL);
   1003 }
   1004 
   1005 device_t
   1006 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1007     cfprint_t print)
   1008 {
   1009 
   1010 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
   1011 }
   1012 
   1013 device_t
   1014 config_found(device_t parent, void *aux, cfprint_t print)
   1015 {
   1016 
   1017 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
   1018 }
   1019 
   1020 /*
   1021  * As above, but for root devices.
   1022  */
   1023 device_t
   1024 config_rootfound(const char *rootname, void *aux)
   1025 {
   1026 	cfdata_t cf;
   1027 
   1028 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1029 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
   1030 	aprint_error("root device %s not configured\n", rootname);
   1031 	return (NULL);
   1032 }
   1033 
   1034 /* just like sprintf(buf, "%d") except that it works from the end */
   1035 static char *
   1036 number(char *ep, int n)
   1037 {
   1038 
   1039 	*--ep = 0;
   1040 	while (n >= 10) {
   1041 		*--ep = (n % 10) + '0';
   1042 		n /= 10;
   1043 	}
   1044 	*--ep = n + '0';
   1045 	return (ep);
   1046 }
   1047 
   1048 /*
   1049  * Expand the size of the cd_devs array if necessary.
   1050  */
   1051 static void
   1052 config_makeroom(int n, struct cfdriver *cd)
   1053 {
   1054 	int old, new;
   1055 	void **nsp;
   1056 
   1057 	if (n < cd->cd_ndevs)
   1058 		return;
   1059 
   1060 	/*
   1061 	 * Need to expand the array.
   1062 	 */
   1063 	old = cd->cd_ndevs;
   1064 	if (old == 0)
   1065 		new = 4;
   1066 	else
   1067 		new = old * 2;
   1068 	while (new <= n)
   1069 		new *= 2;
   1070 	cd->cd_ndevs = new;
   1071 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
   1072 	    cold ? M_NOWAIT : M_WAITOK);
   1073 	if (nsp == NULL)
   1074 		panic("config_attach: %sing dev array",
   1075 		    old != 0 ? "expand" : "creat");
   1076 	memset(nsp + old, 0, (new - old) * sizeof(void *));
   1077 	if (old != 0) {
   1078 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
   1079 		free(cd->cd_devs, M_DEVBUF);
   1080 	}
   1081 	cd->cd_devs = nsp;
   1082 }
   1083 
   1084 static void
   1085 config_devlink(device_t dev)
   1086 {
   1087 	struct cfdriver *cd = dev->dv_cfdriver;
   1088 
   1089 	/* put this device in the devices array */
   1090 	config_makeroom(dev->dv_unit, cd);
   1091 	if (cd->cd_devs[dev->dv_unit])
   1092 		panic("config_attach: duplicate %s", dev->dv_xname);
   1093 	cd->cd_devs[dev->dv_unit] = dev;
   1094 
   1095 	/* It is safe to add a device to the tail of the list while
   1096 	 * readers are in the list, but not while a writer is in
   1097 	 * the list.  Wait for any writer to complete.
   1098 	 */
   1099 	mutex_enter(&alldevs_mtx);
   1100 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1101 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1102 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1103 	cv_signal(&alldevs_cv);
   1104 	mutex_exit(&alldevs_mtx);
   1105 }
   1106 
   1107 static void
   1108 config_devunlink(device_t dev)
   1109 {
   1110 	struct cfdriver *cd = dev->dv_cfdriver;
   1111 	int i;
   1112 
   1113 	/* Unlink from device list. */
   1114 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1115 
   1116 	/* Remove from cfdriver's array. */
   1117 	cd->cd_devs[dev->dv_unit] = NULL;
   1118 
   1119 	/*
   1120 	 * If the device now has no units in use, deallocate its softc array.
   1121 	 */
   1122 	for (i = 0; i < cd->cd_ndevs; i++)
   1123 		if (cd->cd_devs[i] != NULL)
   1124 			break;
   1125 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
   1126 		free(cd->cd_devs, M_DEVBUF);
   1127 		cd->cd_devs = NULL;
   1128 		cd->cd_ndevs = 0;
   1129 	}
   1130 }
   1131 
   1132 static device_t
   1133 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1134 {
   1135 	struct cfdriver *cd;
   1136 	struct cfattach *ca;
   1137 	size_t lname, lunit;
   1138 	const char *xunit;
   1139 	int myunit;
   1140 	char num[10];
   1141 	device_t dev;
   1142 	void *dev_private;
   1143 	const struct cfiattrdata *ia;
   1144 
   1145 	cd = config_cfdriver_lookup(cf->cf_name);
   1146 	if (cd == NULL)
   1147 		return (NULL);
   1148 
   1149 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1150 	if (ca == NULL)
   1151 		return (NULL);
   1152 
   1153 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1154 	    ca->ca_devsize < sizeof(struct device))
   1155 		panic("config_devalloc: %s", cf->cf_atname);
   1156 
   1157 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1158 	if (cf->cf_fstate == FSTATE_STAR) {
   1159 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1160 			if (cd->cd_devs[myunit] == NULL)
   1161 				break;
   1162 		/*
   1163 		 * myunit is now the unit of the first NULL device pointer,
   1164 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1165 		 */
   1166 	} else {
   1167 		myunit = cf->cf_unit;
   1168 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1169 			return (NULL);
   1170 	}
   1171 #else
   1172 	myunit = cf->cf_unit;
   1173 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1174 
   1175 	/* compute length of name and decimal expansion of unit number */
   1176 	lname = strlen(cd->cd_name);
   1177 	xunit = number(&num[sizeof(num)], myunit);
   1178 	lunit = &num[sizeof(num)] - xunit;
   1179 	if (lname + lunit > sizeof(dev->dv_xname))
   1180 		panic("config_devalloc: device name too long");
   1181 
   1182 	/* get memory for all device vars */
   1183 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1184 	if (ca->ca_devsize > 0) {
   1185 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
   1186 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1187 		if (dev_private == NULL)
   1188 			panic("config_devalloc: memory allocation for device softc failed");
   1189 	} else {
   1190 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1191 		dev_private = NULL;
   1192 	}
   1193 
   1194 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1195 		dev = malloc(sizeof(struct device), M_DEVBUF,
   1196 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1197 	} else {
   1198 		dev = dev_private;
   1199 	}
   1200 	if (dev == NULL)
   1201 		panic("config_devalloc: memory allocation for device_t failed");
   1202 
   1203 	dev->dv_class = cd->cd_class;
   1204 	dev->dv_cfdata = cf;
   1205 	dev->dv_cfdriver = cd;
   1206 	dev->dv_cfattach = ca;
   1207 	dev->dv_unit = myunit;
   1208 	dev->dv_activity_count = 0;
   1209 	dev->dv_activity_handlers = NULL;
   1210 	dev->dv_private = dev_private;
   1211 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1212 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1213 	dev->dv_parent = parent;
   1214 	if (parent != NULL)
   1215 		dev->dv_depth = parent->dv_depth + 1;
   1216 	else
   1217 		dev->dv_depth = 0;
   1218 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1219 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1220 	if (locs) {
   1221 		KASSERT(parent); /* no locators at root */
   1222 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1223 				    parent->dv_cfdriver);
   1224 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
   1225 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1226 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
   1227 	}
   1228 	dev->dv_properties = prop_dictionary_create();
   1229 	KASSERT(dev->dv_properties != NULL);
   1230 
   1231 	return (dev);
   1232 }
   1233 
   1234 static void
   1235 config_devdealloc(device_t dev)
   1236 {
   1237 
   1238 	KASSERT(dev->dv_properties != NULL);
   1239 	prop_object_release(dev->dv_properties);
   1240 
   1241 	if (dev->dv_activity_handlers)
   1242 		panic("config_devdealloc with registered handlers");
   1243 
   1244 	if (dev->dv_locators)
   1245 		free(dev->dv_locators, M_DEVBUF);
   1246 
   1247 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
   1248 		free(dev->dv_private, M_DEVBUF);
   1249 
   1250 	free(dev, M_DEVBUF);
   1251 }
   1252 
   1253 /*
   1254  * Attach a found device.
   1255  */
   1256 device_t
   1257 config_attach_loc(device_t parent, cfdata_t cf,
   1258 	const int *locs, void *aux, cfprint_t print)
   1259 {
   1260 	device_t dev;
   1261 	struct cftable *ct;
   1262 	const char *drvname;
   1263 
   1264 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1265 	if (splash_progress_state)
   1266 		splash_progress_update(splash_progress_state);
   1267 #endif
   1268 
   1269 	dev = config_devalloc(parent, cf, locs);
   1270 	if (!dev)
   1271 		panic("config_attach: allocation of device softc failed");
   1272 
   1273 	/* XXX redundant - see below? */
   1274 	if (cf->cf_fstate != FSTATE_STAR) {
   1275 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1276 		cf->cf_fstate = FSTATE_FOUND;
   1277 	}
   1278 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1279 	  else
   1280 		cf->cf_unit++;
   1281 #endif
   1282 
   1283 	config_devlink(dev);
   1284 
   1285 	if (config_do_twiddle)
   1286 		twiddle();
   1287 	else
   1288 		aprint_naive("Found ");
   1289 	/*
   1290 	 * We want the next two printfs for normal, verbose, and quiet,
   1291 	 * but not silent (in which case, we're twiddling, instead).
   1292 	 */
   1293 	if (parent == ROOT) {
   1294 		aprint_naive("%s (root)", dev->dv_xname);
   1295 		aprint_normal("%s (root)", dev->dv_xname);
   1296 	} else {
   1297 		aprint_naive("%s at %s", dev->dv_xname, parent->dv_xname);
   1298 		aprint_normal("%s at %s", dev->dv_xname, parent->dv_xname);
   1299 		if (print)
   1300 			(void) (*print)(aux, NULL);
   1301 	}
   1302 
   1303 	/*
   1304 	 * Before attaching, clobber any unfound devices that are
   1305 	 * otherwise identical.
   1306 	 * XXX code above is redundant?
   1307 	 */
   1308 	drvname = dev->dv_cfdriver->cd_name;
   1309 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1310 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1311 			if (STREQ(cf->cf_name, drvname) &&
   1312 			    cf->cf_unit == dev->dv_unit) {
   1313 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1314 					cf->cf_fstate = FSTATE_FOUND;
   1315 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1316 				/*
   1317 				 * Bump the unit number on all starred cfdata
   1318 				 * entries for this device.
   1319 				 */
   1320 				if (cf->cf_fstate == FSTATE_STAR)
   1321 					cf->cf_unit++;
   1322 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1323 			}
   1324 		}
   1325 	}
   1326 #ifdef __HAVE_DEVICE_REGISTER
   1327 	device_register(dev, aux);
   1328 #endif
   1329 
   1330 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1331 	if (splash_progress_state)
   1332 		splash_progress_update(splash_progress_state);
   1333 #endif
   1334 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1335 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1336 	if (splash_progress_state)
   1337 		splash_progress_update(splash_progress_state);
   1338 #endif
   1339 
   1340 	if (!device_pmf_is_registered(dev))
   1341 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1342 
   1343 	config_process_deferred(&deferred_config_queue, dev);
   1344 	return (dev);
   1345 }
   1346 
   1347 device_t
   1348 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1349 {
   1350 
   1351 	return (config_attach_loc(parent, cf, NULL, aux, print));
   1352 }
   1353 
   1354 /*
   1355  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1356  * way are silently inserted into the device tree, and their children
   1357  * attached.
   1358  *
   1359  * Note that because pseudo-devices are attached silently, any information
   1360  * the attach routine wishes to print should be prefixed with the device
   1361  * name by the attach routine.
   1362  */
   1363 device_t
   1364 config_attach_pseudo(cfdata_t cf)
   1365 {
   1366 	device_t dev;
   1367 
   1368 	dev = config_devalloc(ROOT, cf, NULL);
   1369 	if (!dev)
   1370 		return (NULL);
   1371 
   1372 	/* XXX mark busy in cfdata */
   1373 
   1374 	config_devlink(dev);
   1375 
   1376 #if 0	/* XXXJRT not yet */
   1377 #ifdef __HAVE_DEVICE_REGISTER
   1378 	device_register(dev, NULL);	/* like a root node */
   1379 #endif
   1380 #endif
   1381 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1382 	config_process_deferred(&deferred_config_queue, dev);
   1383 	return (dev);
   1384 }
   1385 
   1386 /*
   1387  * Detach a device.  Optionally forced (e.g. because of hardware
   1388  * removal) and quiet.  Returns zero if successful, non-zero
   1389  * (an error code) otherwise.
   1390  *
   1391  * Note that this code wants to be run from a process context, so
   1392  * that the detach can sleep to allow processes which have a device
   1393  * open to run and unwind their stacks.
   1394  */
   1395 int
   1396 config_detach(device_t dev, int flags)
   1397 {
   1398 	struct cftable *ct;
   1399 	cfdata_t cf;
   1400 	const struct cfattach *ca;
   1401 	struct cfdriver *cd;
   1402 #ifdef DIAGNOSTIC
   1403 	device_t d;
   1404 #endif
   1405 	int rv = 0;
   1406 
   1407 #ifdef DIAGNOSTIC
   1408 	if (dev->dv_cfdata != NULL &&
   1409 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
   1410 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
   1411 		panic("config_detach: bad device fstate");
   1412 #endif
   1413 	cd = dev->dv_cfdriver;
   1414 	KASSERT(cd != NULL);
   1415 
   1416 	ca = dev->dv_cfattach;
   1417 	KASSERT(ca != NULL);
   1418 
   1419 	KASSERT(curlwp != NULL);
   1420 	mutex_enter(&alldevs_mtx);
   1421 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1422 		;
   1423 	else while (alldevs_nread != 0 ||
   1424 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1425 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1426 	if (alldevs_nwrite++ == 0)
   1427 		alldevs_writer = curlwp;
   1428 	mutex_exit(&alldevs_mtx);
   1429 
   1430 	/*
   1431 	 * Ensure the device is deactivated.  If the device doesn't
   1432 	 * have an activation entry point, we allow DVF_ACTIVE to
   1433 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1434 	 * device is busy, and the detach fails.
   1435 	 */
   1436 	if (ca->ca_activate != NULL)
   1437 		rv = config_deactivate(dev);
   1438 
   1439 	/*
   1440 	 * Try to detach the device.  If that's not possible, then
   1441 	 * we either panic() (for the forced but failed case), or
   1442 	 * return an error.
   1443 	 */
   1444 	if (rv == 0) {
   1445 		if (ca->ca_detach != NULL)
   1446 			rv = (*ca->ca_detach)(dev, flags);
   1447 		else
   1448 			rv = EOPNOTSUPP;
   1449 	}
   1450 	if (rv != 0) {
   1451 		if ((flags & DETACH_FORCE) == 0)
   1452 			goto out;
   1453 		else
   1454 			panic("config_detach: forced detach of %s failed (%d)",
   1455 			    dev->dv_xname, rv);
   1456 	}
   1457 
   1458 	/*
   1459 	 * The device has now been successfully detached.
   1460 	 */
   1461 
   1462 #ifdef DIAGNOSTIC
   1463 	/*
   1464 	 * Sanity: If you're successfully detached, you should have no
   1465 	 * children.  (Note that because children must be attached
   1466 	 * after parents, we only need to search the latter part of
   1467 	 * the list.)
   1468 	 */
   1469 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1470 	    d = TAILQ_NEXT(d, dv_list)) {
   1471 		if (d->dv_parent == dev) {
   1472 			printf("config_detach: detached device %s"
   1473 			    " has children %s\n", dev->dv_xname, d->dv_xname);
   1474 			panic("config_detach");
   1475 		}
   1476 	}
   1477 #endif
   1478 
   1479 	/* notify the parent that the child is gone */
   1480 	if (dev->dv_parent) {
   1481 		device_t p = dev->dv_parent;
   1482 		if (p->dv_cfattach->ca_childdetached)
   1483 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1484 	}
   1485 
   1486 	/*
   1487 	 * Mark cfdata to show that the unit can be reused, if possible.
   1488 	 */
   1489 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1490 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1491 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1492 				if (cf->cf_fstate == FSTATE_FOUND &&
   1493 				    cf->cf_unit == dev->dv_unit)
   1494 					cf->cf_fstate = FSTATE_NOTFOUND;
   1495 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1496 				/*
   1497 				 * Note that we can only re-use a starred
   1498 				 * unit number if the unit being detached
   1499 				 * had the last assigned unit number.
   1500 				 */
   1501 				if (cf->cf_fstate == FSTATE_STAR &&
   1502 				    cf->cf_unit == dev->dv_unit + 1)
   1503 					cf->cf_unit--;
   1504 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1505 			}
   1506 		}
   1507 	}
   1508 
   1509 	config_devunlink(dev);
   1510 
   1511 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1512 		aprint_normal_dev(dev, "detached\n");
   1513 
   1514 	config_devdealloc(dev);
   1515 
   1516 out:
   1517 	mutex_enter(&alldevs_mtx);
   1518 	if (--alldevs_nwrite == 0)
   1519 		alldevs_writer = NULL;
   1520 	cv_signal(&alldevs_cv);
   1521 	mutex_exit(&alldevs_mtx);
   1522 	return rv;
   1523 }
   1524 
   1525 int
   1526 config_detach_children(device_t parent, int flags)
   1527 {
   1528 	device_t dv;
   1529 	deviter_t di;
   1530 	int error = 0;
   1531 
   1532 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1533 	     dv = deviter_next(&di)) {
   1534 		if (device_parent(dv) != parent)
   1535 			continue;
   1536 		if ((error = config_detach(dv, flags)) != 0)
   1537 			break;
   1538 	}
   1539 	deviter_release(&di);
   1540 	return error;
   1541 }
   1542 
   1543 int
   1544 config_activate(device_t dev)
   1545 {
   1546 	const struct cfattach *ca = dev->dv_cfattach;
   1547 	int rv = 0, oflags = dev->dv_flags;
   1548 
   1549 	if (ca->ca_activate == NULL)
   1550 		return (EOPNOTSUPP);
   1551 
   1552 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1553 		dev->dv_flags |= DVF_ACTIVE;
   1554 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1555 		if (rv)
   1556 			dev->dv_flags = oflags;
   1557 	}
   1558 	return (rv);
   1559 }
   1560 
   1561 int
   1562 config_deactivate(device_t dev)
   1563 {
   1564 	const struct cfattach *ca = dev->dv_cfattach;
   1565 	int rv = 0, oflags = dev->dv_flags;
   1566 
   1567 	if (ca->ca_activate == NULL)
   1568 		return (EOPNOTSUPP);
   1569 
   1570 	if (dev->dv_flags & DVF_ACTIVE) {
   1571 		dev->dv_flags &= ~DVF_ACTIVE;
   1572 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1573 		if (rv)
   1574 			dev->dv_flags = oflags;
   1575 	}
   1576 	return (rv);
   1577 }
   1578 
   1579 /*
   1580  * Defer the configuration of the specified device until all
   1581  * of its parent's devices have been attached.
   1582  */
   1583 void
   1584 config_defer(device_t dev, void (*func)(device_t))
   1585 {
   1586 	struct deferred_config *dc;
   1587 
   1588 	if (dev->dv_parent == NULL)
   1589 		panic("config_defer: can't defer config of a root device");
   1590 
   1591 #ifdef DIAGNOSTIC
   1592 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1593 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1594 		if (dc->dc_dev == dev)
   1595 			panic("config_defer: deferred twice");
   1596 	}
   1597 #endif
   1598 
   1599 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1600 	if (dc == NULL)
   1601 		panic("config_defer: unable to allocate callback");
   1602 
   1603 	dc->dc_dev = dev;
   1604 	dc->dc_func = func;
   1605 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1606 	config_pending_incr();
   1607 }
   1608 
   1609 /*
   1610  * Defer some autoconfiguration for a device until after interrupts
   1611  * are enabled.
   1612  */
   1613 void
   1614 config_interrupts(device_t dev, void (*func)(device_t))
   1615 {
   1616 	struct deferred_config *dc;
   1617 
   1618 	/*
   1619 	 * If interrupts are enabled, callback now.
   1620 	 */
   1621 	if (cold == 0) {
   1622 		(*func)(dev);
   1623 		return;
   1624 	}
   1625 
   1626 #ifdef DIAGNOSTIC
   1627 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1628 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1629 		if (dc->dc_dev == dev)
   1630 			panic("config_interrupts: deferred twice");
   1631 	}
   1632 #endif
   1633 
   1634 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1635 	if (dc == NULL)
   1636 		panic("config_interrupts: unable to allocate callback");
   1637 
   1638 	dc->dc_dev = dev;
   1639 	dc->dc_func = func;
   1640 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1641 	config_pending_incr();
   1642 }
   1643 
   1644 /*
   1645  * Process a deferred configuration queue.
   1646  */
   1647 static void
   1648 config_process_deferred(struct deferred_config_head *queue,
   1649     device_t parent)
   1650 {
   1651 	struct deferred_config *dc, *ndc;
   1652 
   1653 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1654 		ndc = TAILQ_NEXT(dc, dc_queue);
   1655 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1656 			TAILQ_REMOVE(queue, dc, dc_queue);
   1657 			(*dc->dc_func)(dc->dc_dev);
   1658 			free(dc, M_DEVBUF);
   1659 			config_pending_decr();
   1660 		}
   1661 	}
   1662 }
   1663 
   1664 /*
   1665  * Manipulate the config_pending semaphore.
   1666  */
   1667 void
   1668 config_pending_incr(void)
   1669 {
   1670 
   1671 	config_pending++;
   1672 }
   1673 
   1674 void
   1675 config_pending_decr(void)
   1676 {
   1677 
   1678 #ifdef DIAGNOSTIC
   1679 	if (config_pending == 0)
   1680 		panic("config_pending_decr: config_pending == 0");
   1681 #endif
   1682 	config_pending--;
   1683 	if (config_pending == 0)
   1684 		wakeup(&config_pending);
   1685 }
   1686 
   1687 /*
   1688  * Register a "finalization" routine.  Finalization routines are
   1689  * called iteratively once all real devices have been found during
   1690  * autoconfiguration, for as long as any one finalizer has done
   1691  * any work.
   1692  */
   1693 int
   1694 config_finalize_register(device_t dev, int (*fn)(device_t))
   1695 {
   1696 	struct finalize_hook *f;
   1697 
   1698 	/*
   1699 	 * If finalization has already been done, invoke the
   1700 	 * callback function now.
   1701 	 */
   1702 	if (config_finalize_done) {
   1703 		while ((*fn)(dev) != 0)
   1704 			/* loop */ ;
   1705 	}
   1706 
   1707 	/* Ensure this isn't already on the list. */
   1708 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1709 		if (f->f_func == fn && f->f_dev == dev)
   1710 			return (EEXIST);
   1711 	}
   1712 
   1713 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
   1714 	f->f_func = fn;
   1715 	f->f_dev = dev;
   1716 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1717 
   1718 	return (0);
   1719 }
   1720 
   1721 void
   1722 config_finalize(void)
   1723 {
   1724 	struct finalize_hook *f;
   1725 	struct pdevinit *pdev;
   1726 	extern struct pdevinit pdevinit[];
   1727 	int errcnt, rv;
   1728 
   1729 	/*
   1730 	 * Now that device driver threads have been created, wait for
   1731 	 * them to finish any deferred autoconfiguration.
   1732 	 */
   1733 	while (config_pending)
   1734 		(void) tsleep(&config_pending, PWAIT, "cfpend", hz);
   1735 
   1736 	/* Attach pseudo-devices. */
   1737 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1738 		(*pdev->pdev_attach)(pdev->pdev_count);
   1739 
   1740 	/* Run the hooks until none of them does any work. */
   1741 	do {
   1742 		rv = 0;
   1743 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1744 			rv |= (*f->f_func)(f->f_dev);
   1745 	} while (rv != 0);
   1746 
   1747 	config_finalize_done = 1;
   1748 
   1749 	/* Now free all the hooks. */
   1750 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1751 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1752 		free(f, M_TEMP);
   1753 	}
   1754 
   1755 	errcnt = aprint_get_error_count();
   1756 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1757 	    (boothowto & AB_VERBOSE) == 0) {
   1758 		if (config_do_twiddle) {
   1759 			config_do_twiddle = 0;
   1760 			printf_nolog("done.\n");
   1761 		}
   1762 		if (errcnt != 0) {
   1763 			printf("WARNING: %d error%s while detecting hardware; "
   1764 			    "check system log.\n", errcnt,
   1765 			    errcnt == 1 ? "" : "s");
   1766 		}
   1767 	}
   1768 }
   1769 
   1770 /*
   1771  * device_lookup:
   1772  *
   1773  *	Look up a device instance for a given driver.
   1774  */
   1775 void *
   1776 device_lookup(cfdriver_t cd, int unit)
   1777 {
   1778 
   1779 	if (unit < 0 || unit >= cd->cd_ndevs)
   1780 		return (NULL);
   1781 
   1782 	return (cd->cd_devs[unit]);
   1783 }
   1784 
   1785 /*
   1786  * device_lookup:
   1787  *
   1788  *	Look up a device instance for a given driver.
   1789  */
   1790 void *
   1791 device_lookup_private(cfdriver_t cd, int unit)
   1792 {
   1793 	device_t dv;
   1794 
   1795 	if (unit < 0 || unit >= cd->cd_ndevs)
   1796 		return NULL;
   1797 
   1798 	if ((dv = cd->cd_devs[unit]) == NULL)
   1799 		return NULL;
   1800 
   1801 	return dv->dv_private;
   1802 }
   1803 
   1804 /*
   1805  * Accessor functions for the device_t type.
   1806  */
   1807 devclass_t
   1808 device_class(device_t dev)
   1809 {
   1810 
   1811 	return (dev->dv_class);
   1812 }
   1813 
   1814 cfdata_t
   1815 device_cfdata(device_t dev)
   1816 {
   1817 
   1818 	return (dev->dv_cfdata);
   1819 }
   1820 
   1821 cfdriver_t
   1822 device_cfdriver(device_t dev)
   1823 {
   1824 
   1825 	return (dev->dv_cfdriver);
   1826 }
   1827 
   1828 cfattach_t
   1829 device_cfattach(device_t dev)
   1830 {
   1831 
   1832 	return (dev->dv_cfattach);
   1833 }
   1834 
   1835 int
   1836 device_unit(device_t dev)
   1837 {
   1838 
   1839 	return (dev->dv_unit);
   1840 }
   1841 
   1842 const char *
   1843 device_xname(device_t dev)
   1844 {
   1845 
   1846 	return (dev->dv_xname);
   1847 }
   1848 
   1849 device_t
   1850 device_parent(device_t dev)
   1851 {
   1852 
   1853 	return (dev->dv_parent);
   1854 }
   1855 
   1856 bool
   1857 device_is_active(device_t dev)
   1858 {
   1859 	int active_flags;
   1860 
   1861 	active_flags = DVF_ACTIVE;
   1862 	active_flags |= DVF_CLASS_SUSPENDED;
   1863 	active_flags |= DVF_DRIVER_SUSPENDED;
   1864 	active_flags |= DVF_BUS_SUSPENDED;
   1865 
   1866 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1867 }
   1868 
   1869 bool
   1870 device_is_enabled(device_t dev)
   1871 {
   1872 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1873 }
   1874 
   1875 bool
   1876 device_has_power(device_t dev)
   1877 {
   1878 	int active_flags;
   1879 
   1880 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1881 
   1882 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1883 }
   1884 
   1885 int
   1886 device_locator(device_t dev, u_int locnum)
   1887 {
   1888 
   1889 	KASSERT(dev->dv_locators != NULL);
   1890 	return (dev->dv_locators[locnum]);
   1891 }
   1892 
   1893 void *
   1894 device_private(device_t dev)
   1895 {
   1896 
   1897 	/*
   1898 	 * The reason why device_private(NULL) is allowed is to simplify the
   1899 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1900 	 * handlers) which grab cfdriver_t->cd_units[n].
   1901 	 * It avoids having them test for it to be NULL and only then calling
   1902 	 * device_private.
   1903 	 */
   1904 	return dev == NULL ? NULL : dev->dv_private;
   1905 }
   1906 
   1907 prop_dictionary_t
   1908 device_properties(device_t dev)
   1909 {
   1910 
   1911 	return (dev->dv_properties);
   1912 }
   1913 
   1914 /*
   1915  * device_is_a:
   1916  *
   1917  *	Returns true if the device is an instance of the specified
   1918  *	driver.
   1919  */
   1920 bool
   1921 device_is_a(device_t dev, const char *dname)
   1922 {
   1923 
   1924 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
   1925 }
   1926 
   1927 /*
   1928  * device_find_by_xname:
   1929  *
   1930  *	Returns the device of the given name or NULL if it doesn't exist.
   1931  */
   1932 device_t
   1933 device_find_by_xname(const char *name)
   1934 {
   1935 	device_t dv;
   1936 	deviter_t di;
   1937 
   1938 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   1939 		if (strcmp(device_xname(dv), name) == 0)
   1940 			break;
   1941 	}
   1942 	deviter_release(&di);
   1943 
   1944 	return dv;
   1945 }
   1946 
   1947 /*
   1948  * device_find_by_driver_unit:
   1949  *
   1950  *	Returns the device of the given driver name and unit or
   1951  *	NULL if it doesn't exist.
   1952  */
   1953 device_t
   1954 device_find_by_driver_unit(const char *name, int unit)
   1955 {
   1956 	struct cfdriver *cd;
   1957 
   1958 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   1959 		return NULL;
   1960 	return device_lookup(cd, unit);
   1961 }
   1962 
   1963 /*
   1964  * Power management related functions.
   1965  */
   1966 
   1967 bool
   1968 device_pmf_is_registered(device_t dev)
   1969 {
   1970 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   1971 }
   1972 
   1973 bool
   1974 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   1975 {
   1976 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   1977 		return true;
   1978 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   1979 		return false;
   1980 	if (*dev->dv_driver_suspend != NULL &&
   1981 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   1982 		return false;
   1983 
   1984 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   1985 	return true;
   1986 }
   1987 
   1988 bool
   1989 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   1990 {
   1991 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   1992 		return true;
   1993 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   1994 		return false;
   1995 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   1996 		return false;
   1997 	if (*dev->dv_driver_resume != NULL &&
   1998 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   1999 		return false;
   2000 
   2001 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2002 	return true;
   2003 }
   2004 
   2005 bool
   2006 device_pmf_driver_shutdown(device_t dev, int how)
   2007 {
   2008 
   2009 	if (*dev->dv_driver_shutdown != NULL &&
   2010 	    !(*dev->dv_driver_shutdown)(dev, how))
   2011 		return false;
   2012 	return true;
   2013 }
   2014 
   2015 bool
   2016 device_pmf_driver_register(device_t dev,
   2017     bool (*suspend)(device_t PMF_FN_PROTO),
   2018     bool (*resume)(device_t PMF_FN_PROTO),
   2019     bool (*shutdown)(device_t, int))
   2020 {
   2021 	pmf_private_t *pp;
   2022 
   2023 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
   2024 		return false;
   2025 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
   2026 	cv_init(&pp->pp_cv, "pmfsusp");
   2027 	dev->dv_pmf_private = pp;
   2028 
   2029 	dev->dv_driver_suspend = suspend;
   2030 	dev->dv_driver_resume = resume;
   2031 	dev->dv_driver_shutdown = shutdown;
   2032 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2033 	return true;
   2034 }
   2035 
   2036 static const char *
   2037 curlwp_name(void)
   2038 {
   2039 	if (curlwp->l_name != NULL)
   2040 		return curlwp->l_name;
   2041 	else
   2042 		return curlwp->l_proc->p_comm;
   2043 }
   2044 
   2045 void
   2046 device_pmf_driver_deregister(device_t dev)
   2047 {
   2048 	pmf_private_t *pp = dev->dv_pmf_private;
   2049 
   2050 	dev->dv_driver_suspend = NULL;
   2051 	dev->dv_driver_resume = NULL;
   2052 
   2053 	dev->dv_pmf_private = NULL;
   2054 
   2055 	mutex_enter(&pp->pp_mtx);
   2056 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2057 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
   2058 		/* Wake a thread that waits for the lock.  That
   2059 		 * thread will fail to acquire the lock, and then
   2060 		 * it will wake the next thread that waits for the
   2061 		 * lock, or else it will wake us.
   2062 		 */
   2063 		cv_signal(&pp->pp_cv);
   2064 		pmflock_debug(dev, __func__, __LINE__);
   2065 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2066 		pmflock_debug(dev, __func__, __LINE__);
   2067 	}
   2068 	mutex_exit(&pp->pp_mtx);
   2069 
   2070 	cv_destroy(&pp->pp_cv);
   2071 	mutex_destroy(&pp->pp_mtx);
   2072 	free(pp, M_PMFPRIV);
   2073 }
   2074 
   2075 bool
   2076 device_pmf_driver_child_register(device_t dev)
   2077 {
   2078 	device_t parent = device_parent(dev);
   2079 
   2080 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2081 		return true;
   2082 	return (*parent->dv_driver_child_register)(dev);
   2083 }
   2084 
   2085 void
   2086 device_pmf_driver_set_child_register(device_t dev,
   2087     bool (*child_register)(device_t))
   2088 {
   2089 	dev->dv_driver_child_register = child_register;
   2090 }
   2091 
   2092 void
   2093 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
   2094 {
   2095 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2096 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
   2097 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2098 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2099 }
   2100 
   2101 bool
   2102 device_is_self_suspended(device_t dev)
   2103 {
   2104 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
   2105 }
   2106 
   2107 void
   2108 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
   2109 {
   2110 	bool self = (flags & PMF_F_SELF) != 0;
   2111 
   2112 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2113 
   2114 	if (!self)
   2115 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2116 	else if (device_is_active(dev))
   2117 		dev->dv_flags |= DVF_SELF_SUSPENDED;
   2118 
   2119 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2120 }
   2121 
   2122 static void
   2123 pmflock_debug(device_t dev, const char *func, int line)
   2124 {
   2125 	pmf_private_t *pp = device_pmf_private(dev);
   2126 
   2127 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
   2128 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
   2129 	    dev->dv_flags);
   2130 }
   2131 
   2132 static void
   2133 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2134 {
   2135 	pmf_private_t *pp = device_pmf_private(dev);
   2136 
   2137 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
   2138 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2139 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
   2140 }
   2141 
   2142 static bool
   2143 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2144 {
   2145 	pmf_private_t *pp = device_pmf_private(dev);
   2146 
   2147 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
   2148 	       device_pmf_is_registered(dev)) {
   2149 		pp->pp_nwait++;
   2150 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2151 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2152 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2153 		pp->pp_nwait--;
   2154 	}
   2155 	if (!device_pmf_is_registered(dev)) {
   2156 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2157 		/* We could not acquire the lock, but some other thread may
   2158 		 * wait for it, also.  Wake that thread.
   2159 		 */
   2160 		cv_signal(&pp->pp_cv);
   2161 		return false;
   2162 	}
   2163 	pp->pp_nlock++;
   2164 	pp->pp_holder = curlwp;
   2165 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2166 	return true;
   2167 }
   2168 
   2169 bool
   2170 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2171 {
   2172 	bool rc;
   2173 	pmf_private_t *pp = device_pmf_private(dev);
   2174 
   2175 	mutex_enter(&pp->pp_mtx);
   2176 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2177 	mutex_exit(&pp->pp_mtx);
   2178 
   2179 	return rc;
   2180 }
   2181 
   2182 void
   2183 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2184 {
   2185 	pmf_private_t *pp = device_pmf_private(dev);
   2186 
   2187 	KASSERT(pp->pp_nlock > 0);
   2188 	mutex_enter(&pp->pp_mtx);
   2189 	if (--pp->pp_nlock == 0)
   2190 		pp->pp_holder = NULL;
   2191 	cv_signal(&pp->pp_cv);
   2192 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2193 	mutex_exit(&pp->pp_mtx);
   2194 }
   2195 
   2196 void *
   2197 device_pmf_private(device_t dev)
   2198 {
   2199 	return dev->dv_pmf_private;
   2200 }
   2201 
   2202 void *
   2203 device_pmf_bus_private(device_t dev)
   2204 {
   2205 	return dev->dv_bus_private;
   2206 }
   2207 
   2208 bool
   2209 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2210 {
   2211 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2212 		return true;
   2213 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2214 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2215 		return false;
   2216 	if (*dev->dv_bus_suspend != NULL &&
   2217 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2218 		return false;
   2219 
   2220 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2221 	return true;
   2222 }
   2223 
   2224 bool
   2225 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2226 {
   2227 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2228 		return true;
   2229 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2230 		return false;
   2231 	if (*dev->dv_bus_resume != NULL &&
   2232 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2233 		return false;
   2234 
   2235 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2236 	return true;
   2237 }
   2238 
   2239 bool
   2240 device_pmf_bus_shutdown(device_t dev, int how)
   2241 {
   2242 
   2243 	if (*dev->dv_bus_shutdown != NULL &&
   2244 	    !(*dev->dv_bus_shutdown)(dev, how))
   2245 		return false;
   2246 	return true;
   2247 }
   2248 
   2249 void
   2250 device_pmf_bus_register(device_t dev, void *priv,
   2251     bool (*suspend)(device_t PMF_FN_PROTO),
   2252     bool (*resume)(device_t PMF_FN_PROTO),
   2253     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2254 {
   2255 	dev->dv_bus_private = priv;
   2256 	dev->dv_bus_resume = resume;
   2257 	dev->dv_bus_suspend = suspend;
   2258 	dev->dv_bus_shutdown = shutdown;
   2259 	dev->dv_bus_deregister = deregister;
   2260 }
   2261 
   2262 void
   2263 device_pmf_bus_deregister(device_t dev)
   2264 {
   2265 	if (dev->dv_bus_deregister == NULL)
   2266 		return;
   2267 	(*dev->dv_bus_deregister)(dev);
   2268 	dev->dv_bus_private = NULL;
   2269 	dev->dv_bus_suspend = NULL;
   2270 	dev->dv_bus_resume = NULL;
   2271 	dev->dv_bus_deregister = NULL;
   2272 }
   2273 
   2274 void *
   2275 device_pmf_class_private(device_t dev)
   2276 {
   2277 	return dev->dv_class_private;
   2278 }
   2279 
   2280 bool
   2281 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2282 {
   2283 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2284 		return true;
   2285 	if (*dev->dv_class_suspend != NULL &&
   2286 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2287 		return false;
   2288 
   2289 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2290 	return true;
   2291 }
   2292 
   2293 bool
   2294 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2295 {
   2296 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2297 		return true;
   2298 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2299 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2300 		return false;
   2301 	if (*dev->dv_class_resume != NULL &&
   2302 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2303 		return false;
   2304 
   2305 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2306 	return true;
   2307 }
   2308 
   2309 void
   2310 device_pmf_class_register(device_t dev, void *priv,
   2311     bool (*suspend)(device_t PMF_FN_PROTO),
   2312     bool (*resume)(device_t PMF_FN_PROTO),
   2313     void (*deregister)(device_t))
   2314 {
   2315 	dev->dv_class_private = priv;
   2316 	dev->dv_class_suspend = suspend;
   2317 	dev->dv_class_resume = resume;
   2318 	dev->dv_class_deregister = deregister;
   2319 }
   2320 
   2321 void
   2322 device_pmf_class_deregister(device_t dev)
   2323 {
   2324 	if (dev->dv_class_deregister == NULL)
   2325 		return;
   2326 	(*dev->dv_class_deregister)(dev);
   2327 	dev->dv_class_private = NULL;
   2328 	dev->dv_class_suspend = NULL;
   2329 	dev->dv_class_resume = NULL;
   2330 	dev->dv_class_deregister = NULL;
   2331 }
   2332 
   2333 bool
   2334 device_active(device_t dev, devactive_t type)
   2335 {
   2336 	size_t i;
   2337 
   2338 	if (dev->dv_activity_count == 0)
   2339 		return false;
   2340 
   2341 	for (i = 0; i < dev->dv_activity_count; ++i)
   2342 		(*dev->dv_activity_handlers[i])(dev, type);
   2343 
   2344 	return true;
   2345 }
   2346 
   2347 bool
   2348 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2349 {
   2350 	void (**new_handlers)(device_t, devactive_t);
   2351 	void (**old_handlers)(device_t, devactive_t);
   2352 	size_t i, new_size;
   2353 	int s;
   2354 
   2355 	old_handlers = dev->dv_activity_handlers;
   2356 
   2357 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2358 		if (old_handlers[i] == handler)
   2359 			panic("Double registering of idle handlers");
   2360 	}
   2361 
   2362 	new_size = dev->dv_activity_count + 1;
   2363 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
   2364 
   2365 	memcpy(new_handlers, old_handlers,
   2366 	    sizeof(void *) * dev->dv_activity_count);
   2367 	new_handlers[new_size - 1] = handler;
   2368 
   2369 	s = splhigh();
   2370 	dev->dv_activity_count = new_size;
   2371 	dev->dv_activity_handlers = new_handlers;
   2372 	splx(s);
   2373 
   2374 	if (old_handlers != NULL)
   2375 		free(old_handlers, M_DEVBUF);
   2376 
   2377 	return true;
   2378 }
   2379 
   2380 void
   2381 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2382 {
   2383 	void (**new_handlers)(device_t, devactive_t);
   2384 	void (**old_handlers)(device_t, devactive_t);
   2385 	size_t i, new_size;
   2386 	int s;
   2387 
   2388 	old_handlers = dev->dv_activity_handlers;
   2389 
   2390 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2391 		if (old_handlers[i] == handler)
   2392 			break;
   2393 	}
   2394 
   2395 	if (i == dev->dv_activity_count)
   2396 		return; /* XXX panic? */
   2397 
   2398 	new_size = dev->dv_activity_count - 1;
   2399 
   2400 	if (new_size == 0) {
   2401 		new_handlers = NULL;
   2402 	} else {
   2403 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
   2404 		    M_WAITOK);
   2405 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
   2406 		memcpy(new_handlers + i, old_handlers + i + 1,
   2407 		    sizeof(void *) * (new_size - i));
   2408 	}
   2409 
   2410 	s = splhigh();
   2411 	dev->dv_activity_count = new_size;
   2412 	dev->dv_activity_handlers = new_handlers;
   2413 	splx(s);
   2414 
   2415 	free(old_handlers, M_DEVBUF);
   2416 }
   2417 
   2418 /*
   2419  * Device Iteration
   2420  *
   2421  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2422  *     each device_t's in the device tree.
   2423  *
   2424  * deviter_init(di, flags): initialize the device iterator `di'
   2425  *     to "walk" the device tree.  deviter_next(di) will return
   2426  *     the first device_t in the device tree, or NULL if there are
   2427  *     no devices.
   2428  *
   2429  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2430  *     caller intends to modify the device tree by calling
   2431  *     config_detach(9) on devices in the order that the iterator
   2432  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2433  *     nearest the "root" of the device tree to be returned, first;
   2434  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2435  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2436  *     indicating both that deviter_init() should not respect any
   2437  *     locks on the device tree, and that deviter_next(di) may run
   2438  *     in more than one LWP before the walk has finished.
   2439  *
   2440  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2441  *     once.
   2442  *
   2443  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2444  *
   2445  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2446  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2447  *
   2448  * deviter_first(di, flags): initialize the device iterator `di'
   2449  *     and return the first device_t in the device tree, or NULL
   2450  *     if there are no devices.  The statement
   2451  *
   2452  *         dv = deviter_first(di);
   2453  *
   2454  *     is shorthand for
   2455  *
   2456  *         deviter_init(di);
   2457  *         dv = deviter_next(di);
   2458  *
   2459  * deviter_next(di): return the next device_t in the device tree,
   2460  *     or NULL if there are no more devices.  deviter_next(di)
   2461  *     is undefined if `di' was not initialized with deviter_init() or
   2462  *     deviter_first().
   2463  *
   2464  * deviter_release(di): stops iteration (subsequent calls to
   2465  *     deviter_next() will return NULL), releases any locks and
   2466  *     resources held by the device iterator.
   2467  *
   2468  * Device iteration does not return device_t's in any particular
   2469  * order.  An iterator will never return the same device_t twice.
   2470  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2471  * is called repeatedly on the same `di', it will eventually return
   2472  * NULL.  It is ok to attach/detach devices during device iteration.
   2473  */
   2474 void
   2475 deviter_init(deviter_t *di, deviter_flags_t flags)
   2476 {
   2477 	device_t dv;
   2478 	bool rw;
   2479 
   2480 	mutex_enter(&alldevs_mtx);
   2481 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2482 		flags |= DEVITER_F_RW;
   2483 		alldevs_nwrite++;
   2484 		alldevs_writer = NULL;
   2485 		alldevs_nread = 0;
   2486 	} else {
   2487 		rw = (flags & DEVITER_F_RW) != 0;
   2488 
   2489 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2490 			;
   2491 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2492 		       (rw && alldevs_nread != 0))
   2493 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2494 
   2495 		if (rw) {
   2496 			if (alldevs_nwrite++ == 0)
   2497 				alldevs_writer = curlwp;
   2498 		} else
   2499 			alldevs_nread++;
   2500 	}
   2501 	mutex_exit(&alldevs_mtx);
   2502 
   2503 	memset(di, 0, sizeof(*di));
   2504 
   2505 	di->di_flags = flags;
   2506 
   2507 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2508 	case DEVITER_F_LEAVES_FIRST:
   2509 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2510 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2511 		break;
   2512 	case DEVITER_F_ROOT_FIRST:
   2513 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2514 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2515 		break;
   2516 	default:
   2517 		break;
   2518 	}
   2519 
   2520 	deviter_reinit(di);
   2521 }
   2522 
   2523 static void
   2524 deviter_reinit(deviter_t *di)
   2525 {
   2526 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2527 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2528 	else
   2529 		di->di_prev = TAILQ_FIRST(&alldevs);
   2530 }
   2531 
   2532 device_t
   2533 deviter_first(deviter_t *di, deviter_flags_t flags)
   2534 {
   2535 	deviter_init(di, flags);
   2536 	return deviter_next(di);
   2537 }
   2538 
   2539 static device_t
   2540 deviter_next1(deviter_t *di)
   2541 {
   2542 	device_t dv;
   2543 
   2544 	dv = di->di_prev;
   2545 
   2546 	if (dv == NULL)
   2547 		;
   2548 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2549 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2550 	else
   2551 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2552 
   2553 	return dv;
   2554 }
   2555 
   2556 device_t
   2557 deviter_next(deviter_t *di)
   2558 {
   2559 	device_t dv = NULL;
   2560 
   2561 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2562 	case 0:
   2563 		return deviter_next1(di);
   2564 	case DEVITER_F_LEAVES_FIRST:
   2565 		while (di->di_curdepth >= 0) {
   2566 			if ((dv = deviter_next1(di)) == NULL) {
   2567 				di->di_curdepth--;
   2568 				deviter_reinit(di);
   2569 			} else if (dv->dv_depth == di->di_curdepth)
   2570 				break;
   2571 		}
   2572 		return dv;
   2573 	case DEVITER_F_ROOT_FIRST:
   2574 		while (di->di_curdepth <= di->di_maxdepth) {
   2575 			if ((dv = deviter_next1(di)) == NULL) {
   2576 				di->di_curdepth++;
   2577 				deviter_reinit(di);
   2578 			} else if (dv->dv_depth == di->di_curdepth)
   2579 				break;
   2580 		}
   2581 		return dv;
   2582 	default:
   2583 		return NULL;
   2584 	}
   2585 }
   2586 
   2587 void
   2588 deviter_release(deviter_t *di)
   2589 {
   2590 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2591 
   2592 	mutex_enter(&alldevs_mtx);
   2593 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2594 		--alldevs_nwrite;
   2595 	else {
   2596 
   2597 		if (rw) {
   2598 			if (--alldevs_nwrite == 0)
   2599 				alldevs_writer = NULL;
   2600 		} else
   2601 			--alldevs_nread;
   2602 
   2603 		cv_signal(&alldevs_cv);
   2604 	}
   2605 	mutex_exit(&alldevs_mtx);
   2606 }
   2607